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Abstract

Document-level relation extraction (DocRE)001
aims to extract the semantic relations among002
entity pairs in a document. Typical DocRE003
methods blindly take the full document as in-004
put, while a subset of the sentences in the005
document, noted as the evidence, are often006
sufficient for humans to predict the relation007
of an entity pair. In this paper, we propose008
an evidence-enhanced framework EIDER that009
automatically extracts and utilizes evidence010
for DocRE. We first train an evidence ex-011
traction model together with relation extrac-012
tion via multi-task learning, which allows the013
two tasks to benefit from shared representa-014
tions and improve each other. We show that015
even in the absence of human annotated evi-016
dence, using silver evidence labels extracted017
by heuristic rules still leads to better RE perfor-018
mance. We further design a simple yet effec-019
tive evidence-enhanced inference process that020
makes RE predictions on both extracted evi-021
dence and the full document, then fuses the022
predictions through a blending layer. This al-023
lows EIDER to focus on important sentences024
while still having access to all the informa-025
tion in the document. Extensive experiments026
show that EIDER outperforms state-of-the-art027
methods on three benchmark datasets, e.g., by028
1.37/1.26 Ign F1/F1 on DocRED.029

1 Introduction030

Relation extraction (RE) is the task of extracting se-031

mantic relations among entities within a given text,032

which has abundant applications such as knowl-033

edge graph construction, question answering, and034

biomedical text analysis (Yu et al., 2017; Shi et al.,035

2019; Trisedya et al., 2019). Prior studies mostly036

focus on predicting the relation between two entity037

mentions in a single sentence. However, in reality,038

an entity may have multiple mentions throughout039

a document. It is also common that a relation can040

only be inferred given multiple sentences as the041

Head: Hero of the Day  Tail: the United States  Relation: [country of origin] 
Ground truth evidence sentences: [1,10]          Extracted evidence: [1,10]
 

Original document as input: [1] Load is the sixth studio album by the 
American heavy metal band Metallica, released on June 4, 1996 by 
Elektra Records in the United States and by Vertigo Records 
internationally. … [9] It was certified 5×platinum by the Recording 
Industry Association of America ( RIAA ) for shipping five million 
copies in the United States. [10] Four singles—"Until It Sleeps",  
"Hero of the Day", "Mama Said", and "King Nothing" — were released 
as part of the marketing campaign for the album. 
Prediction result (logits):        NA: 17.63         country of origin: 14.79
Extracted evidence as input: [1] Load is the sixth studio album … in 
the United States and by Vertigo Records internationally. [10] Four 
singles —"Until It Sleeps", "Hero of the Day", … for the album. 
Prediction result (logits):        country of origin: 18.31         NA: 13.45
 

Final prediction of our model:  country of origin

Figure 1: A test sample in the DocRED dataset (Yao
et al., 2019), where the ith sentence in the document
is marked with [i] at the start. Our model correctly
predicts [1,10] as evidence, and if we only use the ex-
tracted evidence as input, the model can predict the re-
lation “country of origin” correctly.

context. As a result, recent studies have been mov- 042

ing towards the more realistic setting of document- 043

level relation extraction (DocRE) (Peng et al., 2017; 044

Yao et al., 2019; Zeng et al., 2020). 045

Unlike typical DocRE models that blindly take 046

the whole document as input, a human may only 047

need a few sentences to infer the relation of an 048

entity pair. For each entity pair, we define the mini- 049

mal set of sentences required by human annotators 050

to infer their relation as their evidence sentences. 051

As shown in Figure 1, to predict the relation be- 052

tween “Hero of the Day” and “the United States”, 053

it is sufficient to know that Load (the album) was 054

released in the United States from the 1st sentence, 055

and “Hero of the Day” is a single of Load from 056

the 10th sentence. In other words, the 1st and 10th 057

sentences serve as the evidence to infer this rela- 058

tion. Although the 9th sentence also mentions “the 059

United States”, it is irrelevant to this specific rela- 060

tion. Including such irrelevant sentences in input 061

might sometimes introduce noise to the model and 062

be more detrimental than beneficial. Despite the 063

usefulness of evidence, previous studies regarding 064
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evidence either require expensive human-annotated065

