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ABSTRACT

Federated Learning (FL) is a distributed learning paradigm that allows multiple
clients to learn a joint model by utilizing privately held data at each client. Sig-
nificant research efforts have been devoted to develop advanced algorithms that
deal with the situation where the data at individual clients have heterogeneous
distributions. In this work, we show that data heterogeneity can be dealt from a
different perspective. That is, by utilizing a certain overparameterized multi-layer
neural network at each client, even the vanilla FedAvg (a.k.a. the Local SGD)
algorithm can accurately optimize the training problem: When each client has a
neural network with one wide layer of size N (where N is the number of total
training samples), followed by layers of smaller widths, FedAvg converges lin-
early to a solution that achieves (almost) zero training loss, without requiring any
assumptions on the clients’ data distributions. To our knowledge, this is the first
work that demonstrates such resilience to data heterogeneity for FedAvg when
trained on multi-layer neural networks. Our experiments also confirm that, neu-
ral networks of large size can achieve better and more stable performance for FL
problems.

1 INTRODUCTION

In Federated Learning (FL), multiple clients collaborate with the help of a server to learn a joint
model [McMahan et al.| (2017). The privacy guarantees of FL has made it a popular distributed
learning paradigm, as each client holds a private data set and aims to learn a global model without
leaking its data to other nodes or the server. The performance of FL algorithms is known to degrade
when training data at individual nodes originates from different distributions, referred to as the
heterogeneous data setting |Yu et al.| (2019a); Woodworth et al.[ (2020a). In the past few years, a
substantial research effort has been devoted towards developing a large number of algorithms that
can better deal with data heterogeneity, Karimireddy et al.| (2020b); [Zhang et al.| (2021); [Li et al.
(2018)); |Acar et al.| (2020); Khanduri et al.| (2021). However, in practice it has been observed by a
number of recent works, that in spite of the data heterogeneity, the simple vanilla FedAvg algorithm
(ak.a. the Local SGD) still offers competitive performance in comparison to the state-of-the-art.
For example, see Table 2 in |Karimireddy et al.|(2020a), Table 1 in Reddi et al.| (2020), and Table 2
in|Yang et al.[(2021)) for performance comparison of FedAvg on popular FL tasks.

Motivated by these observations, we ask: Is it possible to handle the the data heterogeneity issue
from a different perspective, without modifying the vanilla FedAvg algorithm? To answer this ques-
tion, in this work we show that FedAvg can indeed perform very well regardless of the heterogeneity
conditions, if the models to be learned are nice enough. Specifically, FedAvg finds solutions that
achieve almost zero training loss (or almost global optimal solution) very quickly (i.e., linearly),
when the FL model to be trained is certain overparameterized multi-layer neural network. To the
best of our knowledge, this is the first result that shows (linear) convergence of FedAvg in the over-
parameterized regime for training multilayer neural networks. The major contributions of our work
are listed below.

* Under certain assumptions on the neural network architecture, we prove some key properties of
the clients’ (stochastic) gradients during the training phase (Lemmas[I]and [2)). These results allow
us to establish convergence of FedAvg for training overparameterized neural networks without
imposing restrictive heterogeneity assumptions on the gradients of the local loss functions.
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* We design a special initialization strategy for training the network using FedAvg. The initialization
is designed such that the singular values of the model parameters and the outputs of the first
layer of local and aggregated model parameters stay positive definite during the training. This
property combined with overparameterization enables FedAvg to converge linearly to a (near)
optimal solution.

* We conduct experiments on CIFAR-10 and MNIST datasets in both i.i.d. and heterogeneous data
settings to compare the performance of FedAvg on various network architectures of different sizes.

To our knowledge, this is the first work that shows the linear convergence of FedAvg (both SGD and
GD versions) to the optimal solution when training a overparameterized multi-layer neural networks.

Related Work: Federated Learning (FL). FL algorithms were first proposed in|McMahan et al.
(2017), where within each communication round the clients utilize their private data to update the
model parameters using multiple SGD steps. Earlier works analyzed the performance of FedAvg
for the case of homogeneous data setting [Zhou and Cong| (2018)); |Stich! (2018)); Lin et al.| (2020);
‘Woodworth et al.| (2020b)); [Wang and Joshi (2021)), i.e., when the local data at each client follows
the same underlying distribution. Motivated by practical applications, recent works have analyzed
FedAvg for heterogeneous client data distributions |Yu et al.| (2019bga); Haddadpour and Mahdavi
(2019); |Woodworth et al.| (2020a) and it was observed that the performance of FedAvg degrades
as the data heterogeneity increases. To address the data heterogeneity issue among clients, many
works have focused on developing sophisticated algorithms Karimireddy et al.[(2020b);|Zhang et al.
(2021)); |Acar et al.| (2020); [Li et al.| (2018)); Khanduri et al.| (2021)); Karimireddy et al.| (2020a); |Das
et al.|(2020).

Overparameterized Neural Networks. The surprising performance of overparameterized neural
networksﬂ has raised significant research interest in the ML community to analyze the phenomenon
of overparameterization Belkin et al,| (2019). Consequently, many works have analyzed the per-
formance of centralized (stochastic) gradient descent (S)GD on overparameterized neural network
architectures under different settings Jacot et al.| (2018); [Li and Liang| (2018)); |Arora et al.| (2019);
Du et al.| (2018} [2019); |Allen-Zhu et al.| (2019); Zou and Gul(2019); Nguyen and Mondelli| (2020);
Nguyen|(2021).

However, there are only a handful of works that have attempted to analyze the performance of
overparameterized neural networks in the distributed setting |Li et al.[(2021); Huang et al.| (2021}));
Deng and Mahdavi (2021)). The works most closely related to our work are Huang et al.|(2021)) and
Deng and Mahdavi| (2021). Huang et al.| (2021) analyzed the performance of FedAvg on a single
hidden-layer neural network for the case when each client utilizes GD for the local updates. The
authors established linear convergence of FedAvg using the NTK parameterization and showed that
it suffices to design the neural network of width Q(N*) to achieve this performance (where N is
the number of training samples). Similarly, Deng and Mahdavi| (2021} analyzed the performance of
FedAvg on a ReLU neural network but when each client utilizes SGD (or GD) for the local updates.
The authors proved convergence of FedAvg under the standard parameterization while requiring
the very large network width of Q(N'®). Note that since individual clients can be devices with
limited computational capabilities, in realistic settings it is undesirable to have networks of such
large widths. In contrast to both these works, we focus on the more practical setting of a multi-layer
neural network Nguyen and Mondelli| (2020) and establish linear convergence of FedAvg even for
the case when each client utilizes SGD for the local updates. Importantly, we show that with proper
initialization, it only requires a network of width N at each client, which is much smaller compared
to the unrealistic requirements of [Huang et al.| (2021);|Deng and Mahdavi| (2021}).

