
Under review as a conference paper at ICLR 2023

ON THE EFFECTIVENESS OF ADAPTING PRE-TRAINED
TRANSFORMER MODELS VIA ADVERSARIAL NOISE

Anonymous authors
Paper under double-blind review

ABSTRACT

Pretraining Transformer-based language models followed by adapting the pre-
trained models to a downstream task is an effective transfer mechanism in NLP.
While it is well-known that the pretraining stage is computationally expensive,
the downstream adaptation also becomes costly as Transformers grow in size
rapidly and the wide usage scenarios of fine-tuning pre-trained Transformers. In
this work, we find that techniques that have demonstrated success in accelerating
the pre-training tasks, such as large-batch optimizations, lead to severe accuracy
degradation. We find strong regularization techniques such as adversarial training
help to close the accuracy gap. However, the computational complexity associ-
ated with this approach, due to the high cost of generating adversaries, prevents it
from reducing adaptation costs even with a large number of GPUs. As such, we
systematically study both the computation efficiency and generalization of adver-
sarial training for adapting pre-trained transformers, under a large-batch optimiza-
tion regime. Our investigation yields simple yet effective algorithms for adapting
transformer models. We show in experiments that our proposed method attains up
to 9.8× adaptation speedups over the baseline on BERTbase and RoBERTalarge,
while achieving comparable and sometimes higher accuracy than fine-tuning us-
ing existing baselines.

1 INTRODUCTION

In the past few years, we have witnessed the success of transformer models Bommasani et al. (2021),
such as BERT Devlin et al. (2019), RoBERTa Liu et al. (2019), T5 Raffel et al. (2019), and GPT-
3 Brown et al. (2020). These models are trained on massive open-domain data and subsequently
adapted to various downstream tasks, which have led to accuracy breakthroughs in many NLP ap-
plications(Wang et al., 2019a). Despite their remarkable performance in accuracy, training these
models is extremely time-consuming given their huge model sizes, ranging from a few hundred mil-
lion parameters to over billions of parameters. As a result, optimizations for faster training speed
with high accuracy are the focus of a highly active research area and have a clear, practical impact.

To accelerate the training speed of large models, one of the most popular approaches is to leverage
distributed training, where a mini-batch is partitioned across multiple processors (e.g., GPUs) to
compute gradients locally in parallel and then aggregate the local updates (Li et al., 2020; Liu et al.,
2019; Huang et al., 2019; Shazeer et al., 2018; Shoeybi et al., 2019; Rajbhandari et al., 2019).
Under such a paradigm, increasing the batch size has the benefit of improved training throughput
per iteration. However, increasing the batch size has a non-trivial impact on model convergence and
generation in practice. To close the accuracy gap, prior works proposed to either increase the number
of training iterations, which limits the performance benefits of large-batch optimizations Hoffer
et al. (2017) or variants of adaptive optimizers such as LAMB You et al. (2019a). It has been
empirically observed that LAMB (You et al., 2019a) is able to speed up BERT pre-training by using
considerably larger batch sizes on massive GPUs. Despite showing promising results, prior work
primarily focuses on large-batch optimizations for accelerating pre-training Transformers. However,
as the size of Transformers increases rapidly, reducing the training overhead at the adaption stage
starts to become more prominent, e.g., with the active research that has been pushing the training
time of BERT models to only a few hours or less than one hour You et al. (2019a); Zheng et al.
(2020); ber, it takes tens of hours or even days to fine-tune these models on downstream tasks (Liu
et al., 2019). Furthermore, since the adaptation of these large transformer models has been used

1



Under review as a conference paper at ICLR 2023

by major players in the industry, many model scientists have to perform adaptation more frequently
than pre-training the Transformers. As a result, the excessively long adaptation time hinders the
turnaround time, and the aggregated training cost for adaptation is also quite high.

We aim to accelerate the adaption of pre-trained Transformer models. For this purpose, we intro-
duce ScaLA, a method that achieves similar model adaptation quality but with significantly shorter
optimization time. Especially, the contributions of our paper consist of:

• We analyze projected gradient descent based adversarial training under the large-batch
adaptation regime, which shows strong generalization results but leads to a severe
computation-vs-generalization dilemma: adversarial large-batch optimization adds signifi-
cant overhead, making it difficult to actually reduce training time even with a large number
of processors.

• We perform systematic studies of how different training strategies affect the computational
efficiency and generalization for adapting Transformers. We find that many computations
in adversarial training can be avoided with only a minimal impact on the final model accu-
racy.

• We present ScaLA, a simple yet effective algorithm that injects lightweight adversaries into
large batch optimization to speed up the adaptation of pre-trained transformer networks.

• We theoretically quantify the convergence rate of adversarial large-batch optimization us-
ing techniques for analyzing non-convex saddle-point problems.

• We conduct extensive evaluation, and our results show that ScaLA accelerates the adapta-
tion of pre-trained Transformer-networks by up to 9.8 times over the baseline on BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and T5 (Raffel et al., 2019) over a wide range
of natural language understanding (NLU) tasks. We conduct ablation studies to assess the
impact of our approach on both generalization and computational efficiency under various
conditions.

2 BACKGROUND AND RELATED WORK

Despite the great success of pre-trained transformer networks such as BERT (Devlin et al., 2019),
a big challenge, in general, comes from the training efficiency – even with self-attention and par-
allelizable recurrence (Vaswani et al., 2017), and high-performance hardware (Jouppi et al., 2017),
training transformer networks can still take a significant amount of time. One effective approach to
reducing training time is through data parallelism (Devlin et al., 2019; Liu et al., 2019; Shoeybi et al.,
2019), which motivates studies on large-batch stochastic non-convex optimizations for transformer
networks (You et al., 2019a). These studies have raised concerns with respect to its convergence,
generalizability, and training stability by observing that training with a large batch could be diffi-
cult (Keskar et al., 2017; Hoffer et al., 2017; Nado et al., 2021). Different from prior works, which
mostly focus on reducing the pre-training time (You et al., 2019a; Zhang & He, 2020; Gong et al.,
2019; Clark et al., 2020), this work shows an effective approach to accelerate the adaptation of
pre-trained models while preserving the accuracy of downstream tasks.

There has also been an increasing interest in developing efficient adaptation methods for pre-trained
Transformer models (Houlsby et al., 2019; Wang et al., 2021; Hu et al., 2021; He et al., 2021). For
example, (Houlsby et al., 2019) inserts small modules called adapters to each layer of the pre-trained
model, and only the adapters are trained during adaptation. (Hu et al., 2021) adds low-rank matrices
to approximate parameter updates. (Pfeiffer et al., 2021) shows that it is possible to quickly adapt
to new tasks by collectively learning knowledge from multiple tasks. These methods have achieved
comparable performance to standard fine-tuning on different sets of tasks. However, their focus is
on reducing memory consumption of adaptation by reducing the trainable parameters needed per
task, whereas our study focuses on speeding up the adaptation from the perspective of accelerating
turnaround time.

Adversarial training has been proposed and studied extensively in the computer vision literature
mainly for improving the robustness against adversarial attacks (Goodfellow et al., 2015; Madry
et al., 2018). There are some studies show that adversarial training helps improve the generalizability
of language modeling Cheng et al. (2019); Wang et al. (2019b); Jiang et al. (2020); Liu et al. (2020).
However, very few works examine how adversarial learning works helps improve the adaptation
speed of pre-trained Transformer models. The most related work is FreeLb (Zhu et al., 2020), which
uses adversarial training as a data augmentation technique to enrich the training set. As such, FreeLb

2



Under review as a conference paper at ICLR 2023

solely focused on improving the generalization without including an evaluation of its computation
efficiency. We provide a comparison with FreeLb in Section 5.

3 CHALLENGES AND OPPORTUNITIES OF ADAPTING PRE-TRAINED
TRANSFORMERS WITH LARGE-BATCH OPTIMIZATION

We are interested in extending the large-batch optimization to the Transformation adaptation phase
using pre-trained BERTbase model on GLUE as an example. This part presents several studies that
motivate the design of the lightweight adversarial large-batch optimization approach in Section 4.
The detailed hardware/software setup is described in Section 5.

Scalability analysis. First, we carry out a scalability test by varying the number of GPUs from
1 to 32, with and without communication. Different from pre-training, the adaptation stage of-
ten employs a much smaller batch size (e.g., 16, 32) than pre-training (e.g., 4096) (Devlin et al.,
2019; Liu et al., 2019).We choose a batch size 32, as suggested by most literature for BERT fine-
tuning Devlin et al. (2019); Liu et al. (2019), and we divide the samples in the mini-batch among
P={1,2,4,8,16,32} GPUs. If the per-worker batch size (e.g., 16) is larger than the maximum admis-
sible per-worker batch size (e.g., 8), we use local gradient accumulation Goyal et al. (2017) to avoid
running out of memory. Figure 1(a) shows the scalability results. For batch size 32, the training
time decreases when P increases from 1 to 4. However, it quickly plateaus and even decreases with
more GPUs. We find that this is because when the batch size is small, the communication overhead
dominates the total execution time (e.g.,B=32 vs. B=32 (no comm)). The communication overhead
is huge, especially when there is cross-machine communication (e.g., from 16 to 32), hindering the
scalability of multi-GPU training. In contrast, by increasing the batch size (e.g., to 1K), the training
time keeps decreasing as the number of GPUs increases because an increased batch size reduces the
number of all-reduce communications to process the same amount of data and also increases the
compute resource utilization per GPU (i.e., increased computation-vs-communication ratio).