evidence sentences (Huang et al., 2021a) or fail066

to show improvements when paired up with pre-067

trained language models (Huang et al., 2021b).068

In this paper, we propose an evidence-enhanced069

DocRE framework EIDER, which automatically070

extracts evidence and effectively leverages the ex-071

tracted evidence to improve DocRE without exten-072

sive human annotation. During training, we en-073

hance DocRE by jointly extracting relations and ev-074

idence using multi-task learning. Intuitively, both075

relation extraction and evidence extraction should076

focus on the information relevant to the current en-077

tity pair, such as the underlined “Load” and “the078

album” in Figure 1. This suggests that the two079

tasks have certain commonalities and can provide080

additional training signals for each other. Experi-081

mental results show that these two tasks can mu-082

tually enhance each other. One remaining issue is083

that human-annotated evidence sentences are not084

always available and heavily relying on them may085

limit model applicability. To reduce the need for086

evidence annotation, we design several heuristic087

rules to construct silver labels if evidence annota-088

tion is unavailable. We observe that EIDER still089

improves RE performance even trained with our090

silver labels, and sometimes even performs on par091

with using gold labels.092

With the evidence extracted, either by rules or093

our evidence extraction model, we further enhance094

DocRE by leveraging the evidence in inference.095

In the extreme case, if there is only one sentence096

related to the relation, one can make predictions097

solely based on this sentence and reduce the prob-098

lem to sentence-level relation extraction. One naive099

approach is thus to directly replace the original doc-100

ument with the extracted evidence. However, since101

no system can extract evidence perfectly, solely102

relying on extracted sentences may miss important103

information and harm model performance in cer-104

tain cases (see Table 5). To avoid information loss,105

we fuse the prediction results of the original doc-106

ument and extracted evidence through a blending107

layer (Wolpert, 1992). In this way, EIDER pays108

more attention to the extracted important sentences,109

while still having access to all the information in110

the document. Empirical analysis demonstrates111

that removing either source would lead to degener-112

ate performance.113

We conduct extensive experiments on three114

widely-adopted DocRE benchmarks: DocRED115

(Yao et al., 2019), CDR (Li et al., 2016) and GDA 116

(Wu et al., 2019). Experiment results show that 117

EIDER achieves state-of-the-art performance on all 118

the datasets. Performance analysis further shows 119

that the improvement of EIDER is most significant 120

on inter-sentence entity pairs, suggesting that lever- 121

aging evidence is especially effective in reasoning 122

over multiple sentences. In particular, EIDER sig- 123

nificantly improves the performance on entity pairs 124

that require co-reference/multi-hop reasoning by 125

1.98/2.08 F1 on DocRED, respectively. 126

Contributions. (1) We propose a joint relation and 127

evidence extraction model that allows the two tasks 128

to mutually enhance each other without heavily 129

relying on evidence annotation. (2) We design a 130

simple and effective DocRE inference process en- 131

hanced by the extracted evidence, enabling more 132

focus on the important sentences with no informa- 133

tion loss. (3) We demonstrate that our evidence- 134

enhanced framework outperforms state-of-the-art 135

methods on three DocRE datasets. 136

2 Problem Formulation 137

Given a document d comprised of N sentences 138

{sn}Nn=1, L tokens {hl}Ll=1, E named entities 139

{ei}Ei=1 and all the proper-noun mentions of each 140

entity, {mi
j}, the task of document-level relation 141

extraction (DocRE) is to predict the set of all possi- 142

ble relations between all entity pairs (eh, et) from a 143

pre-defined relation setR
⋃
{NA}. We refer to eh 144

and et as the head entity and tail entity, respectively. 145

A relation r belongs to the positive class PT
h,t if it 146

exists between (eh, et) and otherwise the negative 147

class N T
h,t. For each entity pair (eh, et) that pos- 148

sesses a non-NA relation, we define its evidence1 149

Vh,t = {svk}Kk=1 as the subset of sentences in the 150

document that are sufficient for human annotators 151

to infer the relation. Human annotation of evidence 152

may or may not be given in training, depending on 153

the datasets, but is not available in inference. 154

3 Methodology 155

An illustration of the framework of EIDER is shown 156

in Figure 2. In training, we jointly extract relation 157

and evidence using multi-task learning, where the 158

two tasks have their own classifier and share the 159

base encoder (Sec. 3.1). In inference, we fuse the 160

predictions on the original document and the ex- 161

tracted evidence using a blending layer (Sec. 3.2). 162

1We use “evidence sentence” and “evidence” interchange-
ably throughout the paper.
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Pred Scores from Orig doc
Country of Origin: -2.84

Creator: -7.82
Location: -11.53

… 

Training: Joint Relation and Evidence Extraction Inference: (Extracted) Evidence Empowered Inference

Original Document: [1] Load is ... released on June 4, 1996 by Elektra Records in the United 
States … [9] It was certified 5×platinum … in the United States. [10] Four singles—"Until It 
Sleeps",  "Hero of the Day", … were released as part of the marketing campaign for the album.

…
…

…
Context Emb

…

…
…

…

Sent Embs

[1]

[9]
[10]

Encoder (Pre-trained Language Model)

Attention to head & tail

Weights
…

Load is … in the United States …  Hero of the Day were released … for the album

the United States Hero of the Day

……

Evidence Classifier

Extracted Evidence: [1, 10]
Trained on golden labels OR 
silver labels extracted by Rules

Head Emb

Tail Emb

Relation Classifier

Predicted Relation: NA ( 

❌

 )

Trained on golden labels

Pseudo Document: [1] Load is ... released … in the 
United States … [10] Four singles—"Until It 
Sleeps",  "Hero of the Day", … as part of the 
marketing campaign for the album.

Encoder + Evidence Classifier OR Rules (bridge)

Encoder + Relation Classifier

Blending Layer

             Final Predicted Relation: Country of Origin ( ✓ )
(Learnt thresh: -0.28)

Pred Scores from Orig doc
Country of Origin: -2.84

Creator: -7.82
Location: -11.53

… 

Pred Scores from Pseudo doc
Country of Origin: 4.86

Creator: -9.70
Location: -14.47

…

Figure 2: The overall architecture of EIDER. The left part illustrates the first stage (training) and the right shows the
second and third stages (inference) of EIDER. We highlight head entities, tail entities and extracted evidences.