2 PROBLEM SETUP

In this section, we define the multi-layer neural network and formalize the problem we aim to solve.
We consider a distributed system of K clients with each client having access to a privately held data
set. We assume that each client &k € {1,..., K } has N}, training samples denoted as {(Xp, Y)}.
with X, € RNeXdin and V;, € RNVr*dout | Note that each row of X, and Y}, represents the feature
vector and its corresponding label, and d;, and d,,; denote the feature (input) and label (output)

dimensions, respectively. We further denote N = Zle Ny, as the total samples across all clients.

'A model is generally referred to as overparameterized if the number of (trainable) parameters are more
than the number of training samples V.
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Suppose each client trains a fully-connected neural network with L layers, and with activation

function 0 : R — R. We denote the vectorized parameters at each node & € {1,...,K} as
O = [vec (Wi k),...,vec(Wr )] € RP, where W, j, € R™-1*" represents the weight matrix of
each layer I € {1,..., L} and n; represents the width of each layer. Note that each layer inputs a

(feature) vector of dimension n;_1 and outputs a (feature) vector of dimension n;. For simplicity,
define ng = d;, and ny, = doyt as the input and the output dimensions of the neural network. We
define Fj j, as the local output of each layer  at client k, then using the above notations, we have

Xk =0
Fl,k = U(H—l,le,k) le {laQaaL} . (1)
Fr_1:Wrk =1L
We further define the vectorized output of each layer and the labels at each client as f;; =
vec(Fy ;) € RV and yy, = vec(Yy) € RV,

Similar to the above setup, we also define the notations to describe a single network, with the full
data (X,Y) with X € RV*din and Y € RV *dout ag input. This “centralized" network will be useful

later to perform the analysis. Then given parameter § = [vec (W7), ..., vec (W1)], the output at
each layer of the network is defined as
X l=0
F={o(R_ W) le{l,2,...,L}. )

FL_1WL =1L

Next, we define the local and global loss functions. First, each client & € {1,..., K} has a local
loss function given by: @ (0) := ﬁ”ka(G) — yx||3, where || - ||2 denotes the standard £5-norm.
Then the global loss function is the sum of weighted local loss functions, given by:

N 1
3(0) =Y “Lau(0) = —||F(0) — y|% 3
()= 32 T 00) = 5F0) ol ()
Additionally, define the gradient of (3) as g := [vec(Vw, ®(0)), ..., vec(Vw, ®(6))], which is the
stacked gradient of the loss w.r.t. the 1% to L™ layer’s parameters; define the gradient of the losses
at each client k € [K] as: gr := [g1,k,.--,9L,x] With g := vec(V, ,®(0)) forall | € [L].

Next, we define the optimality criteria to solve (3) using an overparameterized neural network.

Definition 1 (e-optimal solution). Consider an overparameterized problem ming ®(0), where there
exist 0 such that ®(0*) = 0. A solution 0 is called an e-optimal solution if it satisfies ®(0) < e.
Moreover; if 0 is a random variable, then we use E[®(0)] < € to denote an e-optimal solution, where
the expectation is taken w.r.t. the randomness of x.

3 THE FEDAVG ALGORITHM

A classical algorithm to solve problem (3) is the FedAvg McMahan et al.| (2017). In FedAvg, each
client performs multiple local updates before sharing their updated parameters with the server. We
refer the algorithm as FedAvg-SGD (resp. FedAvg-GD) if the clients employ SGD (resp. GD) for
the local updates.

The detailed steps to implement FedAvg-SGD are listed in Algorithm[I] We execute the algorithm
for a total of 7' communication rounds, within each communication round every client performs
7 local updates. In each communication round ¢ the server aggregates the local parameters and
constructs " from each client’s local parameters 6} """ and shares it with the clients. The clients
use the aggregated parameter, 5,:“"“, as the initial parameter value for computing the next round of
local updates. For each v € {0,1,...,r — 1}, to update the local parameters the clients compute
the (unbiased) stochastic gradient using m-samples drawn form their private data set (X, Y3). We
denote the random sample drawn at v local step in the £ communication round as (X}, Y;/*+).
Using the stochastic gradient estimate, the clients update their parameters locally by employing the
SGD step. After r local SGD steps, each client shares its updated parameters with the server and gets
back the aggregated parameters before starting the next round of updates. Note that if we choose the
batch size m = Ny, forall k € {1,..., K}, FedAvg-SGD becomes FedAvg-GD.
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Algorithm 1 The FedAvg-SGD Algorithm

Algorithm [I] summarizes the above descrip-

Initialize: Parameters 02 = 6°, Step-size n, # *] e
tion. For each communication round ¢ €

of communication rounds, local updates 7', r

fort — 0.1 T _1do {0,1,...,7 — 1} and local step v €
P _ rtt+v ., __

for each clientk € {1,..., K} do {0, 1,. '}t’fv 1}, we deﬁnftihve vector 6,°"° :=
Set 1t = gt [vec(W]"™), ..., vec(W;™")]. For FedAvg-
forv=0,1,...,r—1do SGD, define F/': and f/™ as the output
Sample mini-batch of size m, and the vectorized output of each hidden layer
(XHv vy [, respectively, when the input to the client

Compute stochastic gradient g;”” us- k’slocal ntho;k is the stochastic (mini-batch)
ing (B) samples (X"t Y"""). Using the notation
Update: 0T = gritv — pgrito, Gt = vec(Y,["") as the vectorized labels
of the stochastic samples at each local step, we

K
. .oor(t+1) Ny ori+r o ;
Aggregation: "D = > N, define the mini-batch stochastic loss as:

k=1
Return: Parameters, 677 ~ 1, = .

D0y ) = 5 I - @
and the stochastic gradient as g, ¥ := [Q{t,j v ,g;fjg“], where g;jj“ is the stochastic gradient
w.r.t. the [ layer of the network evaluated at the k" client:

G = vee (Vi Bu(BY)) € R, 5)
For each communication round, let us define the aggregated parameters as:
K
_ , - - Np.
070 = vec(W7), -+ vee( W], Wt =32 Wi ©6)
k=1
For FedAvg-GD, we denote ;'™ = [g7%F",..., 97"} "] as the full gradient of k™ client’s loss

function, where similar to () g{t,j Y defines the gradient of the loss function w.r.t. the I layer’s

parameters. Throughout, we make the following standard assumptionGhadimi and Lan]| (2013).

Assumption 1. The stochastic gradients at each client are unbiased, i.e., we have E[g]:””] = gzt“’

Vk € [K].
Next, we analyze the performance of the FedAvg for an overparameterized neural network.