(a) Scalability (b) Generalizability (c) Sharpness

Figure 1: Scalability, generalizability, and curvature analysis results by adapting BERTbase to the
MNLI task.

Generalizability analysis. Increasing the batch size leads to accelerated per-epoch execution time
due to the efficient utilization of hardware. However, how would increasing the batch size affect the
generalizability in adapting transformer networks? Since prior works on batch size scaling often fo-
cus on computer vision tasks and pre-training Smith et al. (2018); Goyal et al. (2017); Smith (2018);
You et al. (2019a), we conduct an analysis of large-batch adaptation on pre-trained Transformers
by performing a hyperparameter sweep on batch sizes {1K, 2K, 4K, 8K} and learning rates {1e-4,
3e-4,5e-4, 7e-4, 9e-4, 1e-3, 3e-3}, where the learning rate range covers both linear scaling (Goyal
et al., 2017) and sqrt scaling (You et al., 2019a). We report the validation accuracy in Figure 1(b).
We make two observations: (1) the learning rate scales roughly with the square root of the increase
of the mini-batch size, although the best learning rates do not always follow the sqrt rule; (2) there is
a generalization gap between the small batch and large batch accuracies, and the gap becomes larger
when the batch size increases. Furthermore, methods, such as LAMB You et al. (2019a), works well
on pre-training with extremely large batch sizes (log2 B = {15, 16}) but do not close the general-
ization gap in adaptation (as shown in Section 5). These results pose the question: can we increase
the batch size during adaptation in the interest of making adaptation more efficient while preserving
generalization?

Hessian analysis. To further examine the generalization gap, we resort to the Hessian-based cur-
vature analysis. Prior work Keskar et al. (2017); You et al. (2020) correlates the low generalization
with sharp minima (which are characterized by a positive curvature of large magnitude in the pa-

3



Under review as a conference paper at ICLR 2023

rameter space). The indication is that a sharp local minimum also reflects a higher sensitivity of
the loss even within the neighborhood of training data points and can attribute to the difficulty in
generalization. Their hypothesis was that a larger noise due to the higher variance in gradient es-
timates computed using small mini-batches, in contrast to gradient estimates computed using large
mini-batches, encourages the parameter weights to exit out of the basin of sharp minima and towards
flatter minima which have better generalization.

To verify this hypothesis, we quantitatively measure the steepness of loss landscape by loading the
checkpoint of an adapted model and computing the curvature, i.e., properties of the second derivative
of the model, with respect to its parameters, for a fixed batch of samples. Following Yao et al. (2018),
for a model Φ(x), we compute the largest eigenvalue of the model’s Hessian, Lmax[∇2

xΦ(x)], using
the Hessian-vector product primitive and the power method. We use the largest eigenvalue as a
measure of sharpness since the corresponding (top) eigenvector characterizes the direction of the
largest change in gradient at a given point in the parameter space. From Figure 1(c), the largest
eigenvalue of the model trained with a large batch (e.g., 1K) is much larger (e.g., 2.6x) than the
small-batch baseline and with higher deviations (e.g., 3.9x). This result confirms that large-batch
adaptation makes the loss landscape of the model more prone to ill-conditioning and less robust to
perturbation, which helps explain the loss in generalization.

4 ADVERSARIAL NOISE FOR CLOSING LARGE-BATCH GENERALIZATION
GAP

Given the generalization challenge of large-batch adaptation, we investigate strategies that may help
close the generalization gap. We first describe our setup and then our analysis results.

Basic setup. Since language expressions are quite sensitive to individual words or clauses, where
noises against those would likely generate incorrect or biased training data with wrong labels (Zhang
& Yang, 2018). We follow prior success in applying adversarial training to NLP models (Miyato
et al., 2017; Zhu et al., 2020) to have an adversarial training setup by applying noises to the contin-
uous word embeddings instead of directly to discrete words or tokens.

min
x∈X

Eξ∼Q[g(x, ξ)] = min
x∈X

max
y∈Y

Eξ∼Q[f(x, ξ) + λr(x, y)] (1)

where g : X × Y → R denotes the overall training objective, r : X → R denotes the augmented
regularization and ξ denotes samples drawn from Q (for simplicity, we slightly abuse the nota-
tion in using ξ to denote the random variable, e.g. Eξ[g(x, ξ)], or its empirical realizations, e.g.
1
K

∑K
k=1 g(x, ξk) for any K). The overall (outer) training objective involves a minimization prob-

lem in the parameter space while being stochastic with respect to the data space. The adversarial
regularization (inner) term is a deterministic maximization problem operating in the data space con-
ditioned on a fixed parameter configuration. We emphasize that this formulation is a two-player
sequential (Jin et al., 2020), not simultaneous, game wherein the goal is to optimize a transformer
network that is insensitive to adversarial noise.

Why Is Adversarial Noise Expensive? The generation of adversarial noise requires an extra PGA
inner loop that standard training does not have. Figure 3 provides the time breakdown of opti-
mization using PGA with T = 1 (denoted as PGA-1). PGA-1 performs the perturbation and takes
approximately the same time as making three forward passes (Fwd) through the network. This is
because one step of PGA requires making one forward and backward pass (Bwd) over the entire
network. The backward pass of the optimization takes roughly twice the amount of time as the stan-
dard backward step because the back-propagation is triggered twice to calculate the noise and the
gradients. The time spent on the optimizer step function remains the same. In total, the optimiza-
tion would slow down training by at least 2 times, even with T =1. This motivates us to look at the
effectiveness of different perturbation steps as well as the usefulness of perturbation from the initial
epochs.

The Usefulness of Maximization Steps. Prior works often do multiple gradient computation steps
(T > 1) and take several times longer training time to produce adversaries (Madry et al., 2018;
Zhu et al., 2020), likely because their focus is on generalization instead of computational efficiency.
Subsequently, researchers presented Curriculum Adversarial Training (CAT) (Cai et al., 2018) and
Annealing-based Adversarial Training (Ye et al., 2020), which progressively increase the perturba-
tion with various strengths, cutting the adversarial training cost while maintaining good accuracy.

4



Under review as a conference paper at ICLR 2023

Lexicon encoder

+

sentence inputs

Input embeddings Adv. noise

Transformer encoder

Context embeddings

Output layer

Minimize loss

Maximize 
prediction 
deviation
(Delayed 
PGA-1)

Noise generator

Figure 2: The architecture of the
proposed method.

Figure 3: Time breakdown
without and with PGA-1.

Figure 4: Impact of perturba-
tion steps.

To investigate how CAT and similar methods affect large-scale NLP problems involving transform-
ers, we evaluate the final accuracy and training cost of QNLI, varying the number of perturbation
steps T and report the results in Figure 4. Interestingly, although using a large T helps to produce
stronger noises, we find that this does not lead to improved accuracy, despite the fact that the training
overhead still increases almost linearly. In fact, the best accuracy is achieved with T = 1.

Why Is One-shot Perturbation Sufficient? We note that the model has two components, namely,
the parameter space and data space. First, unlike the minimization in the parameter space, which is
stochastic, the maximization in the data space is deterministic. Second, with respect to the testing
phase, the numerical convergence in the model’s parameter space is of primary importance rather
than the numerical convergence in the data space, i.e., the maximization is an auxiliary procedure
that augments the training phase to make the parameter space ”aware” of effects of the batch size
across epochs. Due to these two points, at a certain epoch, for a given batch, the marginal utility
of an additional PGA step is low, and we are able to get away with inexact deterministic maximiza-
tion. Therefore, we apply PGA-1 in our large-batch optimization scheme, given that it produces
sufficiently good solutions while being much more computationally efficient.

The Usefulness of Adversarial Noise in the Adaptation Process. Given that PGA-1 still adds
an overhead factor of 2, we are motivated to further reduce the overhead of adversarial noise. In
particular, we investigate how useful adversarial noises are in the whole large-batch optimization
process. We conduct additional experiments to measure the final accuracy corresponding to starting
from a regular fine-tuning and then enabling PGA-1 for t ≥ ts where ts ∈ [T ]. Our observation
is that enabling PGA-1 from the beginning does not offer much improvement in accuracy, whereas
adversarial noise becomes more potent as the model begins to stabilize towards the end of training
(more detailed results in Appendix A.1). In general, at initialization, the model’s parameters are
relatively far from their final values and are less likely to get stuck at local minima. Therefore
the adversarial noises generated in the initial training iterations are quite different from the noises
towards the end of training because they would not maximize the adversarial loss in Equation 1. This
hypothesis suggests that we might be able to inject adversarial noise in the later training process
while still leveraging it to improve generalizability. We remark that this phenomenon has been
observed by prior work on computer vision tasks (Cai et al., 2018; Gupta et al., 2020).