In case the evidence annotation is not available,163

we also provide several heuristic rules to construct164

silver evidence labels as an alternative (Sec. 3.3).165

3.1 Joint Relation and Evidence Extraction166

In our framework, we jointly train the relation ex-167

traction model with an evidence extraction model168

using multi-task learning. As shown in Figure 2,169

the two tasks have their own classifier but share the170

base encoder. Intuitively, tokens relevant to predict-171

ing the relation are essential in both models. By172

sharing the base encoder, the two tasks can provide173

additional training signals for each other and hence174

mutually enhance each other (Ruder, 2017).175

Base Encoder. We leverage pre-trained language176

models (Devlin et al., 2019) to encode the semantic177

meanings of each token in the document. Specif-178

ically, given a document d = [hl]
L
l=1, we insert a179

special token “*” before and after each entity men-180

tion {mi
j} and leverage the encoder to obtain the s-181

dim token embeddings H = [h1, ...,hL],hl ∈ Rs182

and the cross token attention A ∈ RL×L:183

H,A = Encoder([h1, ..., hL]), (1)184

where A is the average of the attention heads in the185

last transformer layer (Vaswani et al., 2017). For186

each mention of an entity ei, we use the embedding187

of the start symbol “*” as its mention embedding188

mi
j. Then, we obtain the embedding of entity ei189

by adopting LogSumExp pooling (Jia et al., 2019;190

Zhou et al., 2021) over the embeddings of all its191

mentions: ei = log
∑

j exp(m
i
j).192

To predict the relation of different entity pairs,193

a model may need to focus on different parts of194

the context. To capture the context relevant to each 195

entity pair (eh, et), we compute its context embed- 196

ding ch,t ∈ Rs based on the attention matrix A 197

from the pre-trained encoder (Zhou et al., 2021): 198

ch,t = HT Ah ◦At

AT
hAt

, (2) 199

where ◦ is the Hadamard product and Ah ∈ RL 200

is eh’s attention to all the tokens in the document, 201

obtained by averaging eh’s mention-level attention. 202

Similarly for At. The intuition is that tokens with 203

high attention towards both eh and et are important 204

to both entities. Hence, these tokens are likely to 205

be essential to the relation and should contribute 206

more to the context embedding. 207

Relation Classifier. To predict the relation be- 208

tween an entity pair (eh, et), we first compute their 209

context-aware representations (zh, zt) by combin- 210

ing their entity embeddings (eh, et) with their con- 211

text embedding ch,t and then utilize a bilinear func- 212

tion to calculate the logit of how likely a relation 213

r ∈ R exists between eh and et: 214

zh = tanh (Wheh +Wchch,t) ,
zt = tanh (Wtet +Wctch,t) ,
yr = zhWrzt + br,

(3) 215

where Wh,Wt,Wch ,Wct ,Wr and br are learn- 216

able parameters. As the model may have different 217

confidence for different entity pairs or classes, we 218

apply the adaptive-thresholding loss (Zhou et al., 219

2021), which learns a dummy relation class TH 220

that serves as the dynamic threshold for each entity 221

pair: 222

yTH = zhWTHzt + br. (4) 223
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During inference, for each tuple (eh, et, r), r ∈ R,224

we obtain the prediction score: S(O)
h,t,r = yr − yTH .225

Finally, we define our training objective for relation226

extraction as follows:227

LRE = −
∑
h 6=t

∑
r∈PT

h,t

log

(
exp (yr)∑

r′∈PT
h,t

∪{TH} exp (yr′)

)

− log

(
exp (yTH)∑

r′∈NT
h,t

∪{TH} exp (yr′)

)
. (5)

228

Evidence Classifier. In addition to the relation,229

we also predict whether each sentence sn is an ev-230

idence sentence of entity pair (eh, et). Similar to231

entity embeddings, to obtain sentence embedding232

sn, we apply a LogSumExp pooling over all the to-233

kens in sn: sn = log
∑

hl∈sn exp (hl). Intuitively,234

if sn is an evidence sentence of (eh, et), the tokens235

in sn would be relevant to the relation prediction,236

and should contribute more to ch,t. Hence, we use237

a bilinear function between context embedding ch,t238

and sentence embedding sn to measure the impor-239

tance of sentence sn to entity pair (eh, et):240

P (sn|eh, et) = σ (snWvch,t + bv) , (6)241

where Wv and bv are learnable parameters.242

As an entity pair may have more than one evi-243

dence sentence, we use the binary cross entropy as244

the objective to train the evidence extraction model.245

LEvi =−
∑

h6=t,NA/∈PT
h,t

∑
sn∈D

yn · P (sn|eh, et)+

(1− yn) · log(1− P (sn|eh, et)), (7)

246

where the evidence label yn is 1 when sn ∈ Vh,t247

and otherwise 0. If golden labels are not provided,248

we use several heuristic rules to construct silver249

labels instead. Details are introduced in Sec 3.3.250

Although it is possible that different relations251

possessed by (eh, et) are inferred from different252

sentences, we observe that most entity pairs only253

have one set of evidence across relations. We thus254

only predict the evidence for each (eh, et) pair in-255

stead of (eh, et, r) tuple. This largely reduces the256

memory and run time of our method, especially257

when |R| is large (e.g., |R| = 96 in DocRED).258

Note that only entity pairs with r ∈ R have259

human-annotated evidence sentences. For entity260

pairs with r = NA, a naive way is to simply regard261

their evidence label as the empty set (Huang et al.,262

2021a). However, there may still exist some im-263

plicit relations out of the pre-defined setR, which264

can be inferred from certain sentences. Regarding 265

every sentence as non-evidence may not be reason- 266

able. As a result, we only train the evidence extrac- 267

tion model on entity pairs with at least one non-NA 268

relation r ∈ R, which accounts for a small subset 269

(e.g., 2.97% in DocRED) of the total possible en- 270

tity pairs. This is another reason why our model is 271

efficient in both memory and training time. 272

Finally, we optimize our model by the combi- 273

nation of the relation extraction loss LRE and evi- 274

dence extraction loss LEvi: 275

L = LRE + LEvi. (8) 276

3.2 Evidence-enhanced Inference 277

Suppose our extracted evidence sentences already 278

contain all the information relevant to the relation, 279

then there is no need to use the whole document 280

for relation extraction. However, no system can 281

perfectly extract the evidence without missing any 282

sentences. Solely relying on the extracted evidence 283

may miss important information in the document 284

and lead to sub-optimal performance. Therefore, 285

we combine the prediction results on both the orig- 286

inal document and the extracted evidence, which 287

can either be learned by our evidence classifier 288

(Sec. 3.1) or constructed by our heuristic rules 289

(Sec. 3.3) if evidence annotation is unavailable. 290

Specifically, as shown in Figure 2, we first obtain 291

a set of relation prediction scores S(O)
h,t,r from the 292

original documents. Then we construct a pseudo 293

document d′h,t for each entity pair by concatenating 294

the extracted evidence sentences V ′h,t in the order 295

they are presented in the original document and 296

feed it into the relation classifier to obtain another 297

set of prediction scores S(E)
h,t,r. Finally, we fuse the 298

results by aggregating the two sets of prediction 299

sores through a blending layer (Wolpert, 1992): 300

PFuse (r|eh, et) = σ(S
(O)
h,t,r + S

(E)
h,t,r − τ). (9) 301

We choose this design because it is simple and only 302

includes one learnable parameter, τ , alleviating 303

over-fitting in the development set. We optimize 304

the parameter τ on the development set as follows: 305

LFuse = −
∑
d∈D

∑
h6=t

∑
r∈R

yr · PFuse (r|eh, et)+

(1− yr) · log(1− PFuse (r|eh, et)), (10)
306

where yr = 1 if relation r holds between (eh, et) 307

and yr = 0 otherwise. Empirically, using other loss 308

functions does not affect the performance much. 309
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3.3 Heuristic Evidence Label Construction310