4 CONVERGENCE ANALYSIS

We present the convergence guarantees of FedAvg when training an overparameterized neural net-
work. We first present a set of assumptions on the network architecture, and activation functions.

Assumption 2. The width of each hidden layer satisfies: n1 > N, no >ng > ... >np > 1.

Assumption 3. The activation function o(-) in (1) satisfies the following: 1) o'(x) €
[v,1]; 2) lo(x)| < |z|; Va € R; 3) o’ is f-Lipschitz, with vy € (0,1) and 5 > 0.

Remark 1. Assumptions [2| and [B] play an important role in our analysis. They help ensure that
the local and global loss functions and their (stochastic) gradients are well behaved. Note that As-
sumption [2| only requires the first layer to be wide while the rest of the layers can be of constant
width. Assumption |2|is required to establish a PL like property for the global and local loss func-
tions |Nguyen and Hein| (2018)); Nguyen and Mondelli| (2020). Assumption |3|is also standard in
the analysis of overparameterized neural networks. Similar assumptions on the smoothness of the
activation functions have been made in the past Jacot et al.|(2018); \Du et al.| (2019); INguyen and
Mondelli| (2020), | Huang and Yau (2020) and are utilized to manage the behavior of the gradients of
the loss functions. Importantly, note that as demonstrated in Nguyen and Mondelli| (2020)) activa-
tion functions satisfying Assumption 3| can be utilized to uniformly approximate the ReLU function
to arbitrary accuracy.

Remark 2. We do not impose any assumptions on the distribution of individual clients’ local data
sets. In contrast, a majority of works on FL impose restrictive assumptions on the gradients (and/or
the Hessians) of each client’s local loss functions to guarantee algorithm convergence |Yu et al.
(2019D); |ILi et al.| (2018); Yu et al.| (20194)); |Karimireddy et al.| (2020a). Below, we list two most
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popular heterogeneity assumptions (from |Yu et al.| (2019a) and |Koloskova et al.| (2020), respec-
tively):

||V<I>k( )= Vo) <6, V0, € RP, Yk € [K], for some § > 0. (7)
72 V@5 (0)]] < 61 + 62||[VR()|, VO e RP, for some &y, 85 > 0. (8)

Both conditions impose strong restrictions on the gradients of the local clients, and they do not hold
for even simple quadratic loss Khaled et al.|(2019); Zhang et al.|(12021|). We will see shortly that, our
results will indicate that as long as the neural network is large enough, then the local (stochastic)
gradients will be well-behaved, thereby eliminating the need to impose any additional assumptions
on the data distributions.

In the following, we show the convergence guarantees achieved by FedAvg. Our analysis roughly
follows the four steps presented below:

[Step 1] We first show a key result, that the ratio of the local stochastic gradients and the local full
gradients stays bounded (Lemmal(T). This result is crucial for the FedAvg-SGD analysis, as it allows
us to work with the full local gradients directly, and it helps to bound the gradient drift across local
updates within each communication round.

[Step 2] Using the result of Step 1, we bound the summation of (stochastic) gradients and the
gradient drift during the local updates within each communication round (Lemma [2). This result
ensures that irrespective of the data heterogeneity, the gradients size will not change too much from
their initial values at the beginning of each round.

[Step 3] We then show that adopted network architecture allows us to derive bounds on the size of
the gradients and ensure the loss function to be PL during the each communication round (Lemma/3).
Utilizing this and the results derived in Steps 1 and 2, we show that the expected loss (3) converges
linearly to zero (Proposition [)).

[Step 4] Finally, we find a special initialization strategy so that all the conditions imposed on the
network properties are satisfied during the entire training process.

Next, let us begin with Step 1. We need the following definition.

Definition 2. Given parameter 9,:“”, we define the following quantity for each k € [K], t €
{0,1,...,T =1} and v € {0,1,...,r — 1}: p(6;"") == (|3 ll2/ll g [lo-

Clearly, p(@i””) measures the ratio of the norm of stochastic and full gradients of the local loss
functions. In the following, we show that if the model parameters at each client satisfy certain
conditions, then p(f;"™") is uniformly bounded. Define oax(-) and opmin(-) as the largest and
smallest singular value of a matrix, respectively.

Lemma 1. Let Assumptionsandhold. Suppose in any iteration t + v, v € {0,1,---,r —1},
for 0,1 = [vec(W]L), ..., vec(W[5")], there exists constant Ay, A, Ap > 0 such that the
singular values of er,tj” and F{ t,:'” satisfy

Umax(WlT’]t:Fv) < ]\lv le [LL ke [K]7
Umin(v‘/l?:;+v) 2 Alv le {37 . 'aL}v ke [K]7 (9)
Umin(nyt]:»v) 2 AF7 k S [K}

JAESESE

min. A

where Xi-y; i= 1 \ for given layer-wise parameter , then: p(6}) < ———tHl
=1 N

As discussed earlier in Step 1, this lemma is crucial to our analysis as it allows us to work with full
gradients of individual clients. Before proceeding to Step 2, we need the following definitions:

th+v . Z ]]\\[;Cglzt+v and gn‘-‘rv . Z Nk ~Tt+’U.

—rt+uv ~rt+v

Here g and g are the weighted averages of the full and stochastic gradients, respectively.
Next, in Step 2 (Lemma ' we first bound the size of the sum of g™ over the local updates
within each communication round. Then we bound the change in g™+ from v = 0 to any v €
{0,1,...,r — 1}. Note that this quantity measures the drift in the averaged gradients from the start
of each communication round.
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Lemma 2. For FedAvg-SGD, given step sizen > 0, v € {0,1,...,r—1}andq € {0,1,...,v—1}.
Suppose there exists constants N\, p, and A > 0 such that the following conditions hold:

M= sup owas (W), p2 Jup p(07), BH(ETT) < AT By (67, k€ [K].