Would Alternative Noise Injection Strategies Work? One may wonder what would happen if we
use a different type of noise. To answer this question, we have performed additional experiments by
adding Gaussian noise to the embeddings as well as comparing one-hot labels and label probability
for generating adversarial noises. Overall, we find that explicitly enforcing the smoothness of the
loss landscape via adversarial noise can result in better improvement and label probability (soft)
consistently leads to higher accuracy than using the ground truth (hard). Section 5 provides more
detailed results.

Proposed Method. Combining the formulation with the above investigations, we propose ScaLA,
which adopts both one-shot perturbation and delayed noise injection as they help reduce the com-
putation cost of adversarial noise while still allowing it to preserve the generalization benefit. The
full procedure of ScaLA is provided in Algorithm 1, whose convergence rate is characterized in
Theorem 4.1.
Theorem 4.1 (Complexity of Algorithm 1; Informal – Details in Appendix D). Consider the prob-
lem in Equation 1. Let ts = 0. Setting the outer learning rate as η = O

(
1/
√
T
)

and scaling batch

size as b = O(T ), for Algorithm 1, we have E
[
∥∇g1/2α(x)∥2

]
≤ O

(
ϵ+ κα/

√
T
)

where x is the

5



Under review as a conference paper at ICLR 2023

Algorithm 1 ScaLA
1: Input: Epochs T , delay ts, perturbation (inner) step size ρ, clipping radius ω, regularization

strength λ, (outer) learning rate η
2: Output: h-layer transformer model Φ with converged robust parameters x := xT

3: for t ∈ [T ] do
4: for worker p ∈ [P ] do
5: for mini-batch ξp ∼ Q do
6: r(xt)← 0, γ ← Φ(x, ξp), select y0
7: if t ≥ ts then
8: ▷ Check delay condition
9: y1 ← Πω(y0 + ρ∇yr(xt, y)) ▷ Generate adversarial noise with PGA-1

10: r(xt)← KLsym(γ,Φ(xt−1, y1))
11: end if
12: g(xt, ξp)← f(xt−1, ξp) + λr(xt)
13: ∇xg(xt, ξp)← Backward pass on Φ
14: end for
15: end for
16: ∇̂xg(xt)← 1

B

∑P
p=1∇xg(xt, ξp)

17: xi
t ← xi

t−1 − ηt∇̂xg(xt)
18: end for

estimator obtained from running T steps of Algorithm 1 and picking xt uniformly at random for
t ∈ [T ]. Here, ϵ is the error due to the approximate inner maximization oracle, α characterizes the
smoothness of f(x, .), g1/2α is the Moreau-envelope of g and κα = maxi αi/mini αi.

5 EVALUATION

We evaluate the effectiveness of ScaLA in adapting pre-trained transformer networks over a set of
NLP tasks.

Hardware. We conduct the evaluation using 2 NVIDIA DGX-2 nodes. Each node consists of
16 NVIDIA V100 GPUs. The nodes are connected with InfiniBand using a 648-port Mellanox
MLNX-OS CS7500 switch. Model/Dataset. We study adaptation on pre-trained BERTbasemodel
RoBERTalarge, and T5base hosted by HuggingFace (Wolf et al., 2020). We use the GLUE bench-
mark (Wang et al., 2019a), which is a collection of sentence or sentence-pair natural language un-
derstanding tasks including question answering, sentiment analysis, and textual entailment. We also
include SQuAD-v2 in our evaluation. We exclude tasks in GLUE that have very small datasets
(e.g.,CoLA, RTE). We report the details about the hyperparameters in Appendix B.

5.1 MAIN RESULTS – ADAPTATION TIME ACCELERATION

We first compare the following schemes: (1) Single GPU + SB: This is the existing PyTorch imple-
mentation of Transformer fine-tuning from HuggingFace (HF), using small batch (SB) sizes (e.g.,
32). (2) Multi-GPU + SB: This is multi-GPU PyTorch implementation using DistributedData-
Parallel (Li et al., 2020), (3) Multi-GPU + LB + FreeLB:, this is the work described in Zhu et al.
(2020) using large minibatches (LB), e.g., 1K, and perturbation step K = 5 for adaptation, and
(4) Multi-GPU + LB + ScaLA: This is our approach as described in Algorithm 1. Table 1 shows
results on MNLI, QNLI, QQP, and SST2, which are larger datasets and less sensitive to random
seeds. n × g refers to Pn nodes each with Pg GPUs for a total of P = PnPg homogeneous work-
ers (e.g., 32 GPUs on 2 NVIDIA DGX-2 nodes). For a fair comparison, we reproduce BERT and
RoBERTa baseline. Our reproduced baseline achieves the same or slightly higher accuracy than the
originally reported results in (Devlin et al., 2019) and (Liu et al., 2019). We now discuss our results
and observations.

Adaptation time analysis. Compared with single-GPU training, the multi-GPU baseline leads
to only modest training speedup improvements, e.g., with 1.5− 2.4× faster training speed for both
BERT and RoBERTa, even with 32×more compute resources. The speedup is limited because of the
small mini-batches (e.g., 32) used for adaptation, which do not provide a sufficient workload to fully
utilize the underlying hardware. Thus, communication overhead becomes the dominant part, and the
adaptation often struggles to obtain speedups even with more workers. In contrast, ScaLA achieves

6



Under review as a conference paper at ICLR 2023

Table 1: The adaptation time and accuracy results on GLUE benchmark. ScaLA achieves the same
average accuracy as the baseline while providing up to 18× speedups than a single GPU, and up to
9.8× speedups with the same amount of hardware.

BERTbase n×g bsz MNLI-m QNLI QQP SST-2 Avg.Steps Time Acc. Steps Time Acc. Steps Time Acc/F1 Steps Time Acc.
Devlin et al. 2019 84.4 88.4 - 92.7 -
Baseline (B=32) 1x1 32 73632 19635 84.8 19644 5535 90.6 68226 16494 91/88.0 12630 2736 93.1 89.4
Baseline (B=32) 2x16 32 73632 8848 84.8 19644 2408 90.6 68226 11311 91/88.0 12630 1494 93.1 89.4
FreeLb (B=1K) 2x16 1K 2301 5953 85.2 615 1944 90.3 2133 19030 91.2/88.2 396 680 92.8 89.5
ScaLA (B=1K) 2x16 1K 2301 1323 85.1 615 432 90.0 2133 4229 90.9/87.7 396 151 93.5 89.4

RoBERTalarge n×g bsz MNLI-m QNLI QQP SST-2 Avg.Steps Time Acc. Steps Time Acc. Steps Time Acc/F1 Steps Time Acc.
Liu et al. 2020 90.2 94.7 92.2/- 96.4 -

Baseline (B=32) 1x1 32 73632 43090 90.5 19644 14188 94.7 68226 40945 92.0/89.4 12630 4940 96.4 92.5
Baseline (B=32) 2x16 32 73632 18114 90.5 19644 4842 94.7 68226 16614 92.0/89.4 12630 3072 96.4 92.5
FreeLb (B=1K) 2x16 1K 2301 15133 91.2 615 5256 95.2 2133 10818 92.5/90.0 396 1804 96.9 93.3
ScaLA (B=1K) 2x16 1K 2301 3363 90.9 615 1168 95.1 2133 2404 92.3/89.8 396 401 96.7 92.9

up to 18× speedups over the single-GPU baseline with 32 GPUs. When using the same number of
GPUs (e.g., 32), ScaLA is 2.7–9.8× faster. The speedups come from three aspects: (1) the improved
hardware efficiency for each worker from increased per-worker micro-batch size; (2) the reduced
all-reduce communication overhead since it takes fewer communication rounds to process the same
number of samples in one epoch; (3) the lightweight adversarial noise incurs only a small portion of
the total training overhead. Finally, ScaLA obtains the speedups while achieving the same accuracy
(88.4 vs. 88.4) average accuracy for BERT and higher accuracy (92.9 vs. 92.5) for RoBERTa as the
baselines. ScaLA is 4.5 times faster than FreeLb while achieving similar accuracy on BERT (89.4 vs.
89.5) and RoBERTa (92.9 vs. 93.5). ScaLA is faster than FreeLb because FreeLb does not consider
much about the training cost and performs multiple ascent steps to calculate adversaries across the
full training process. As a matter of fact, FreeLb is even slower to run than vanilla baseline (e.g.,
QNLI on RoBERTa). In contrast, ScaLA analyzes the computational efficiency of adversarial large-
batch optimization and introduces several simple yet effective approaches to reduce the adversarial
noise cost, which leads to overall improved computational efficiency.