In case human annotation of evidence is not avail-311

able, we design a set of heuristic rules to automati-312

cally construct silver labels for evidence extraction.313

Then we train our joint model on the silver labels314

and directly use the silver labels as pseudo docu-315

ments in inference. The percentage of test samples316

covered by each rule is shown in Table 6.317

Co-occur. If the head and tail entities co-occur in318

the same sentence (e.g., “Load” and “the United319

States” co-occur in the 1st sentence in Figure 2),320

we use all the sentences they co-occur as evidence.321

Coref. If the proper-noun mentions of the head and322

tail entity do not co-occur, but their coreferential323

mentions co-occur (e.g., “Hero of the Day” and324

“the album”, the co-reference of “Load” co-occur325

in the 10th sentence in Figure 2), we use all the326

sentences where their coreferential mentions co-327

occur as evidence. In practice, we directly apply a328

pre-trained coreference resolution model, HOI (Xu329

and Choi, 2020), without fine-tuning on our dataset.330

Bridge. If the first two conditions are not met, but331

there exists a third bridge entity whose coreferential332

mention co-occurs with both head and tail (e.g.,333

“Load” or its coreferential mention “the album” co-334

occurs with both “the United States” and “Hero of335

the Day” in Figure 2), we take all the sentences336

where the bridge co-occurs with head or tail as the337

evidence. If there is more than one bridge entity, we338

choose the one with the highest frequency. While339

this rule can be easily extended to multiple bridges,340

we empirically observe that capturing one bridge341

already leads to satisfying results.342

4 Experiments343

4.1 Experiment Setup344

Datasets. We evaluate the effectiveness of EI-345

DER on three datasets: DocRED (Yao et al., 2019),346

CDR (Li et al., 2016) and GDA (Wu et al., 2019),347

where DocRED is the only dataset that provides ev-348

idence labels as part of the annotation. The details349

of the datasets are listed in Appendix A.1.350

Evaluation Metrics. Following prior studies (Yao351

et al., 2019), we use F1 and Ign F1 as the main eval-352

uation metrics for relation extraction, where Ign353

F1 measures the F1 score excluding the relations354

shared by the training and development/test set. We355

also report Intra F1 and Inter F1, where the for-356

mer measures the performance on the co-occurred357

(intra-sentence) entity pairs and the latter evaluates358

the inter-sentence entity pairs where none of their 359

proper-noun mentions co-occurs. For evidence ex- 360

traction, we compute the F1 score (denoted as Evi 361

F1) and further introduce PosEvi F1, which mea- 362

sures the F1 score of evidence only on positive 363

entity pairs (i.e., those with non-NA relations). 364

4.2 Main Results 365

We compare our methods with both Graph-based 366

methods and transformer-based methods. Graph- 367

based methods explicitly perform inference on 368

document-level graphs. Transformer-based meth- 369

ods, including EIDER, model cross-sentence re- 370

lations by implicitly capturing the long-distance 371

token dependencies via the transformer. We also 372

compare to an ablation EIDER (Rule) that does not 373

rely on human-annotated evidence and only uses 374

silver evidence labels as described in Sec. 3.3. The 375

implementation details are listed in Appendix A.2. 376

Relation Extraction Results. Table 1 and Table 2 377

present the relation extraction results, where we 378

observe that EIDER outperforms the baseline meth- 379

ods in all datasets. Our improvement is especially 380

large on Inter F1 (e.g., 1.21/2.01 Intra/Inter F1 un- 381

der BERTbase compared to ATLOP). We hypothe- 382

size that the bottleneck of inter-sentence pairs is 383

to locate the relevant context, which often spreads 384

through the whole document. EIDER learns to cap- 385

ture important sentences in training and focuses 386

more on these important sentences in inference. 387

Among the baselines, the Inter F1 of GAIN is 388

0.70 higher while the Intra F1 of ATLOP is 0.16 389

higher, indicating that graph-based methods may 390

capture the long-distance dependency between en- 391

tities by directly connecting them on the graph. 392

Although EIDER does not involve an explicit multi- 393

hop reasoning module, it still notably outperforms 394

the graph-based models in terms of Inter F1. This 395

demonstrates that the evidence-enhanced inference 396

also captures long-distance dependency by directly 397

concatenating important sentences. 398

Finally, in both DocRED and the two biomedi- 399

cal datasets which do not have evidence annotation, 400

EIDER (Rule) also outperforms all the baselines. 401

This shows that EIDER does not heavily rely on ev- 402

idence annotation. The improvement on DocRED 403

and CDR is much larger than that on GDA. We 404

hypothesize that it is because more than 85% re- 405

lations in GDA are intra-sentence ones, where the 406

evidence is normally the sentences where head and 407

tail co-occur. After training on massive examples, 408
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Model Dev Test

Ign F1 F1 Intra F1 Inter F1 Ign F1 F1

LSR-BERTbase (Nan et al., 2020) 52.43 59.00 65.26 52.05 56.97 59.05
GLRE-BERTbase (Wang et al., 2020) - - - - 55.40 57.40
Reconstruct-BERTbase (Xu et al., 2021) 58.13 60.18 - - 57.12 59.45
GAIN-BERTbase (Zeng et al., 2020) 59.14 61.22 67.10 53.90 59.00 61.24

BERTbase (Wang et al., 2019) - 54.16 61.61 47.15 - 53.20
BERT-Two-Step (Wang et al., 2019) - 54.42 61.80 47.28 - 53.92
HIN-BERTbase (Tang et al., 2020) 54.29 56.31 - - 53.70 55.60
E2GRE-BERTbase (Huang et al., 2021a) 55.22 58.72 - - - -
CorefBERTbase (Ye et al., 2020) 55.32 57.51 - - 54.54 56.96
ATLOP-BERTbase (Zhou et al., 2021) 59.11 ± 0.14† 61.01 ± 0.10† 67.26 ± 0.15† 53.20 ± 0.19† 59.31 61.30