Then we have

. mxn 1A

~rt4+q P, F 1—L ert ) 10

HZ I < N 1lm[IB]AHfL )= vlle (10)
€

Further, for all k € [K], 3Qy > 0, such that we have

K
> QI Xkl L () — ylla- (11)

k=1

-1
rt+v grtHQ < n

"N min A _
lng[lg]l\/z 1

g

Next, we show Step 3, that the averaged parameter 6"t defined in (@), after ¢th communication round,
will have good performance. Towards this end, we define the full gradient given parameter 6" as

g™t = [vec(V, ®(0™), ..., vec(Vy, (0™)]. (12)

Lemma 3. Let Assumptions [2|and 3| hold. At each communication round rt, suppose there exists
constant 0, Q,, Q ., such that

Umax(‘/i/lrt) S Ql; l S [L]a
omin(W/*) > Q,, 1€ {3,...,L}, (13)
Umil)(Fl (9_7t)) 2 QFv

where 0t and W,"" are defined in (). Then we have

L-1
(6™ 12 = || vee (Vuy® (07)) ll2 = T2 1.2 || £207) — ], (14)
—r L Q — nr
l9@™Nl2 < o= 12067 = wll, - (15

le[L]

Remark 3. Note that (I4) is a PL-type inequality |[Karimi et al.| (2016), and requires the special
structure of the network that satisfies Assumption[2|Nguyen and Hein|(2018); Nguyen and Mondelli
(2020). Also, (I3) can be proven using Assumption 3|

Now, we utilize the results of Steps 1 - 2 and Lemma 3| to derive the convergence of FedAvg.

Proposition 1. Use Algorithm(I|to minimize (3). Suppose Assumptions|[I] land Blare satisfied, and
Sor each iteration rt +v, v € {0,1,--- ;r — 1}, QT *Y satisfies the conditions in Lemmas|I| and

and for each communication round rt, 0™ satisfies condltlons in Lemmal then 31 > 0 such that
nr n —
Bl (0)] < (1- W20 02) @ (00). (16)

Remark 4. Proposition[I| above shows that, if the conditions in Lemmas [I} 2] and B] are satisfied,
i.e., we have well-behaved gradients (Lemmas |Z| and |Z|) and PL condition (Lemma E|), we achieve
linear convergence of expected loss function for solving (3) with FedAvg-SGD.

We outline the major steps in the proof of Proposition|[T}

Proof Sketch. Consider the t** communication round, and suppose the singular values of the param-
eters satlsfy (T3), then it is easy to show that ®(6"*) is Lipschitz smooth with some constant @ > 0.
Then using the Lipschitz smoothness of ®(07*), we get

Q 5

(I)(ér(tJrl)) S(I)(Q_Tt)—7]<grt,§rt+...+th+T 1> n ngt+ +grt+r 1||2’

Taking expectation on both sides and conditioning on " and the past, we get the following
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Ba@ V) < B[o@™) —nlg™,g" + .+ + Do |7+ 7]
r—1
_ E|:<I) (grt) 777<g'rt’,rgrt> 7,’7<g7‘t’zg7‘t+v 7g'rt> 77 H~7‘t .+§’rt+7‘71H;i|
v=1
r—1
< B[ (0") = wrllg™ I3 +nllg™ Il HZ‘”*”—‘”H + n g+ g ] A

Now we bound each term in using Lemmas [2]and [3] We first use the upper and lower bounds
in Lemmato bound the gradient norm. First, to bound the second term on the right hand side (rhs)
of we use the PL-inequality in (T4) of Lemma 3]

L1
T il nr
lg™ 2 2 7= Qs 1.2 [[£2067) =0, (18)
We bound gradient norm in the third term using the upper bound of gradient in (I3]) of Lemma 3]
L Q
rt 1—-L rt
0 =T 19
lg"ll2 < e, 120 —ll, =T (19)
le[L]

Additionally, we use (TI) in Lemma [2]to bound the gradient drift in the third term, we get

-1
—rt+v7—7’t < = e

le[L]

K
ST QXK (0 —ylla =T2  (20)

Next, using ([E]) in Lemma@] to bound fourth term on the rhs, the sum of stochastic gradient as

. N L|X|r A —1 Ay
rt rt+r—1 < P - rt o — T
|7+ a ] < e 1lm[1?]A||f )= ull2 =T
S

Fmally, plugging the bounds for each term in (7)), using tb@Ld@ﬁmth% of loss function ®(A™) =

23— L="F

|1 fL(6") — y||3 along with the choice of step-size 1 < W we get
Blo(0" V)] < (1- T2 V03, 08 ) Ele(0™)). @1)
Using the above inequality recursively, we get the statement of Proposition [I] O

Now Step 3 is complete and we move on to define the initialization strategy of Step 4. It is important
to note that Proposition|T]utilized Lemmas|I]—[3] all of which impose some conditions on the singular
values of the model parameters and the outputs of the first layer at each client during the entire
training phase. Next, we define the initialization strategy that ensures that the conditions of Lemmas
—[3|are satisfied almost surely.

Next, we go to Step 4, and discuss the initialization strategy. Define )\, := oy (W) and

2 0

N =43 (1 +aglax(Wl ), forle{1,2}, . 22)
Tmax(W}), forl e {3,...,L}

We also define the largest and smallest singular values of the output of the first layer at initialization

for each client as o 5, = Omin (0’ (X kWﬁ k)) . Similarly, for the centralized setting when all the

clients share the same parameter and full data, we define o := omin (a (X Wlo))

Initialization Strategy: Given any ¢ < ®(#°), we initialize the model weights such that for some
constants M, Ms, M3_> 0, the following are satisfied

M, min A
e ™ @00)! _ [5A e (3. L), @3)
IXTeXior e =L e {12, |
M5 min \; 0y 2 2
leir] (13(9 )2 . . )\1—>L
= . < s ’ Mz = A “
AL € = i %o knel[lfré] o,k et = lrg[la A -
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To satisfy the required initialization, we follow the initialization strategy of Nguyen and Mondelli
(2020). First, randomly initialize [Wlo]ij ~ N(0,1/d?). Broadcast [W)];; to each client and
collect F7 ;, which is the output of the first layer of each client, as well as the norm of local data
| Xkl . With Fy g, ag and g, can be computed. For (23), since we have n; > N, o and o ;.
are strictly positive. Then it is easy to verify that given € > 0, (23) and the second relation in

will be satisfied if we choose large enough /\17%% This can be realized by choosing arbitrarily large

min
le[L]
Ai, L€ {3,---,L}. In order to satisfy the first relation in (24), we need to make \; and ), close

to each other. Intuitively, one way is to construct VVlO)lL:3 such that A\, = A\; = ¢ > 1, where ¢
can be chosen to be any large number such that and the second relation in (24) are satisfied.
We also need to upper bound ®(6°). This can be done by choosing small 3. Randomly initialize
W3 such that [W7] i ~ N(0,%). We can set  to be arbitrarily small, then ®(6°) is bounded by

2 ||ly[13 with high probability (see (10) in Nguyen and Mondelli (2020)). Note that the desired error
€ is another key constant in the initialization. When we expect the error to be small, (23] and the
second relation in will be more strict. But this is not an issue since we can choose a larger ¢
such that the initial conditions are satisfied. The detailed initialization strategy that ensures that the
conditions of Lemmas|[I] 2] and 3] are satisfied is given in the Appendix [B.2]

Next, let us state our main result, which indicates the linear convergence of local SGD to any e-
optimal solution (see Definition[T). The proof is attached in Appendix

Theorem 1. Using FedAvg-SGD to minimize (3) with Algorithm|[I] Suppose Assumptions|I| 2] and
are satisfied, then there exists an initialization strategy such that for any ¢ < ®(6°), there exists

)2(L_1)AQ 2

step-size n > 0 such that we have (where pi' := 5y*E=2) (1 3.,08, andnu' < 1)

E[®(0" D) < (1= pu'n)" ®(6°), t € {0,..., T —1}.