Generalizability analysis. Since there are very few works on large-batch adaptation, we create
several baselines to compare with ScaLA: (1) Multi-GPU + LB + Tuning LR: This configuration
uses large mini-batches (e.g., 1K), and applies a heuristic-based scheduling rule (e.g., square root)
combined with an extensive grid search for learning rates; (2) Multi-GPU + LB + LAMB: Uses
LAMB (You et al., 2019a) optimizer for large-batch adaptation. We make several observations from
the results in Table 2. First, compared with the baseline accuracy reported in the paper, the accuracy
of Multi-GPU + LB drops by close to 1 point (88.4 vs. 89.4, and 92.1 vs. 92.9) on average and close
to 2 points for some tasks (e.g., QQP on BERT), indicating that it is challenging to obtain on-par
accuracy with large-batch optimizations for adaptation despite with heavy hyperparameter tuning.
Second, since LAMB is designed primarily for improving the convergence of pre-training instead of
the adaptation, its ability to accelerate adaptation has yet to be proven. In our experiments, LAMB
leads to only marginal improvements (88.6 vs. 88.4, and 92.1 vs. 92.1) than the baseline and is 0.8
points lower than the small-batch baseline. This is because LAMM does not directly minimize the
sharpness of the loss landscape, so it can still lead to poor generalizability during adaptation. With
ScaLA, we are able to close the generalization gap from large-batch optimization (89.4 vs. 89.4,
and 92.5 vs. 92.9) and achieve 0.8 points higher accuracy (89.4 vs. 88.6, 92.9 vs. 92.1) than LAMB
on both BERT and RoBERTa. ScaLA improves generalizability because it introduces adversarial
noise in the large-batch optimization process, which serves as a regularizer. By training the network
to be robust to such perturbations, the model loss landscape is smoothed out, leading to improved
generalization.

5.2 EXPERIMENT – ANALYSIS RESULTS

Ablation analysis: We study the importance of components in ScaLA. We set ts to 0, which denotes
as w/o Delaying PGA-1. We replace the outer minimization to use ADAM (Kingma & Ba, 2015),
which is noted as w/o Groupwise LR. We set λ to 0, which denotes as w/o PGA-1. The results are
reported in Table 3.

The results in Table 3 show that the removal of either design element would result in a performance
drop. For example, removing PGA-1 leads to 0.8 points accuracy drop (88.6 vs. 89.4), indicating
that adversarial noise is crucial for improving the generalizability of large-batch adaptation. More-

7



Under review as a conference paper at ICLR 2023

Table 2: The comparison results between ScaLA and alternative methods for large-batch adaptation
on the GLUE benchmark, which show that ScaLA achieves higher accuracy than baselines after
training the same number of samples and steps.

BERTbase n×g Batch MNLI-m QNLI QQP SST-2 Avg.size Steps Time Acc. Steps Time Acc. Steps Time Acc/F1 Steps Time Acc.
Vanilla (B=1K) 2x16 1K 2301 1148 84.3 615 349 89.3 2133 2892 89.6/86.1 396 134 93 88.4
LAMB (B=1K) 2x16 1K 2301 1180 84.1 615 359 89.6 2133 2978 90.5/87.0 396 139 92.4 88.6
ScaLA (B=1K) 2x16 1K 2301 1323 85.1 615 432 90.0 2133 4229 90.9/87.7 396 151 93.5 89.4

RoBERTalarge n×g Batch MNLI-m QNLI QQP SST-2 Avg.size Steps Time Acc. Steps Time Acc. Steps Time Acc/F1 Steps Time Acc.
Vanilla (B=1K) 2x16 1K 2301 2514 90.1 615 936 94.3 2133 1874 91.7/89.1 396 317 95.9 92.1
LAMB (B=1K) 2x16 1K 2301 2646 90.5 615 973 94.5 2133 1998 91.3/88.5 396 324 96.2 92.1
ScaLA (B=1K) 2x16 1K 2301 3363 90.9 615 1168 95.1 2133 2404 92.3/89.8 396 401 96.7 92.9

Table 3: Ablation study of ScaLA using BERTbase on GLUE tasks.
MNLI-m QNLI QQP SST-2 Avg. SpeedupTime Acc. Time Acc. Time Acc/F1 Time Acc.

Baseline 19635 84.8 5535 90.6 16494 91/88.0 2736 93.1 89.4 1
ScaLA 1323 85.1 432 90 4229 90.9/87.7 151 93.5 89.4 12.4

w/o Delaying PGA-1 2503 85.2 726 90.2 6407 91.3/88.3 272 93.1 89.5 7.0
w/o Groupwise LR 1290 85.0 422 89.9 4212 90.7/87.6 146 93.0 89.2 12.7

w/o PGA-1 1180 84.1 359 89.6 2978 90.5/87.0 139 92.4 88.6 14.3

over, if we perform PGA-1 without delayed injection, the average accuracy increases by 0.1 points
(89.5 vs. 89.4), but the execution time is increased by 1.5–1.9x, indicating the importance of having
lightweight adversarial noise for speeding up the adaptation. Finally, removing group-wise learning
rates leads to a small 0.2 points accuracy drop (89.2 vs. 89.4), indicating that ScaLA still achieves
benefits without group-wise learning rates (89.2 vs. 88.6), but they are complementary to each other.
Table 4: Evaluation results of T5base on SQuAD-
v2.

T5/SQuAD-v2 n bsz EM F1 Time
Baseline 1 12 78.53 81.71 2h10m
Baseline 16 12 N/A N/A N/A
Baseline 16 1024 78.27 81.47 8m

FreeLb 16 1024 79.04 82.65 66m
ScaLA 16 1024 78.98 82.55 18m

Table 5: Alternatives to generate perturbations us-
ing random noise, ground-truth, and label proba-
bility.

Model MNLI-m QNLI QQP SST-2 Avg
Baseline 84.3 89.3 89.6/86.1 93 88.4

Gaussian noise 84.5 89.4 90.3/87.0 92.6 88.7
ScaLA (GT) 84.1 89.6 90.7/87.6 93.2 89.0
ScaLA (LP) 85.1 90 90.9/87.7 93.5 89.4

Figure 5: Comparison
of scalability using differ-
ent large-batch optimiza-
tion methods on SST-2.

Figure 6: Comparison of
test accuracy by training
the baseline longer.

(a) MNLI-m (b) SST-2

Figure 7: Comparison of accuracy under
even larger batch sizes.

Application to Encoder-decoder Architectures. We used T5-base (220M) model from the Hug-
gingFace model zoo’s checkpoint. We applied ScaLA to adapt pre-trained T5 on SQuAD-v2 with a
batch size of 1k. Overall, the observations on this task are in line with the observations we obtained
from the pre-trained BERT/RoBERTa and the GLUE benchmarks in the manuscript: First, ScaLA
achieves 0.37/0.84 points higher EM/F1 scores (78.98/82.55 vs. 78.53/81.71) with a 7.2x faster
adaptation speed (2 hours 10 minutes vs. 18 minutes) than the baseline. This is achieved by (1)
using large batch sizes to improve the aggregated training throughput, and (2) using lightweight in-
jected adversarial noises to improve generalization. Second, compared with FreeLb, ScaLA achieves
a similar EM/F1 score but with a 3.6x faster speed. ScaLA is faster because it removes redundant
perturbation steps and leverages delayed perturbations, greatly reducing the overhead from adver-
sarial noise. Third, the scalability of the baseline is limited by the small batch sizes it uses, causing

8



Under review as a conference paper at ICLR 2023

severe under-utilization when scaling out the adaptation to multiple GPUs. On the other hand, al-
though increasing the batch sizes and learning rates allows the adaptation to finish in a much shorter
time (from 2 hours 10 minutes to 8 minutes), the final accuracy is lower than the baseline. In con-
trast, ScaLA allows the adaptation to match and even sometimes exceed the baseline accuracy while
offering a much faster adaptation speed.

Curvature analysis. We measure the steepness of the loss landscape again after applying ScaLA.
As shown in Fig. 1(c), the largest eigenvalue of the model becomes much smaller (6.9×) with lower
deviations with ScaLA and is slightly better than the small batch baseline, which is a strong indica-
tion that our approach enforces the smoothness of the model that leads to the accuracy improvement.

Comparison with random noise. We have performed additional experiments by adding Gaussian
noise to the embeddings. Table 5 that random noise indeed can improve the accuracy for MNLI-m
(84.3 vs. 84.5), QNLI (89.3 vs. 89.4), and QQP (90.3/87.0 vs. 89.6/86.1) over the baseline, but it
also leads to worse results on SST-2 (93. vs. 92.6). Compared with ScaLA, random noise consis-
tently falls behind ScaLA in its ability to reduce the generalization error on all tested tasks and is on
average 0.7 points lower than ScaLA (88.7 vs. 89.4). These results indicate that ScaLA’s approach
of explicitly enforcing the smoothness of the loss landscape can result in better improvement.