EIDER (Rule)-BERTbase 60.36 ± 0.13 62.34 ± 0.08 68.40 ± 0.14 54.79 ± 0.13 60.23 62.21
EIDER-BERTbase 60.51 ± 0.11 62.48 ± 0.13 68.47 ± 0.08 55.21 ± 0.21 60.42 62.47

BERTlarge (Ye et al., 2020) 56.67 58.83 - - 56.47 58.69
CorefBERTlarge (Ye et al., 2020) 56.82 59.01 - - 56.40 58.83
RoBERTalarge (Ye et al., 2020) 57.14 59.22 - - 57.51 59.62
CorefRoBERTalarge (Ye et al., 2020) 57.35 59.43 - - 57.90 60.25
GAIN-BERTlarge (Zeng et al., 2020) 60.87 63.09 - - 60.31 62.76
ATLOP-RoBERTalarge (Zhou et al., 2021) 61.30 ± 0.22† 63.15 ± 0.21† 69.61 ± 0.25† 55.01 ± 0.18† 61.39 63.40

EIDER (Rule)-RoBERTalarge 61.73 ± 0.07 63.91 ± 0.07 69.99 ± 0.09 56.27 ± 0.11 61.93 64.12
EIDER-RoBERTalarge 62.34 ± 0.14 64.27 ± 0.10 70.36 ± 0.07 56.53 ± 0.15 62.85 64.79

Table 1: Relation extraction results on DocRED. We report the mean and standard deviation on the development
set by conducting 5 runs with different random seeds. We report the official test score of the best checkpoint on
the development set. Results with † are based on our implementation. Others are reported in their original papers.
We separate graph-based and transformer-based methods into two groups.

Model CDR GDA

LSR-BERTbase (Nan et al., 2020) 64.8 82.2
SciBERTbase (Zhou et al., 2021) 65.1 ± 0.6 82.5 ± 0.3
DHG-BERTbase (Zhang et al., 2020b) 65.9 83.1
GLRE-SciBERTbase (Wang et al., 2020) 68.5 -
ATLOP-SciBERTbase (Zhou et al., 2021) 69.4 ± 1.1 83.9 ± 0.2

EIDER (Rule)-SciBERTbase 70.63 ± 0.49 84.54 ± 0.22

Table 2: Relation extraction results on CDR and GDA.

it may be trivial even for the single RE model to409

focus on these sentences.410

Evidence Extraction Results. To our knowledge,411

E2GRE is the only method that has reported their412

evidence extraction result. The results in Table 3413

indicate that EIDER outperforms E2GRE signifi-414

cantly (e.g., by 3.57 Dev Evi F1 under BERTbase).415

The results show that it may be sufficient to train416

the evidence classifier only on pairs with r ∈ R417

and over each (entity, entity, sentence) tuple instead418

of (entity, entity, sentence, relation) as in E2GRE.419

Our ablation studies in Table 4 show that our420

three heuristic rules, denoted as Rules (ours), al-421

ready capture most of the evidence for positive en-422

tity pairs. The high quality of silver labels explains423

why our model can perform well using silver la-424

bels only. Furthermore, training the RE model and425

evidence extraction model separately (denoted as426

NoJoint) results in a sharp performance drop. As427

Model Dev Evi F1 Test Evi F1

E2GRE-BERTbase 47.14 48.35
EIDER-BERTbase 50.71 51.27

E2GRE-RoBERTalarge 51.11 50.50
EIDER-RoBERTalarge 52.54 53.01

Table 3: Evidence extraction results. We compare EI-
DER with E2GRE (Huang et al., 2021a).

Rules (ours) EIDER-BERTbase NoJoint

PosEvi F1 77.43 80.33 51.13

Table 4: Ablation study for evidence extraction.

the relation and evidence classifiers share the same 428

base encoder, discarding the relation classifier will 429

result in insufficient training of the base encoder 430

and harm the performance. We use PosEvi F1 be- 431

cause Evi F1 depends on the relation extraction as 432

well, which is not applicable for Rules (ours). 433

4.3 Performance Analysis 434

Ablation Study. We conduct ablation studies to 435

further analyze the utility of each module in EI- 436

DER. The results are shown in Table 5. Compared 437

to our full model, we observe that NoJoint leads 438

to RE performance drop. Compared to ATLOP, 439

EIDER (Rule)-Nojoint achieves significant “free 440

gains” (0.90/1.08 Ign F1/F1) by simply conduct- 441
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Ablation Ign F1 F1 Intra F1 Inter F1

EIDER-BERTbase 60.51 62.48 68.47 55.21
NoJoint 59.98 62.03 68.51 54.10
NoPseudo 59.70 61.53 67.55 54.01
NoOrigDoc 58.47 60.44 66.24 53.23
NoBlending 58.93 61.46 67.33 54.37
FinetuneOnEvi 60.11 62.29 68.13 54.84

EIDER (Rule)-BERTbase 60.36 62.34 68.40 54.79
NoJoint 60.01 62.09 68.21 54.34

Table 5: Ablation study of EIDER on DocRED.