Theorem E] shows that, for any ¢ > 0, we can always find an initialization, such that FedAvg-
SG achieves an € accuracy within O (log(%)) rounds of communication. Notice that there is no
heterogeneity assumption on the data (see Remark [2)), and no assumption on the Lipschitz gradient
of the loss function.

Remark 5. We comment on the key novelties of this work compared to|Nguyen and Mondelli|(2020).
(1) Our work requires a careful analysis to deal with multiple local updates at each client. Note
that in contrast to Nguyen and Mondelli| (2020), for our algorithm there is no guarantee that the
overall objective will always decrease during local updates. In fact, our analysis demonstrates
that the overall objective can increase after each local iteration, we show that this increase will be
compensated by the descent in the objective value between each communication round.

(2) Our algorithm and analysis can deal with the stochastic gradients for conducting local updates,
while INguyen and Mondelli| (2020) only considered gradient descent in a centralized setting. A
key step in our analysis is to characterize the relationship between the stochastic and full gradient
updates, which is illustrated in Lemma E]

Remark 6. We comment on the choice of parameters and the convergence rate. As will be shown
in Appendix by utilizing our initialization strategy, we can choose 1 = ¢/’ for some constant
¢ € (0,1) (independent of €). This implies that 'n = ¢ < 1, which further implies that we have
(1—p'n)<lin Theorem ensuring linear convergence of FedAvg-SGD.

Finally, we present the convergence guarantees for the case when FedAvg-GD is utilized.

Corollary 1. Using FedAvg-GD to minimize (3) with Algorithm[I} Suppose Assumptions [2] and 3]
are satisfied, then there exists an initialization strategy and step-size n > 0, such that we have

(") < (1 — p'n) ®(6°), Ve € {0,...,T —1}. (25)
Remark 7. Corollary[l|implies that FedAvg-GD achieves linear convergence when optimizing (3).
We note that the result of Corollary[l|is much stronger compared to Theorem|[I|as the initialization
for FedAvg-GD is independent of € compared to the one for FedAvg-SGD (shown in Appendix|B.2)).
5 NUMERICAL EXPERIMENTS

In this section, we analyze the effect of increasing the network sizes on popular image classification
tasks with MNIST, Fashion MNIST and CIFAR-10 data sets. We compare the performance of
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FedAvg in both homogeneous (i.i.d.) and heterogeneous (non-i.i.d.) data settings. Through our
experiments we establish that larger sized networks uniformly outperform smaller networks under
different settings. Next, we discuss the data and the model setting for our experiments.

Cifar10 Training Loss with CNN Cifar10 Test Accuracy with CNN Boxplot for Noniid Cifar10 with CNN
0.7 _ e 0.7
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Figure 1: CIFAR-10 with CNN: FedAvg-SGD on large and small size CNN.

Cifar10 Training Loss with ResNet Cifar10 Test Accuracy with ResNet Boxplot for Noniid Cifar with ResNet
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Figure 2: CIFAR-10 with ResNet: Comparison of FedAvg-SGD on ResNet18 and ResNet50.
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Figure 3: Test accuracy for MNIST (left) and Fashion MNIST (right) datasets. We compare the per-
formance with (standard) random initialization and the proposed initialization strategy for both iid
and noniid settings. Legends ‘iid_ini’ and ‘noniid_ini’ represent the proposed initialization strategy.
Data set: For MNIST, Fashion MNIST and CIFAR-10 data sets, we split the data set among K =
100 clients. For the homogeneous (i.i.d.) setting, we randomly distribute the complete data set with
60, 000 samples to each client. To model the heterogeneous (non i.i.d.) setting, we split the clients
into two sets. One set of clients receive randomly drawn samples while the second set of clients
receive data from only two out of ten labels[McMahan et al.|(2017). For our experiments on MNIST
and Fashion MNIST data, 70% of the users receive non-i.i.d samples, while for CIFAR-10 data, the
fraction is 20%.

Results and Discussion For each setting, we compare the training loss and testing accuracy of Fe-
dAvg on smaller and larger sized networks. To analyze the effect of network sizes on the stability
of FedAvg, we also plot the performance of FedAvg averaged over 10 iterations for non-i.i.d. client
data setting for all the network architectures. From our experiments, we make a few observations.
First, we observe from Figures [T] and [2] that in all the cases, the i.i.d setting has more stable perfor-
mance (lower variance) than non-i.i.d setting. Second, we note that the larger network uniformly
outperforms the smaller network under all the settings. Third, we note from the box plots in Figures
[ and [2] that the performance of the larger networks have lower variance, hence more stable per-
formance compared with what can be achieved by the smaller networks. Finally, we compare the
random initialization with special initialization strategy which satisfies (23)), (Z4). We can conclude
from Figure [3that these two initialization are similar in test performance.
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APPENDIX

A RELATED WORK

Overparameterized Neural Networks. The surprising performance of overparameterized neural
networks has raised significant research interest in the ML community to analyze the phenomenon of
overparameterization Belkin et al.|(2019). Consequently, a number of works have analyzed the per-
formance of centralized (stochastic) gradient descent (S)GD on overparameterized neural network
architectures under different settings Jacot et al.| (2018)); [Li and Liang| (2018)); |Arora et al.| (2019);
Du et al.| (2018} [2019); |Allen-Zhu et al.| (2019); Zou and Gul(2019); Nguyen and Mondelli| (2020);
Nguyen| (2021). The authors in Jacot et al.| (2018), showed that an infinite width neural network
when trained using gradient descent (GD) behaves like a kernel method with the kernel defined as
neural tangent kernel (NTK). Using this NTK parameterization |[Li and Liang (2018) showed that
deep neural networks trained using GD require (N*) width to find the global optimal. This re-
sult was later improved to Q(N 3) in [Huang and Yau| (2020). The authors in |Du et al.| (2018) and
Du et al.| (2019) also analyze the performance of GD on overparameterized neural networks under
different settings. Under standard parameterization, the work |Allen-Zhu et al.| (2019) studied the
convergence of SGD and showed that network width of 2(N?*) suffices to guarantee linear conver-
gence. Recently, [Nguyen and Mondelli| (2020) and Nguyen| (2021) have improved the dependence
on the width and have shown that GD requires only §2(/N') width to achieve linear convergence. All
the works mentioned above focus on the centralized setting, and therefore, do not deal with data
heterogeneity problem.