Perturbations via ground-truth vs. label probability. We also create one-hot labels and use those
to generate perturbations instead of using label probability generated by the network. Table 5 shows
that using label probability (LP) consistently leads to higher accuracy than using the ground-truth
(GT), e.g., 89.4 vs. 89.0 on average. Label probability leads to better generalization, probably
because it provides a better measurement of the adversarial direction, which is the direction in the
input space in which the label probability of the model is most sensitive to small perturbations.

Scalability analysis varying GPUs. Figure 5 shows the scalability comparison on SST-2 after
optimizations. While the speedup still plateaus at 4 GPUs with a small batch size (e.g., B = 32),
the four large-batch configurations are able to scale well up to 32 GPUs and take a similar amount
of time with 32 GPUs. ScaLA scales better than ScaLA without delaying PGA-1, and achieves a
much faster training speed, especially in the 1-16 GPU range.

Train longer, generalize better? Despite improved adaptation speed, one may still wonder whether
simply performing large-batch adaptation longer would also close the generalization gap. Figure 6
shows the comparison between ScaLA and the baseline on a batch size of 2K. ScaLA obtains an ac-
curacy of 85.2 after 6 epochs of training, whereas the baseline has difficulty to reach 84 after training
twice longer (e.g., 12 epochs). ScaLA achieves better accuracy because it explicitly penalizes model
weights from getting stuck at sharp minima, leading to better generalizability.

Generalizability under different batch sizes. We also evaluate how different batch sizes affect the
generalizability of adapting transformers. Figure 7 shows the results on MNLI-m and SST-2. We
make two major observations: (1) The accuracy tends to drop as the batch size increases. (2) While
both the baseline and LAMB suffer from significant accuracy drop by drastically increasing the
batch size (e.g., from 32 to 8K), ScaLA is able to mitigate the generalization gap and consistently
achieves higher accuracy than the baseline (e.g., 84.4 vs. 83.5 for MNLI, and 92.6 vs. 91.3 for
SST-2 at batch size 8K) and LAMB (e.g., 84.4 vs. 83.9 for MNLI, and 92.6 vs. 91.7 for SST-2 at
batch size 8K). These results indicate the benefit of ScaLA is maintained by further increasing the
batch size, which could bring even greater speedups when increasing the data parallelism degree.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we study how to accelerate the adaptation speed of pre-trained Transformer models for
NLU tasks. We introduce ScaLA, an efficient large-batch adaptation method using carefully injected
lightweight adversarial noises. The experiment results show that ScaLA obtains up to 9.8× speedups
on adapting transformer networks and outperforms state-of-the-art large-batch optimization methods
in generalizability. Given the promising results of ScaLA on accelerating the adaptation speed, it
opens new research opportunities for applying ScaLA to accelerate the more expensive pre-training
tasks as well as emerging pre-trained transformer networks for computer vision domains tasks.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Microsoft DeepSpeed achieves the fastest BERT training time. https://www.deepspeed.
ai/news/2020/05/27/fastest-bert-training.html. Accessed: 05-20-2021.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020. URL https://arxiv.org/abs/2005.14165.

Qi-Zhi Cai, Chang Liu, and Dawn Song. Curriculum adversarial training. In Jérôme Lang (ed.),
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJ-
CAI 2018, July 13-19, 2018, Stockholm, Sweden, pp. 3740–3747. ijcai.org, 2018.

Yong Cheng, Lu Jiang, and Wolfgang Macherey. Robust neural machine translation with doubly
adversarial inputs. In Anna Korhonen, David R. Traum, and Lluı́s Màrquez (eds.), Proceedings of
the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers, pp. 4324–4333. Association for Computational
Linguistics, 2019.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA: pre-
training text encoders as discriminators rather than generators. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic subgradient method converges at the rate
o(k{−1/4}) on weakly convex functions. arXiv preprint arXiv:1802.02988, 2018.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly convex
functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019), pp. 4171–4186, 2019.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tie-Yan Liu. Efficient training of
BERT by progressively stacking. In Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp. 2337–2346, 2019.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training ima-
genet in 1 hour. CoRR, abs/1706.02677, 2017.

Sidharth Gupta, Parijat Dube, and Ashish Verma. Improving the affordability of robustness training
for dnns. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
Workshops 2020, Seattle, WA, USA, June 14-19, 2020, pp. 3383–3392. IEEE, 2020.

10

https://www.deepspeed.ai/news/2020/05/27/fastest-bert-training.html
https://www.deepspeed.ai/news/2020/05/27/fastest-bert-training.html
https://arxiv.org/abs/2005.14165


Under review as a conference paper at ICLR 2023

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. CoRR, abs/2110.04366, 2021.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generaliza-
tion gap in large batch training of neural networks. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 1731–1741, 2017.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th Interna-
tional Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning Research, pp. 2790–2799. PMLR, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. CoRR, abs/2106.09685,
2021.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient
training of giant neural networks using pipeline parallelism. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, pp.
103–112, 2019.

Prateek Jain and Purushottam Kar. Non-convex optimization for machine learning. arXiv preprint
arXiv:1712.07897, 2017.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. SMART:
robust and efficient fine-tuning for pre-trained natural language models through principled regu-
larized optimization. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (eds.),
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pp. 2177–2190. Association for Computational Linguistics, 2020.

Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in nonconvex-nonconcave
minimax optimization? In International Conference on Machine Learning, pp. 4880–4889.
PMLR, 2020.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Ba-
jwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin,
Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard
Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy,
James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,
Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda,
Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory
Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. In-Datacenter Performance Analysis of a Tensor Processing
Unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture,
ISCA ’17, pp. 1–12, 2017. ISBN 978-1-4503-4892-8. doi: 10.1145/3079856.3080246. URL
http://doi.acm.org/10.1145/3079856.3080246.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, 2015.

11

http://doi.acm.org/10.1145/3079856.3080246


Under review as a conference paper at ICLR 2023

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: Experiences
on accelerating data parallel training. Proc. VLDB Endow., 13(12):3005–3018, 2020.

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave mini-
max problems. In International Conference on Machine Learning, pp. 6083–6093. PMLR, 2020.

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung Poon, and Jianfeng
Gao. Adversarial training for large neural language models. CoRR, abs/2004.08994, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Confer-
ence Track Proceedings. OpenReview.net, 2018.

Takeru Miyato, Andrew M. Dai, and Ian J. Goodfellow. Adversarial training methods for semi-
supervised text classification. In 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Zachary Nado, Justin Gilmer, Christopher J. Shallue, Rohan Anil, and George E. Dahl. A large
batch optimizer reality check: Traditional, generic optimizers suffice across batch sizes. CoRR,
abs/2102.06356, 2021.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. In Paola Merlo, Jörg Tiedemann,
and Reut Tsarfaty (eds.), Proceedings of the 16th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Main Volume, EACL 2021, Online, April 19 - 23, 2021,
pp. 487–503. Association for Computational Linguistics, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. CoRR, abs/1910.10683, 2019. URL http://arxiv.org/abs/1910.10683.

Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao Yang. Weakly-convex–concave min–max
optimization: provable algorithms and applications in machine learning. Optimization Methods
and Software, pp. 1–35, 2021.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimization
towards training A trillion parameter models. CoRR, abs/1910.02054, 2019.

Ralph Tyrell Rockafellar. Convex analysis. Princeton university press, 2015.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool,
Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, and Blake A.
Hechtman. Mesh-tensorflow: Deep learning for supercomputers. In Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
pp. 10435–10444, 2018.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. CoRR, abs/1909.08053, 2019.

Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part 1 - learning
rate, batch size, momentum, and weight decay. CoRR, abs/1803.09820, 2018. URL http:
//arxiv.org/abs/1803.09820.

Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t decay the learning rate,
increase the batch size. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018.

12

http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1803.09820
http://arxiv.org/abs/1803.09820


Under review as a conference paper at ICLR 2023

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, pp. 5998–6008, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In 7th
International Conference on Learning Representations, 2019a.

Dilin Wang, ChengYue Gong, and Qiang Liu. Improving neural language modeling via adversarial
training. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning Research, pp. 6555–6565. PMLR, 2019b.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuanjing Huang, Jianshu Ji, Guihong Cao,
Daxin Jiang, and Ming Zhou. K-adapter: Infusing knowledge into pre-trained models with
adapters. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Findings of the
Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021,
volume ACL/IJCNLP 2021 of Findings of ACL, pp. 1405–1418. Association for Computational
Linguistics, 2021.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Qun Liu and David Schlangen (eds.), Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations, EMNLP 2020
- Demos, Online, November 16-20, 2020, pp. 38–45. Association for Computational Linguistics,
2020.

Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W. Mahoney. Hessian-based anal-
ysis of large batch training and robustness to adversaries. In Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 4954–4964,
2018.

Nanyang Ye, Qianxiao Li, Xiao-Yun Zhou, and Zhanxing Zhu. Amata: An annealing mechanism
for adversarial training acceleration. CoRR, abs/2012.08112, 2020.

Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James Demmel, and Cho-Jui Hsieh. Reducing
BERT pre-training time from 3 days to 76 minutes. CoRR, abs/1904.00962, 2019a.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019b.

Yang You, Yuhui Wang, Huan Zhang, Zhao Zhang, James Demmel, and Cho-Jui Hsieh. The limit
of the batch size. CoRR, abs/2006.08517, 2020.

Dongxu Zhang and Zhichao Yang. Word embedding perturbation for sentence classification. CoRR,
abs/1804.08166, 2018.

Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language models with
progressive layer dropping. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-
ber 6-12, 2020, virtual, 2020.

Shuai Zheng, Haibin Lin, Sheng Zha, and Mu Li. Accelerated large batch optimization of BERT
pretraining in 54 minutes. CoRR, abs/2006.13484, 2020.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu. Freelb: Enhanced adver-
sarial training for natural language understanding. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

13



Under review as a conference paper at ICLR 2023

A ADDITIONAL ANALYSIS RESULTS

In the part, we present results that are not included in the main text due to the space limit.

A.1 THE USEFULNESS OF ADVERSARIAL NOISES AT DIFFERENT EPOCHS

(a) MNLI-m (b) SST-2

Figure 8: Accuracy results from delaying the injection of adversarial noises at different epochs.

In Section 4, we mention that no adversaries are needed at the initial epochs of adaptation. To
verify, we conduct experiments to measure the final accuracy corresponding to starting from regular
training and switching to PGA-1 after ts epochs, where ts ∈ [T ]. Figure 8 shows that enabling
PGA-1 from the very beginning does not offer much improvement on accuracy. However, as we
delay the injection of adversarial noises, the model accuracy starts to increase. By delaying the
injection of adversarial noises, we observe improved test accuracy on downstream tasks. However,
it also seems that the adversarial noise should not be injected too late, which may inadvertently
affect the accuracy. It is possible that a more advanced method to adaptively choose the value of ts
is desired. However, given that (1) the primary focus of this work is to demonstrate that it is possible
and effective to accelerate the adaptation of transformer networks via large-batch adaptation and
adversarial noises and (2) the search space of is quite small for most downstream tasks, we leave
this as an interesting research question for future exploration.

B HYPERPARAMETERS

For all configurations, we fine-tune against the GLUE datasets and set the maximum number of
epochs to 6. We use a linear learning rate decay schedule with a warm-up ratio of 0.1. For ScaLA,
we set λ = 1, perturbation clipping radius ω = 10−5, step size ρ = 10−4, and ts={3,5}. These
values worked well enough that we did not feel the need to explore more. For fairness, we perform
a grid search of learning rates in the range of {1e-5, 3e-5, 5e-5, 7e-5, 9e-5, 1e-4, 3e-4} for small
batch sizes and {5.6e-5, 8e-5, 1e-4, 1.7e-4, 2.4e-4, 2.8e-4, 4e-4, 5.6e-4, 1e-3} for large batch sizes.
We keep the remaining hyperparameteres unchanged.

C HYPERPARAMETER TUNING COST FOR LARGE-BATCH ADAPTATION
WITH SCALA

In this part, we investigate how large-batch adaptation affects the generalizability of transformer
networks on downstream tasks. As there are various heuristics for setting the learning rates (Smith
et al., 2018; Goyal et al., 2017; Smith, 2018; You et al., 2019a), and because few work studies the
learning rate scaling effects on adapting pre-trained Transformer networks, we perform a grid search
on learning rates {1e-4, 3e-4,5e-4, 7e-4, 9e-4, 1e-3, 3e-3} and batch sizes {1K, 2K, 4K, 8K} while
keeping the other hyperparameters the same to investigate how ScaLA affects the hyperparameter
tuning effort.

Table 6 shows the results of using the square root scaling rule to decide the learning rates for large
batch sizes vs. accuracy results with tuned learning rate results, without and with ScaLA. The first

14



Under review as a conference paper at ICLR 2023

row represents the best accuracy found through fine-tuning with a small batch size 32. The next
two rows correspond to fine-tuning with batch size 1024 using tuned learning rates vs. using the
scaling rule. The last two rows represent fine-tuning using ScaLA with batch size 1024, also using
tuned learning rates vs. the scaling rule. Even with square-root scaling, the large-batch baseline still
cannot reach the small-batch accuracy (88.7 vs. 89.4). Moreover, although tuning the learning rates
lead to better results on some datasets such as MNLI-m (84.9 vs. 85.1) and SST-2 (92.9 vs. 93.5),
the square-root scaling rule leads to better results on other tasks such as QNLI (90.8 vs. 90) and
QQP (91.4/88.4 vs. 90.9/87.7). So the best learning rates on fine-tuning tasks are not exactly sqrt.
However, given that ScaLA with square-root learning rate scaling achieves on average better results
than the grid search of learning rates (89.4 vs. 89.7), we suggest to use sqrt scaling for learning rates
to simplify the hyperparameter tuning effort for ScaLA.

15



Under review as a conference paper at ICLR 2023

Table 6: Evaluation results on hyperparameter tuning vs. using square-root learning rate scaling.
MNLI-m QNLI QQP SST-2 Avg

Bsz=32 (tuned, baseline) 84.8 90.6 91/88 93.1 89.4
Bsz=1024 (tuned, baseline) 84.3 89.3 89.6/86.1 93 88.5
Bsz=1024 (scaling rule, baseline) 83.9 89.2 90.6/87.4 92.5 88.7
Bsz=1024 (tuned, ScaLA) 85.1 90 90.9/87.7 93.5 89.4
Bsz=1024 (scaling rule, ScaLA) 84.9 90.8 91.4/88.4 92.9 89.7

D CONVERGENCE ANALYSIS

In this section, we provide the formal statements and detailed proofs for the convergence rate.
The convergence analysis builds on techniques and results in (Davis & Drusvyatskiy, 2018; You
et al., 2019b). We consider the general problem of a two-player sequential game represented
as nonconvex-nonconcave minimax optimization that is stochastic with respect to the outer (first)
player playing x ∈ X while sampling ξ from Q and deterministic with respect to the inner (second)
player playing y ∈ Y, i.e.,

min
x

max
y

Eξ∼Q[f(x, y, ξ)] := min
x

Eξ∼Q[g(x, ξ)] (2)

Since finding the Stackelberg equilibrium, i.e., the global solution to the saddle point problem, is NP-
hard, we consider the optimality notion of a local minimax point (Jin et al., 2020). Since maximizing
over y may result in a non-smooth function even when f is smooth, the norm of the gradient is not
particularly a suitable metric to track the convergence progress of an iterative minimax optimization
procedure. Hence, we use the gradient of the Moreau envelope (Davis & Drusvyatskiy, 2019) as the
appropriate potential function. Let µ ∈ Rh

+. The µ-Moreau envelope for a function g : X → R
is defined as gµ(x) := minz g(z) +

∑h
i=1

1
2µi ∥xi − zi∥2. Another reason for the choice of this

potential function is due to the special property (Rockafellar, 2015) of the Moreau envelope that
if its gradient ∇x[gµ(x)] almost vanishes at x, such x is close to a stationary point of the original
function g.

Assumptions: We assume that X =
⊔h

i=1 Xi is partitioned into h disjoint groups , i.e., in terms
of training a neural network, we can think of the network having the parameters partitioned into
h (hidden) layers. The measure Q characterizes the training data. Let ∇̂xf(x, y) denote the
noisy estimate of the true gradient ∇xf(x, y). We assume that the noisy gradients are unbiased,
i.e., E[∇̂xf(x, y)] = ∇xf(x, y). For each group i ∈ [h], we make the standard (groupwise)
boundedness assumption (Ghadimi & Lan, 2013) on the variance of the stochastic gradients, i.e.,
E∥∇̂i

xf(x, y) − ∇i
xf(x, y)∥2 ≤ σ2

i , ∀i ∈ [h]. We assume that f(x, y) has Lipschitz continu-
ous gradients. Specifically, let f(x, y) be α-smooth in x where α := (α1, . . . , αh) denotes the
h-dimensional vector of (groupwise) Lipschitz parameters, i.e., ∥∇i

xf(xa, y) − ∇i
xf(xb, y)∥ ≤

αi∥xi
a − xi

b∥, ∀i ∈ [h] and xa, xb ∈ X, y ∈ Y. Let κα := maxi αi

mini αi
.