Co-occur Coref Bridge Total

Count 6711 984 3212 10,907
Percent 54.46% 7.99% 26.07% 88.52%

Table 6: Statistics of the 12,323 relations in the Do-
cRED development set.

ing evidence-enhanced inference, which could be442

applied to general trained RE models in principle.443

We also remove the pseudo document (con-444

structed from the extracted evidence) and the orig-445

inal document separately, denoted as NoPseudo446

and NoOrigDoc, respectively. We observe that447

removing either source will lead to performance448

drops. Also, the drop of Inter F1 is much larger449

than Intra F1 for NoPseudo, indicating that our in-450

ference process is more effective for inter-sentence451

pairs where the evidence may not be consecutive.452

As for NoBlending, we remove the blending453

layer and simply take the union of the two sets of454

results. The sharp drop of performance indicates455

the blending layer can successfully learn a dynamic456

threshold to combine the prediction results.457

Finally, we further finetune the RE model on458

ground truth evidence before feeding it the ex-459

tracted evidence (denoted as FinetuneOnEvi). We460

observe that the performance is not improved, prob-461

ably because the encoded entity representations in462

evidence and original documents are already simi-463

lar to each other. In fact, when performing relation464

extraction on the training set using the ground truth465

evidence alone, the F1 is already over 95%.466

Performance Breakdown. To further analyze the467

performance of EIDER on different types of entity468

pairs, we categorize the relations into three cate-469

gories based on our three heuristic rules in Sec. 3.3:470

Co-occur, Coref and Bridge. The number and per-471

centage of relations covered by each rule are listed472

in Table 6. We can see that the three categories473

cover over 88% of the relations in the development474

set. The results on each category are shown in475

Figure 3. We can see that our full model has the476

Co-occur Coref Bridge0.0

0.5

1.0

1.5

2.0

2.5

F1

+0.75
+0.49

+0.25
69.61

+1.98

+1.01

+0.57

61.61

+2.08

+1.30

+0.85

53.07

Eider-Full
Eider-NoPseudo
Eider-NoJoint
ATLOP

Figure 3: Performance gains in F1 by relation cate-
gories. The gains are relative to the second best base-
line (ATLOP-RoBERTalarge).

Model Memory Training time

ATLOP-BERTbase 9,139 MB 5.19 it/s
E2GRE-BERTbase 36,182 MB 0.53 it/s
EIDER-BERTbase 10,933 MB 4.92 it/s

Table 7: Training time and memory usage on DocRED.

best performance in all three categories and our 477

ablations also outperform ATLOP. For all our meth- 478

ods, the improvements over ATLOP is Bridge > 479

Coref � Co-occur. This reveals that both modules 480

mainly improve the model’s reasoning ability from 481

multiple sentences, either by coreference reasoning 482

or by multi-hop reasoning over a third entity. 483

Efficiency Comparison. We benchmark the time 484

and memory usage of EIDER on an RTX A6000 485

GPU. Table 7 show that our joint model incurs only 486

~5% training time and ~14% GPU memory over- 487

head. Experiments also show that EIDER can be 488

trained on a single consumer GPU (e.g., an 11GB 489

GTX 1080 Ti) but E2GRE is not able to. 490

4.4 Case Studies 491

Table 8 shows a few examples of EIDER. Detailed 492

statistics and error analysis are provided in Ap- 493

pendix A.3. In the first example, the head entity is 494

mentioned in the first sentence and the tail entity 495

appears in the second. We can see that EIDER cor- 496

rectly extracts these sentences as evidence. Since 497

the evidence sentences are consecutive, the predic- 498

tions on both the original document and the evi- 499

dence sentences are correct. In the second example, 500

the prediction using only the original document is 501

incorrect, possibly because the “King Louie” in 502

the 1st and 3rd sentences are so far away from 503

each other that the model fails to recognize them 504

as coreference. Hence, it fails to distinguish “King 505

Louie” as a bridge entity as wrongly predicts “NA”. 506

Instead, these two sentences are consecutive in the 507

extracted evidence, making it easier for the model 508

to find the bridge. In the last example, the 6th sen- 509

7



Ground Truth Relation: Located in Ground Truth Evidence Sentence(s): [1, 2] Extracted Evidence Sentence(s): [1, 2]
Document: [1] The Portland Golf Club is a private golf club in the northwest United States , in suburban Portland, Oregon. [2] It is located
in the unincorporated Raleigh Hills area of eastern Washington County, southwest of downtown Portland and east of Beaverton. [3] The club
was established in the winter of 1914, when a group of nine businessmen assembled to form a new club after leaving their respective clubs ...
Final Prediction: Located in Prediction on Orig. Doc: Located in Prediction on Extracted Evidences: Located in

Ground Truth Relation: Characters Ground Truth Evidence Sentence(s): [1, 3] Extracted Evidence Sentence(s): [1, 3]
Document: [1] King Louie is a fictional character introduced in Walt Disney’s 1967 animated musical film, The Jungle Book. [2] Unlike the
majority of the adapted characters in the film, Louie was not featured in Rudyard Kipling’s original works. [3] King Louie was portrayed as an
orangutan who was the leader of the other jungle primates, and who attempted to gain knowledge of fire from Mowgli, ...
Final Prediction: Characters Prediction on Orig. Doc: NA Prediction on Extracted Evidences: Characters

Ground Truth Relation: Inception Ground Truth Evidence Sentence(s): [5, 6] Extracted Evidence Sentence(s): [5]
Document: [1] Oleg Tinkov (born 25 December 1967 ) is a Russian entrepreneur and cycling sponsor. ... [5] Tinkoff is the founder and
chairman of the Tinkoff Bank board of directors (until 2015 it was called Tinkoff Credit Systems). [6] The bank was founded in 2007 and as of
December 1, 2016, it is ranked 45 in terms of assets and 33 for equity among Russian banks. ...
Final Prediction: Inception Prediction on Orig. Doc: Inception Prediction on Extracted Evidences: NA

Table 8: Case studies of our proposed framework EIDER. We use red, blue and green to color the head entity, tail
entity and relation, respectively. The indices of extracted evidence sentences are highlighted with yellow.