B PROOF OF MAIN RESULT

B.1 PROOF OF LEMMAS

We define some additional notations before we state some lemmas which are needed in the

proof. Let ® denote the Kronecker product, and denote ¥; := diag[vec (¢/ (F;_1W}))] €
RNmxNm gy = diag [vec (0! (Fi—1xWix))] € RNemxNemi gnd 3, =
diag {vec (0’ (Fl_17kV[/l7k))} € Rmmxmni - Define fgtz” = fL7k(92t+”),F£f2'” =

Fuu0): £ = f(8), Ff o= FL(B70), fo(07+7) := vee(F}*").
Lemma 4. |Nguyen and Mondelli| (2020) Suppose Assumptions |2| and Assumption |3| are satisfied.
Then for 1 € [L] the following holds:

L
1
Logie =+ (I @ FEy k) TT So-1r Wik ® Iny) (Frk — wa),
k p=Il+1
(26)
af L—1-1
L.,k T
L 7 S 4% IN) S (I, @ F_1k), 27
aveC(VVl,k) p[[o ( Lip?k@ Nk) o 1( e &5 Lk) @D
L
1
3. ||92,k||2 Z mamin (Fl,k) H Omin (prl,k) Omin (Wp,k?) ||fL,kr - kaQ 5 (28)
p=3
l
4N Fllp < 1Xklle [ omax(Wa), (29)
p=1
1 L
5. |V, x|, < Il T omax (W) 1 £k = vl (30)
o
T Gune (W)
Omax Wl k L
LI Xkllr =1 ’
6. < max M- - . 31
lgellz < = minUmaX(Wl,k)HU ax (Zi=1,6) 1 fr0e — yill2 (3D

le[L] =2

12
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Furthermore, given with 0} and 02, if Ay > max (O'max (Wﬂk) , Omax (Wlbk)) for some scalars

_ L _
Ay Let R = T] max (1,A). Then, forl € [L)],

p=1
L _
ITA
7. ||F£k - Fg,k”p < \/ZHXkHF ;;A ||92 - 92”2 )
le[L] !
(32)
afL(0y)  0fu(6r) a_ b
8 ‘ 3veC(Wla) 0 vec (Wlb) 9 = ﬁHXkHFR (1 +Lﬁ”XkHFR) Hek eng * Gy

The above Lemma follows Lemma 4.1 [Nguyen and Mondelli (2020): (26) gives the expression of
the vectorized gradient; provides the vectorized Jacobian matrix of the output of the network;
gives a lower bound on the norm of the gradient, which holds under Assumption
provides an upper bound on the norm of output of each layer while (30) gives an upper bound on the
norm of gradient of each layer; (32)) derives the Lipschitz constant of the networks and (33)) provides
the Lipschitz constant for the Jacobian of each layer. Similar results can be derived in centralized
optimization problem, so we do not include the results here.

Lemma 5. (Nguyen and Mondelli, 2020, Lemma 4.3) Let f : R — R be a C? function. Let
x,y € R™ be given, and assume that |V f(z) = Vf(z)|2 < C||z — x||2 for every z = x + t(y — x)
witht € [0, 1]. Then,

C
F) < f@) +(VI(@)y — o) + S llz -yl
Lemma 6. For constant C, u, p, if n — 0, we have
1
lim /14 8pC7 ™= 7=ien = e (34)
n—

10g(<1>(90)/e)
IOg( 1_icn )

Furthermore, given € < @(90), letT = { + 1J, then there exists constant &, such that

T 0
sup (\/ 14 3pC77) < £(6 ), (35

0<n<min(k,-15) €
3,
where £ > e2r is a constant dependent on p and pi.

Proof. Take logarithm on both sides, we get

e — log(v/T+ 3pCh) 1 log(1+ 3pCn)
log ( /14 3pC mww) ———=v_ Ty = T (36)
g ( i log(1 — puCh) 2 log(1 —puCn)

Now let  — 0, by L’Hopital’s rule, take derivative over 1, we have

1 log(1 + 3pCn) 1 3pC 1—pCn _ 3p

nab 2 log(1 — uCn) T 502 uC 1+4+3pCn  2u

(37

1
Next, if we can show the function of 5, which is /I + 3pCn'® —ow , has a limit when n —

min(p%, H%) then by the continuity, it has an upper bound in (O, min(p%, u%)> denote it as £. It
is easy to derive that

log

1
1 1 Toe — L1
lim V1+3pCns i = lim ),/1+3pnl°gﬁ { 2 L p> o,

< g 1, p < p.

n—)lnin(p—c,#%) n—min(
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1

Then by the continuity of the function, (\/1 + 3,0077) °s 7o is bounded by some constant &.
Then we can derive

log(‘b(eo)/e)

T —_——T (6O
sup V14 3pCh Z}’ig%) 1+3py 5T = e - (&) (33)

n€(0,min( 55, 7o)

. 3p
then we have there exists some constant £ > e?2~, such that

0
sup V14 3pC?7T < S Eé) ) . (39)

n€(0,min(5e. 7o)

O

Lemma 7. Let Assumption and Assumption 3| hold. For 0y, suppose there exists constant A;, A,,
Ap such that and

Umax(Wl,k) < ]\l; le [LL ke [KL
Umin(Wl,k:) > Al, l e {3, . ,L}7 ke [I(]7 (40)
Umin(F17k) Z AF; ke [K]
then we have
LN Ai=r A

min A;

0p) < ———H 41
plbe) < myl=2As Ap @b

Proof. By definition, we have

oy = Lol Tl )
lgrllz = llg2.xll2
Since by (1) and (28) in Lemma[d] we have
. L||XkHF Air .
lgellz < —— mm_)A 1£2.£(0) = Fll2, (43)
le[L]
1 ;-
lg2,kll2 > FkVL As AR fri(8) =yl (44)
where X, is the sampled data at 6. So we can derive
e St e (0) =l LN|X ks
le[L le[L
p(0k) < - < =, (45)

V2 ARl frk(0) —yilla T maTPAs AR
where the last inequality is because | Xy ||r < || X |7 and || fz & (8) — Gkl < || f0.6(0) — yrll2. O

Lemma 8. For the FedAvg-SGD algorithm, given step sizen > 0, v € {0,1,...,7 — 1} and
q €{0,1,...,v — 1}. Suppose the following conditions hold:

1~Al > SUp Omax (VV;:]ZJHI) )

kE[K]

(46)

2.p> sup p (9;”") , 47
ke[K]

3.0, (07F9) < AT ®(0™), k € [K], (48)
then we have

v v z+1
= it =rt4 pLIX|lr A2 =1 Ay
D e e e Ay s win 17 =yl @)
elL
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Further, there exists constant Qy, such that Vk € [K| we have
rtt+q+1 rt+q
- g

thqtl et
‘gk QSka‘H’k B/

)

2
(50)

and

an A1—>L AU-H 1

N lrn[lnAz VA-1
e[L

K
2 rt
DR IXklwI 2 = yllo.

k=1

o7 =5 < 3 Lo~ g, <

(G

Proof. First, let us show (@9).