Super-scripts are used to index into a vector (i denotes the group index and j denotes an ele-
ment in group i). For any c ∈ R, the function ν : R → [L,U ] clips its values, i.e., ν(c) :=
max(L,min(c,U)) where L < U . Let ∥.∥, ∥.∥1 and ∥.∥∞ denote the ℓ2, ℓ1, and ℓ∞ norms. We
assume that the true gradients are bounded, i.e., ∥∇xf(x, y)∥∞ ≤ G.

First, we begin with relevant supporting lemmas. The following lemma characterizes the convexity
of an additive modification of g.
Lemma D.1 ((Lin et al., 2020; Jin et al., 2020; Rafique et al., 2021)). Let g(x) := maxy f(x, y)
with f being α-smooth in x where α ∈ Rh

+ is the vector of groupwise Lipschitz parameters. Then,
g(x) +

∑h
i=1

αi

2 ∥x
i∥2 is convex in x.

The following property of the Moreau envelope relates it to the original function.
Lemma D.2 ((Rockafellar, 2015)). Let g be defined as in Lemma D.1. Let x̂ = argminx̃ g(x̃) +∑h

i=1
1

2µi ∥x̃i−xi∥2. Then, ∥gµ(x)∥ ≤ ϵ implies ∥x̂−x∥ ≤ ∥µ∥∞ϵ and minh ∥h∥ ≤ ϵ with h ∈ ∂g

where ∂g denotes the subdifferential of g.

We now present the formal version of Theorem 4.1 in Theorem D.3. Note that Lemma D.2 facilitates
giving the convergence guarantees in terms of the gradient of the Moreau envelope. Recall that

16



Under review as a conference paper at ICLR 2023

t ∈ [T ] denotes the epochs corresponding to the outer maximization. Without loss of generality, we
set the delay parameter for injection of the adversarial perturbation in Algorithm 1 as ts = 0. Here,
we assume that the PGA provides an ϵ-approximate maximizer.
Theorem D.3 (Groupwise outer minimization with an ϵ-approximate inner maximization oracle).
Let us define relevant constants as D :=

(
g1/2α(x0)− E(minx g(x))

)
being the optimality gap due

to initialization, κα := maxi αi

mini αi
being the condition number, ∥∇xf(x, y)∥∞ ≤ G being gradient

bound, Z := maxi,j,t
(x̂i,j

t −xi,j
t )

(∇i,j
t )

σi being the variance term, L,U being clipping constants such that

L ≤ U . For the outer optimization, setting the learning rate as η = 1
U
√
T

and scaling batch size as

b = 16TL2Z2

U2 , we have

E
[
∥∇g1/2α(x)∥2

]
≤ 4ϵ∥α∥∞ +

2καDG√
T

(3)

where x is the estimator obtained from running T steps of Algorithm 1 and picking xt uniformly at
random for t ∈ [T ].

Proof. In this proof, for brevity, we define the vector ∇t := ∇xf(x, y), i.e., the gradient of the
objective with respect to x, evaluated at the outer step t. Since evaluating gradients using mini-
batches produces noisy gradients, we use ∇̂ to denote the noisy version of a true gradient ∇, i.e.,
∇̂ = ∇+∆ for a noise vector ∆. For any outer step t, we have f(xt, ŷ) ≥ g(xt)− ϵ where ŷ is an
ϵ-approximate maximizer. For any x̃ ∈ X, using the smoothness property (Lipschitz gradient) of f ,
we have

g(x̃) ≥ f(x̃, yt)

≥ f(xt, yt) +

h∑
i=1

⟨∇i
t, x̃

i − xi
t⟩ −

h∑
i=1

αi

2
∥x̃i − xi

t∥2

≥ g(xt)− ϵ+

h∑
i=1

⟨∇i
t, x̃

i − xi
t⟩ −

h∑
i=1

αi

2
∥x̃i − xi

t∥2 (4)

Let ϕµ(x, z) := g(z) +
∑h

i=1
1

2µi ∥xi − zi∥2. Recall that the µ-Moreau envelope for g is defined as
gµ(x) := minz ϕµ(x, z) and its gradient is the groupwise proximal operator given by ∇x[gµ(x)] =[

1
µ1

(
x1 − argminz1 ϕµ(x, z)

)
, . . . , 1

µh

(
xh − argminzh ϕµ(x, z)

)]
.

Now, let x̂t = argminx ϕ1/2α(xt, x) = argminx

(
g(x) +

∑h
i=1 αi∥xi

t − xi∥2
)

. Then, plugging

in the update rule for x at step t+1 in terms of quantities at step t, using the shorthand νit := ν(∥xi
t∥)

17



Under review as a conference paper at ICLR 2023

and conditioning on the filtration up to time t, we have

g1/2α(xt+1) ≤ g(x̂t) +

h∑
i=1

αi∥xi
t+1 − x̂i

t∥2

≤ g(x̂t) +

h∑
i=1

αi

∥∥∥∥∥xi
t − ηtν

i
t

∇̂i
t

∥∇̂i
t∥
− x̂i

t

∥∥∥∥∥
2

≤ g(x̂t) +

h∑
i=1

αi

∥∥xi
t − x̂i

t

∥∥2 + h∑
i=1

2αiηt

〈
νit
∇̂i

t

∥∇̂i
t∥
, x̂i

t − xi
t

〉
+

h∑
i=1

αiη
2
t (ν

i
t)

2

≤ g1/2α(xt) +

h∑
i=1

2αiηt

〈
νit
∇̂i

t

∥∇̂i
t∥
, x̂i

t − xi
t

〉
+

h∑
i=1

αiη
2
t (ν

i
t)

2

≤ g1/2α(xt) + 2ηt

h∑
i=1

αiν
i
t

di∑
j=1

(
∇̂i,j

t

∥∇̂i
t∥
− ∇

i,j
t

∥∇i
t∥

+
∇i,j

t

∥∇i
t∥

)
× (x̂i,j

t − xi,j
t ) +

h∑
i=1

αiη
2
t (ν

i
t)

2

≤ g1/2α(xt) + 2ηt

h∑
i=1

αiν
i
t

di∑
j=1

(
∇i,j

t

∥∇i
t∥

)
× (x̂i,j

t − xi,j
t )

+ 2ηt

h∑
i=1

αiν
i
t

di∑
j=1

(
∇̂i,j

t

∥∇̂i
t∥
− ∇

i,j
t

∥∇i
t∥

)
× (x̂i,j

t − xi,j
t ) +

h∑
i=1

αiη
2
t (ν

i
t)

2

≤ g1/2α(xt) + 2ηt

h∑
i=1

αiν
i
t

∥∇i
t∥
〈
∇i

t, x̂
i
t − xi

t

〉
+ 2ηt

h∑
i=1

αiν
i
t

di∑
j=1

(
∇i,j

t +∆i,j
t

∥∇i
t +∆i

t∥
− ∇

i,j
t

∥∇i
t∥

)
× (x̂i,j

t − xi,j
t ) +

h∑
i=1

αiη
2
t (ν

i
t)

2

18



Under review as a conference paper at ICLR 2023

≤ g1/2α(xt) + 2ηtU
h∑

i=1

αi

∥∇i
t∥
〈
∇i

t, x̂
i
t − xi

t

〉
+ 2ηt

h∑
i=1

αiν
i
t

di∑
j=1

(
∥∇i

t∥(∇
i,j
t )(∇i,j

t +∆i,j
t )− ∥∇i

t +∆i
t∥(∇

i,j
t )2

∥∇i
t +∆i

t∥∥∇i
t∥

)
× (x̂i,j

t − xi,j
t )

(∇i,j
t )

+

h∑
i=1

αiη
2
t (ν

i
t)

2

E1

≤ g1/2α(xt) + 2ηtU max
i

αi

∥∇i
t∥

(
g(x̂t)− g(xt) + ϵ+

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)

+ 2ηt

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t )

(∇i,j
t )

(
⟨∇i

t,∇i
t +∆i

t⟩ − ∥∇i
t +∆i

t∥∥∇i
t∥

∥∇i
t +∆i

t∥

)
+

h∑
i=1

αiη
2
t (ν

i
t)

2

≤ g1/2α(xt) + 2ηtU max
i

αi

∥∇i
t∥

(
g(x̂t)− g(xt) + ϵ+

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)

− 2ηt

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t )

(∇i,j
t )

(
∥∇i

t +∆i
t∥∥∇i

t∥ − ∥∇i
t +∆i

t∥2 + ⟨∆i
t,∇i

t +∆i
t⟩

∥∇i
t +∆i

t∥

)

+

h∑
i=1

αiη
2
t (ν

i
t)

2 (5)

≤ g1/2α(xt) + 2ηtU max
i

αi

∥∇i
t∥

(
g(x̂t)− g(xt) + ϵ+

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)

− 2ηt

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t )

(∇i,j
t )

(
∥∇i

t∥ − ∥∇i
t +∆i

t∥ −
|⟨∆i

t,∇i
t +∆i

t⟩|
∥∇i

t +∆i
t∥

)
+

h∑
i=1

αiη
2
t (ν

i
t)