tence is missing in the extracted evidence, so the510

extracted evidence does not contain enough infor-511

mation to predict the relation. However, the predic-512

tion on the original document is correct, leading to513

the correct final result.514

5 Related Work515

Relation Extraction. Previous research efforts on516

relation extraction mainly concentrate on predict-517

ing relations within a sentence (Cai et al., 2016;518

Zeng et al., 2015; Feng et al., 2018; Zheng et al.,519

2021; Zhang et al., 2018, 2019, 2020a). While520

these approaches tackle the sentence-level RE task521

effectively, in the real world, certain relations can522

only be inferred from multiple sentences. Con-523

sequently, recent studies (Quirk and Poon, 2017;524

Peng et al., 2017; Yao et al., 2019; Wang et al.,525

2019; Tang et al., 2020) have proposed to work on526

the document-level relation extraction (DocRE).527

Graph-based DocRE. Graph-based DocRE meth-528

ods generally construct a graph with mentions, en-529

tities, sentences, or documents as the nodes, and530

infer the relations by reasoning on this graph. Zeng531

et al. (2020) performs multi-hop reasoning on both532

a mention-level graph and an entity-level graph.533

Xu et al. (2021) extracts a reasoning path between534

each entity pair holding at least one relation and en-535

courages the model to reconstruct the path during536

training. However, the extracted graph may omit537

some important information in the text. Compli-538

cated operations on the graphs may also hinder the539

model from capturing the text structure.540

Transformer-based DocRE. Another line of stud-541

ies model cross-sentence relations by implicitly542

capturing the long-distance token dependencies via543

the transformer (Vaswani et al., 2017). Zhou et al. 544

(2021) uses attention in the transformers to extract 545

useful context and adopts an adaptive threshold for 546

each entity pair. Huang et al. (2021b) predicts on 547

only a few sentences selected by rules, which may 548

miss important information and does not show con- 549

sistent improvements. Instead, EIDER puts more 550

attention to the important sentences without infor- 551

mation loss and shows significant improvements. 552

Huang et al. (2021a) extracts relation and evidence 553

together but highly relies on evidence annotations 554

and suffers from massive time and memory over- 555

head. In comparison, EIDER automatically con- 556

structs silver evidence labels and improves RE per- 557

formance by training on these silver labels, achiev- 558

ing strong applicability. 559

6 Conclusion 560

In this work, we propose EIDER, an evidence- 561

enhanced RE framework, which improves DocRE 562

by joint relation and evidence extraction and 563

evidence-enhanced inference. In training, the RE 564

and evidence extraction model provide additional 565

training signals for each other and mutually en- 566

hance each other. The joint model is efficient in 567

time and memory and does not rely heavily on the 568

human annotation of evidence. During inference, 569

the prediction results on both the original document 570

and the extracted evidence are combined, which 571

encourages the model to focus on the important 572

sentences while reducing information loss. Ex- 573

periment results demonstrate that EIDER signifi- 574

cantly outperforms existing methods on three pub- 575

lic datasets (DocRED, CDR, and GDA), especially 576

on inter-sentence relations. 577
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A Appendices761

A.1 Dataset Statistics762

Our model is evaluated on three benchmark763

datasets, where the statistics are shown in Table 9:764

DocRED (Yao et al., 2019) is a large human-765

annotated document-level RE dataset. DocRED is766

constructed from Wikipedia, involving 97 relation767

types (including NA), 132,275 entities, and 56,354768

relations. In the training set, around 97.03% entity769

pairs do not hold any explicit relations. Around770

54.2% of the relations are intra-sentence. The oth-771

ers can only be extracted by considering multiple772

sentences. In our experiments, the performance on773

the test set is validated through the Leader board. 2774

CDR (Li et al., 2016) is a relation extraction775

dataset in the biomedical domain. The only two776

entity types are chemicals and diseases and the777

only two relations are NA and the causal relation778

between chemicals and disease concepts.779

GDA (Wu et al., 2019) is also a biomedical780

dataset with two entity types only: diseases and781

genes, and one non-NA relation type only: the in-782

teractions between disease concepts and genes.783

Statistics DocRED CDR GDA

# Train 3053 500 23353
# Dev 1000 500 5839
# Test 1000 500 1000
# Relation types 97 2 2
# Avg.# entities per Doc 19.5 7.6 5.4
# Avg.# sentences per Doc 8.0 9.7 10.2
Percent of Intra Rel 54.2 75.7 84.7

Table 9: Statistics of the datasets in experiments.
The percentage of intra-sentence relations is calculated
from the development set of DocRED and calculated
from the test set of CDR and GDA.

A.2 Implementation Details784

Our model is implemented based on PyTorch and785

Huggingface’s Transformers (Wolf et al., 2019).786

We use cased-BERTbase (Devlin et al., 2019) and787

RoBERTalarge as the base encoders and optimize788

our model using AdamW with learning rate 5e-5789

for the encoder and 1e − 4 for other parameters.790

We adopt a linear warmup for the first 6% steps.791

The batch size (number of documents per batch) is792

set to 4 and the ratio between relation extraction793

and evidence extraction losses is set to 0.1. We794

2Results can be found at https://competitions.
codalab.org/competitions/20717.

perform early stopping based on the F1 score on 795

the development set, with a maximum of 30 epochs. 796

Our BERTbase models are trained with one GTX 797

1080 Ti GPU and RoBERTalarge models with one 798

RTX A6000 GPU. 799

A.3 Error Analysis of EIDER 800

Ground Truth

Pr
ed

ic
tio

n r ∈ R NA
r ∈ R (Correct) 7,696 (X)

3,613 (7)
r ∈ R (Wrong) 287 (7)
NA 4,340 (7) 380,854 (X)

Table 10: Statistics of one run of EIDER-RoBERTalarge.
“r ∈ R” means non-NA relations. We use “X” or “7”
to denote whether the prediction is correct or wrong.
For example, we have 4,340 wrong predictions where
the ground truth is some r ∈ R but the prediction is
NA.

Reason Count

Labeling Mistakes∗ 18
Fail in Commonsense Reasoning 11
Fail in Coreferential Reasoning 6
Fail in Multi-hop Reasoning 4
Wrong Evidence Extraction 1
Others 11

Table 11: Error types of EIDER in 50 randomly sam-
pled error cases in DocRED. Where “Labeling Mis-
takes” means our model predicts correctly but the an-
notation is wrong.