_ . K
I35, & 3l € S R DL TR
0 k=1

q=0 q=0 k=1
() pL < = A1—>L rt+q
< T2 2 Xkl = I — yle (53)
q=0k=1 lE[L]
pLA X
1—L r
=N ZHXk”FZ”f T — il (54)
le[L] k=1
PL Al L T
<5 mJA Z\\XkHFZA I£7507 = w2 (55)
lefr] k=1
=N mmA . Z Xkl FL5 T = w2 (56)
le[L] ! k=1
K
i ZnXkHF an”*q_ka% (57)
le[L] !
pL|X|[F A Lot
= — 12" = yll2, (58)
N A —
min Ay VA-1
So we can derive (@9). Next, we show (30). Let us denote J f”ﬂ’ =
afptia afpe . . .
Bvec(Win)? " " Dvec(Wip) |- By triangle inequality, we have
‘g£t+q+1 grf+qH _ ijrt+q+1 ( 2t2—q+1 ) Jfrf+q( Tt+q _y’f)H
S’ ritatl rt+q HJfrt+q+1H 4 HJfrt+q+1 Jfrt+q ‘ rita _ka
’ 2

Now we find the bound for each term in (39). Since max (O’max (W[?qﬂ) , Omax (W[,tjq)) <
Ay, by (32) in Lemmal[d] we get

A
ritqrl  rtt 1oL || grtda+1 e+
[Feaaeyiies] IERA BAS m[mTAl ot gy (60)
le[L
Further, by (27) we have
1 rf+q+1 Ap
Tt <L|X — 61
H f Z 8vec Wk I k”F lm[iB}Al 61
€
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Using (33) in Lemmafd] we have

L
||J rt+q+1

Tt+q||2 Z

=1

anrt+q+1 6Jf7"t+q

Ovec (W 1)

Hp ; max (1 Al) So plug the above bounds into (39). Set Lipschitz constant
L\f
Qr =

VL xe AHL

8vec(Wl,k)
L3 || X B (1 + LB || Xl R)

1 rt+q
——
k k
where R’ =

;o (62)
2

L\f
—— Xkl p (L + LB Xkl
le[L] l

RYR | fLe—velly,  63)
then we derive
‘ gritatt _ grita . < Qulloyatt — gritay,, (64)
Now (30) is proved. Last, we prove (31). We have
v—l K N
7+ — 57| g+t — greva)| < 7‘ rt+q+1 grtJrqH
°T qZO qﬂJ; N * 2
(i1) v—1 K N v—1 K N
£33 SR R I e T
q=0 k=1 q=0 k=1
(i4%) vol K A
TS Bl AL -l
q=0k=1 le[L]
() 77L 71~> i rt+q 2
< Wmmlz HXkHFZAz L2 = well
le[L) k=1 q=0

in A, \F—l ZQk ”Xk”FH Tt+q_yk’|2
le[L]

K

ZQ?HanF an”*q uell;
le[L]

=

ZQ2 Xkl 3 12 =yl

where (i) uses triangle inequality; (ii) uses the Lipschitz gradient assumption in condition 2; (iii)
comes from BI)) in LemmaEI; (iv) uses condition 3; (v) is from Cauchy-Schwartz inequality.

. O
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B.2 INITIALIZATION STRATEGY

Detailed Initialization for FedAvg-SGD: Denote

o LIXlr (7)“1(?1%

N 4
L-1 ¥
)\2
C:= PL|X|r 3 =L (65)
2 min A7
le[L]
LN||IX[|p7" ! Stk
pi= A : (66)
L-2)
myFT Ay, min <O‘07 12[12] Qo k)
r_2(0-2) (1)2(E=1) 42 2
2l A3 LG
o= N2 (22v 3—L 0. (67)

Suppose given any small € such that ¢ < ®(6°), the initialized weights satisfies the following con-
ditions:

3

2N: §%(0Y) 25(09) < %)\ le {3, L}, ©8)

LIX||p(3)t-t A=k € -l Lred{l,2)
e
IN32 £D(0°) =~ 1

_ . <
L(3)E—1 2=t € 20(60°) < o O‘karg[lg] Qo (69)

min A\;

le[L]

3
where £ > e2+ is some constant dependent on p and .

Now we provide a detailed way to realize the above initialization condition. To satisfy the required
initialization, we follow the initialization strategy of Nguyen and Mondelli| (2020). First, randomly
initialize [Wlo]ij ~ N(0,1/d2,). Broadcast [W?];; to each client and collect F} x, which is the
output of the first layer of each client, as well as the norm of local data || X ||z and norm of local
label ||y ||2. With Fy x, o and o . can be computed. For (23), since we have ny > N, o and
Q1 are strictly positive with probablllty 1. Then it is easy to verify that given e > 0, (23) and

the second relation in (24) will be satisfied if we choose large enough M=L This can be realized

min A;
le[L]

by choosing arbitrarily large \;, [ € {3,---, L}. However, notice that by Lemma@ the constant

&, which is defined in (13;9[) is only dependent on p and p and £ > e2u So if we can fix p and
4w as some constants, £ is a bounded constant. Notice in (66) and (67), for I € {3,---, L}, if we
3p

can make )\; and ), close to each other, then p and y are also close, so o is not large. This is

equivalent to the first relation in (24) in main text. In order to satisfy the above conditions, one way
. L . 5

1s to construct (WZO _, insuch way that A, = A, = ¢ > 1, where ( can be chosen to be any large
number such that and the second relation in (24) are satisfied. Specifically, we can utilize the
following construction: Initialize W such that its top block is a scaled identity matrix and rest of
entries are zero

Wo = [ C-OIm } cRMXMo |3 L. (70)

We also need to upper bound ®(6°). This can be done by choosing small 3. Randomly initialize
W such that [W7] i ~ N(0, k). We can set £ to be arbitrarily small, similar to (10) in Nguyen!
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and Mondelli| (2020),we can find a bound for ®(6°) with high probability:

V2N®(O°) = [[FL(6%) —yllr (71)
< llylla + [1£2 (6°) | -
L
< Nyllz + [T omax (W)X ||
=1
< 2[lyll2 (72)
Then the loss function at initialization can be bounded by constant /2N ®(6°) < 2||y||2.