2

E2

≤ g1/2α(xt) + 2ηtU max
i

αi

∥∇i
t∥

(
g(x̂t)− g(xt) + ϵ+

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)

− 2ηt

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t )

(∇i,j
t )

(
∥∇i

t∥ − ∥∇i
t +∆i

t∥ − ∥∆i
t∥
)
+

h∑
i=1

αiη
2
t (ν

i
t)

2

E3

≤ g1/2α(xt) + 2ηtU max
i

αi

∥∇i
t∥

(
g(x̂t)− g(xt) + ϵ+

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)

− 4ηt

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t )

(∇i,j
t )

∥∆i
t∥+

h∑
i=1

αiη
2
t (ν

i
t)

2

g1/2α(xT )
E4

≤ g1/2α(x0) + 2U
T−1∑
t=0

ηt max
i

αi

∥∇i
t∥

(
g(x̂t)− g(xt) + ϵ+

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)

− 4

T−1∑
t=0

ηt

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t )

(∇i,j
t )

∥∆i
t∥+

T−1∑
t=0

h∑
i=1

αiη
2
t (ν

i
t)

2

where we have used Hölder’s inequality along with bound equation 4 in E1, Cauchy-Schwarz in-
equality in E2, triangle inequality in E3, telescoping sum in E4. Rearranging and using ηt = η in

19



Under review as a conference paper at ICLR 2023

E5 along with Hölder’s inequality,

1

2ηU
(
g1/2α(xT )− g1/2α(x0)

)
≤

T−1∑
t=0

max
i

αi

∥∇i
t∥

(
g(x̂t)− g(xt) + ϵ+

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)

− 2

U

T−1∑
t=0

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t )

(∇i,j
t )

∥∆i
t∥+

η

2U

T−1∑
t=0

h∑
i=1

αi(ν
i
t)

2

1

2ηU
(
g1/2α(xT )− g1/2α(x0)

) E5

≤ max
i,t

αi

∥∇i
t∥

T−1∑
t=0

(
g(x̂t)− g(xt) + ϵ+

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)

− 2

U

T−1∑
t=0

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t )

(∇i,j
t )

∥∆i
t∥+

η

2U

T−1∑
t=0

h∑
i=1

αi(ν
i
t)

2

Dividing by T and rearranging,

1

T

T−1∑
t=0

(
g(xt)− g(x̂t)−

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)
≤ ϵ− 1

2ηUζT
(
g1/2α(xT )− g1/2α(x0)

)
− 2

UζT

T−1∑
t=0

h∑
i=1

αiν
i
t max

j

(x̂i,j
t − xi,j

t )

(∇i,j
t )

∥∆i
t∥

+
η

2UζT

h∑
i=1

αi

T−1∑
t=0

(νit)
2

where we define ζ := maxi,t
αi

∥∇i
t∥

. Defining D :=
(
g1/2α(x0)− E(minx g(x))

)
and taking expec-

tation with respect to ξ on both sides, we have

1

T

T−1∑
t=0

E

(
g(xt)− g(x̂t)−

h∑
i=1

αi

2
∥x̂i − xi

t∥2
)
≤ ϵ+

D
2ηUζT

− 2L
UζT

T−1∑
t=0

h∑
i=1

αi max
j

(x̂i,j
t − xi,j

t )

(∇i,j
t )

E∥∆i
t∥+

ηU∥α∥1
2ζ

E6

≤ ϵ+
D

2ηUζT

− 2L
UζT

T−1∑
t=0

h∑
i=1

αi max
j

(x̂i,j
t − xi,j

t )

(∇i,j
t )

σi√
b
+

ηU∥α∥1
2ζ

E7

≤ ϵ+
D

2ηUζT

− 2L∥α∥1
Uζ
√
b

max
i,j,t

(x̂i,j
t − xi,j

t )

(∇i,j
t )

σi +
ηU∥α∥1

2ζ

E8= ϵ+
D

2ηUζT
− 2L∥α∥1Z
Uζ
√
b

+
ηU∥α∥1

2ζ
(6)

where we have used the assumption on the variance of stochastic gradients in E6, Hölder’s inequality
in E7 and we define Z := maxi,j,t

(x̂i,j
t −xi,j

t )

(∇i,j
t )

σi in E8; b denotes batch size. Now, we lower bound

20



Under review as a conference paper at ICLR 2023

the left hand side using the convexity of the additive modification of g.

g(xt)− g(x̂t)−
h∑

i=1

αi

2
∥x̂i − xi

t∥2

≥ g(xt) + 0− g(x̂t)−
h∑

i=1

αi∥x̂i − xi
t∥2 +

h∑
i=1

αi

2
∥x̂i − xi

t∥2

≥

((
g(xt) +

h∑
i=1

αi∥xi
t − xi

t∥2
)
−min

x

(
g(xt) +

h∑
i=1

αi∥xi − xi
t∥2
))

+

h∑
i=1

αi

2
∥x̂i − xi

t∥2

≥
h∑

i=1

αi

2
∥x̂i − xi

t∥2 +
h∑

i=1

αi

2
∥x̂i − xi

t∥2=
h∑

i=1

4α2
i

4αi
∥x̂i − xi

t∥2

E9

≥ 1

4maxi αi
∥∇g1/2α(xt)∥2 (7)

where we have used the expression for the gradient of the Moreau envelope in E9. Combining the
inequalities from Equation equation 7 and Equation equation 6, we have

1

T

T−1∑
t=0

E
(

1

4maxi αi
∥∇g1/2α(xt)∥2

)
≤ ϵ+

D
2ηUζT

+

(
ηU
2ζ
− 2LZ
Uζ
√
b

)
∥α∥1

Setting the learning rate as η = 1
U
√
T

and batch size as b = 16TL2Z2

U2 ,

1

T

T−1∑
t=0

E
[
∥∇g1/2α(xt)∥2

]
≤ 4ϵmax

i
αi +

2Dmaxi αi

ζ
√
T

Now, to simplify ζ, using the inequality that maxk(ak · bk) ≥ minka aka ·minkb
bkb

for two finite
sequences {a, b} with positive values, along with the bounded gradients assumption, we have

1

T

T−1∑
t=0

E
[
∥∇g1/2α(xt)∥2

]
≤ 4ϵmax

i
αi +

2DGmaxi αi√
T mini αi

= 4ϵ∥α∥∞ +
2καDG√

T

where κα := maxi αi

mini αi
.

In analyzing inexact version, as in Theorem D.3, we assumed the availability of an adversarial
oracle. Next, we open up the adversarial oracle to characterize the oracle-free complexity. In order
to do this, we will assume additional properties about the function f as well as our deterministic
perturbation space, Yt ⊆ Y, ∀t ∈ [T ]. Note that, for any given t, yτ ∈ Yt, ∀τ ∈ T . We recall the
following guarantee for generalized non-convex projected gradient ascent.
Lemma D.4 ((Jain & Kar, 2017)). For every t, Let f(xt, ·) satisfy restricted strong convexity with
parameter C and restricted strong smoothness with parameter S over a non-convex constraint set
with S/C < 2, ie, C

2 ∥z−y∥
2 ≤ f(xt, y)−f(xt, z)−⟨∇zf(xt, z), y−z⟩ ≤ S

2 ∥z−y∥
2 for y, z ∈ Yt.

For any given t, let the PGA-T algorithm yτ ← Πϵ[yτ−1 + ρ∇yf(xt, y)] be executed with step size

ρ = 1/S. Then after at most T = O
(

C
2C−S log 1

ϵ

)
steps, f(xt, yT ) ≥ maxy f(xt, y)− ϵ.

Using Theorem D.3 and Lemma D.4 (together with the additional restricted strong convex-
ity/smoothness assumptions), we have the following theorem on the full oracle-free rates for Al-
gorithm 1.
Theorem D.5 (Groupwise outer minimization with inner maximization using projected gradient
ascent). Setting the inner iteration count as T = O

(
C

2C−S log 8∥α∥∞
ϵ

)
and the outer iteration count

as T = 16καD2G2

ϵ2 , for a combined total of O( 1
ϵ2 log

1
ϵ ) adaptive adversarial iterations, Algorithm 1

achieves E
[
∥∇g1/2α(x)∥2

]
≤ ϵ.

21


	Introduction
	Background and Related Work
	Challenges and Opportunities of Adapting Pre-trained Transformers with Large-batch Optimization
	Adversarial Noise for Closing Large-batch Generalization Gap
	Evaluation
	Main Results – Adaptation Time Acceleration
	Experiment – Analysis Results

	Conclusions and Future Directions
	Additional Analysis Results
	The Usefulness of Adversarial Noises at Different Epochs

	Hyperparameters
	Hyperparameter Tuning Cost for Large-Batch Adaptation with ScaLA
	Convergence Analysis