The detailed statistics of the predictions of our 801

model are listed in Table 10. Among all the errors, 802

the majority is because the model wrongly predicts 803

the non-NA relations (i.e., r ∈ R) as “NA” or 804

predicts “NA” as some non-NA relations. Only 805
287

287+4340+3613 = 3.48% of the errors result from 806

wrongly taking some non-NA relation as another. 807

To check the exact reason why our model makes 808

these errors, we randomly select 50 cases from 809

DocRED where our model predicts wrongly. We 810

summarize the error types in Table 11 and provide 811

one or two examples for each of the common error 812

types in Table 12. 813

Our analysis shows that 18 out of 50 “error cases” 814

are actually correct. It suggests that labeling mis- 815

takes are still prevalent in the DocRED dataset. We 816

show an example under “Error Type 1” in Table 12. 817

The annotator wrongly labels “U.S. Route 20”, a 818

highway, as the country of “Capital District”. 819

Another common error type is failing to con- 820

duct commonsense reasoning. Some examples 821
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Error Type 1: Labeling Mistakes
Ground Truth Relation: Country (7) Ground Truth Evidence Sentence(s): [1, 4, 5, 7] Extracted Evidence Sentence(s): [5, 7]
Document: [1] Westmere is a hamlet in the town of Guilderland, Albany County, New York. [4] It is a suburb of the neighboring city of Albany.
[5] U.S. Route 20 (Western Avenue) bisects the community and is the major thoroughfare and main street. ... [7] Crossgates Mall, the Capital

District’s largest shopping mall, is in Westmere’s northeastern corner.
Final Prediction: NA Prediction on Orig. Doc: NA Prediction on Extracted Evidences: NA

Error Type 2: Fail in Commonsense Reasoning
Ground Truth Relation: Country Ground Truth Evidence Sentence(s): [] Extracted Evidence Sentence(s): [1, 4]
Document: [1] A Route Army was a type of military organization during the Chinese Republic, and usually exercised command over two or
more corps or a large number of divisions or independent brigades. [2] It was a common formation in China prior to the Second Sino-Japanese
War but was discarded as a formation type by the National Revolutionary Army after 1938 (other than the 8th Route Army), in favor of the Group
Army. [3] Some of the more famous of the Route Armies were: [4] 8th Route Army: Communist guerrilla force in North China. ...
Final Prediction: NA (7) Prediction on Orig. Doc: NA (7) Prediction on Extracted Evidences: NA (7)

Ground Truth Relation: Country, Located in Ground Truth Evidence Sentence(s): [1, 2, 3, 4] Extracted Evidence Sentence(s): [1]
Document: [1] The Treaty of Edinburgh–Northampton was a peace treaty, signed in 1328 between the Kingdoms of England and Scotland.
[2] It brought an end to the First War of Scottish Independence, which had begun with the English invasion of Scotland in 1296. [3] The treaty
was signed in Edinburgh by Robert the Bruce, King of Scotland, on 17 March 1328, and was ratified by the English Parliament at Northampton
on 1 May. [4] The document was written in French, and is held by the National Archives of Scotland in Edinburgh. ...
Final Prediction: NA (7) Prediction on Orig. Doc: NA (7) Prediction on Extracted Evidences: Country, Located in

Error Type 3: Fail in Coreferential Reasoning
Ground Truth Relation: NA Ground Truth Evidence Sentence(s): [] Extracted Evidence Sentence(s): [1]
Document: [1] Manon Balletti (1740–1776) was the daughter of Italian actors performing in France and lover of the famous womanizer
Giacomo Casanova. [2] She was ten years old when she first met him; she happened to be the daughter of Silvia Balletti, an actress of the
Comédie Italienne company and younger sister of Casanova’s closest friend. ...
Final Prediction: Child (7) Prediction on Orig. Doc: Child (7) Prediction on Extracted Evidences: Child (7)

Error Type 4: Fail in Multi-hop Reasoning
Ground Truth Relation: Educated at Ground Truth Evidence Sentence(s): [4] Extracted Evidence Sentence(s): [4]
Document: [1] Ronald Leonard is an American cellist . [2] He has had a distinguished career as a soloist, chamber musician , principal cellist
and teacher . ... [4] He was a winner of the Walter Naumburg Competition while a student at the Curtis Institute of Music, where he studied
with Leonard Rose and Orlando Cole. ...
Final Prediction: NA (7) Prediction on Orig. Doc: NA (7) Prediction on Extracted Evidences: NA (7)

Table 12: Examples for the four most common error types. We use red, blue and green to color the head entity,
tail entity and relation, respectively. The indices of extracted evidence sentences are highlighted with yellow.

require direct reasoning from the surface names822

of the head and tail entities. As shown in the823

first example under “Error Type 2” in Table 12,824

humans can directly identify that “China” is the825

country of North China without reading the doc-826

ument, despite that there are no clue in the docu-827

ment indicates this relation. However, most DocRE828

models, including EIDER, learn to predict the rela-829

tions only based on the given document and some-830

times fail in such cases. There are also examples831

that need background knowledge. When a human832

checks the second example, the reasoning process833

could be: “Scotland” and “England” signed the834

“Edinburgh-Northampton Treaty”. We already know835

that “Northampton” is in “England”, so it is highly836

possible that “Edinburgh” locates in “Scotland”.837

However, this kind of reasoning involves back-838

ground knowledge that does not come from the839

document, such as the fact that “Northampton” is840

in “England”. Even though our prediction on ex-841

tracted evidence is correct, the confidence is still842

not high, leading to the incorrect final prediction.843

In most of the cases (5 out of 6) in “Error Type 3:844

Fail in Coreferential Reasoning”, human can still 845

identify the correct relation based on the extracted 846

evidence only. As shown in our example in Ta- 847

ble 12, in the first sentence, the model wrongly 848

predicts “Giacomo Casanova” as the father of 849

“Manon Balletti”, but her real father should be an 850

“Italian actor performing in France”. It shows that 851

even the reasoning within a single sentence can be 852

difficult. Similarly, the example in “Error Type 4” 853

also shows that the prediction can still be wrong 854

even if we extract the correct evidence sentences 855

and simplify the problem to sentence-level RE. 856

This suggests that if the performance of sentence- 857

level RE is improved, the performance of DocRE 858

will also improve. 859
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