Initialization for FedAvg-GD: The initialized weight matrices satisfy the following conditions:

L-1 _ -
2N((%) + 2F 1(7“—1)> IXle X, I, lef3,--,L}
2(L—1)2 oS lle {1,2} (73)
ry2=2) (3) 35090 A ’ ’
L-1 _
2N () - D)IXIE .
— AL S Qg
B (TN 2

The initialization strategy is similar to FedAvg-SGD, so we omit the discussion here.

B.3 PROOF OF THEOREM[I]

Theorem 1. Using FedAvg-SGD to minimize (3)) with Algorithm[I| Suppose Assumptions I} 2]and
are satisfied, then there exists an initialization strategy such that for any ¢ < ®(6°), there exists
step-size n > 0 such that we have

E[@@ )] < (1 - p'n)" @(6°), te{0,..., T ~1} (75)

where |/ = %’qu_m (%)Q(L_l) A?HLQ(QJ.

Proof. First, we provide a structure of our proof. We will show the following recursively at each
communication round: 1) The averaged weights are bounded at each communication round; 2)
The divergence of loss function (3) is bounded at each communication round; 3) The expected loss
function (3)) decreases linearly at each communication round. Further, we will show that in each local
epoch within a fixed communication round, we have: 1) The weights of each client are bounded; 2)
The divergence of loss function @, of each client is bounded.

log(@(ao)/e)

Now let us set T' = {
IOg(lf;ltCn)

to show that

+ 1J . If we can show holds for ¢t = 0, ..., T, then it is easy

E[@(0)] < (1 - uCn)" (8°) < e
We prove Theorem [I]by induction. Define

rtt+v . rt+q
pr = sup  p(6 )
ke[K]
qe{0,1,..., v}

-1
L[ X727 2t
le[L]

9
NAyE=2)g ,, min (ao, Jnin O‘O,k)

p =

(76)
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We show that V¢t < T, we have
SNuefo,... t} Le[L],
)= 1IN, ue{o,... 1}, 1e{3,...,L},
Omin (Flru) > %Qo, u e {0,...,t},
) > oo wed{0,...,t}, ke [K], . (77)
p'ft < P,
@ (07) < (1+3pC0)" @ (6°), u e {0,....t}
E[®(67)] < (1—pCn)® (6°), ue{0,....t}
w-here A is deﬁned in (22) and ), is the smallest eigen value of the weight matrix, C, y, p defined in
2land puC = p'.

The above recursive equation describes the weight matrix and loss function in each communication
round. To prove (77), we decompose the recursive equation into two steps, as follows
Stepl: For a fixed ¢ and v € [r — 1], given

Omax (Wi™) < 3N, we{0,...,t}, L € [L],
Omin (eru) 1)\l, ue{0,...,t}, L €[L],
Omin (FT™) 2 ao, u€e{0,...,t},

Pt < p;
d (9”‘)_ < (1+3pCn)® (6°), ue{0,...,t}
E[®(0m™)] < (1 —puCn) @ (6°), ueA{0,...,t} o

@y, (0,77) < (14 3pC'n)1®y, (65), ¢ € {0,...,v— 1}, k € [K],
Fmax (W;j,g*q) <IN, qe{0,...,v—1}, Le[L], ke [K],
Trmin Wlf;“) <1xn,qef0,...,v—1}, lel[L], ke [K],
Omin F{t,jq) > %go’k, qe{0,...,v—1}, k € [K],
prite=1 < p.
we aim to show
Tma (WIE") < TA, g € {0, 0}, L€ [T, k€ [K],
Omin W;j,i*q) > 1N, qe{0,...,v}, L€ [L], k € [K],

Owin (F{i77) = dag s a € {0, 0}, k€ [K] ! 7
prt < p,
D, (0,779) < (1+3pC') 10y, (051), ¢ € {0,1,...,0}, ke [K]
2L-1) A2
where C’ = maxy, (N%c (H (E=1) #—;:\lz)
Step 2: Given (78) and (79), we show
Omax (V_T/lru) < %5\17 uwe{0,...,t+1}, 1 €[L],
Omin (W) = 30, we{0,...,t+1}, L € [L],
Umln(Fl )/%OZ(),UG{O t+1},
Omin (F1.,1) >1 Q0 s UE {0,...,t+ 1}, k € [K], . (80)
pr(t+1) < P,
P (6m) < (1+3pCn) @ (6°), u e {0,...,t+1},
E[®(0™)] < (1 —puCn) @ (6°), ue{0,....t+1}.
Now we show Step 1 first.
(1) We first show
T (W) < TX, g €40, 0}, L€ (1), k€ [K], h
Fwin (WET) = 40, g € {0, 0}, LE (L], k€ [K].
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We have

rt+v 1Tt
| —w,

v—1
rt+q+1 ri+q
> < E , HWlk - VVlk
q=0

v—
Z~t+
9=

(82)
(m) an Al L -
b (o 2 e
le[L] q=0
(iv )an A = -
< o Xele (G EYP AL ST (g 3l 17 - (84)
le[L] Fg=0

where (i) is because the norm of concentated gradient is no smaller than norm of one-layer gradient;
(ii) results from Lemma (@ (ii) comes from (3I) in Lemma [} (iv) is because of the induction

v— ,,
< WZHQZH‘]HQ < nPZHg”*qHQ

assumptlon Let n < c’ , we have
an MoL N
rt+ov T 1—L P
[wie =it < 25 X (P 2 S s i w89
min \;
ze[L] q=0
) 77 7 5\1~>L
< —||IX 2v
20 (1) 2 Sl
ler)  9=0
( 2 77PL 7 MoL N
X QU _
el (1) T Z 72 = ull
L—-1 y
npL 7 A .
< 228D (] ) oLty 56)
k
le[L]
npL(2" —1) AN /\1—>L T
< N Xkllp | HfL yll2(1 4+ 3pCn) =
N, 4
le[L]
SR D) g (1) 2oy, VR0
- Ny, MiE g min A, ¢
le[L]
< {%Ah le{s,...,L},
- 6 le {1?2}
where (i) uses n < %; (ii) is because || 7%, — yrll2 < [[fI' — yll2; the last inequality holds if we

choose small enough 7. To be more specific, we can choose

1)\ , )
min <lIél[lIl] Al

< e L—1 (00
LGN X (57 i 173 — yl, - O
By Weyl’s inequality, we have
Omin (Wlfz-i_v_‘_l) > Omin (VV;:]];) - %Al iA l S {3 L}7 k S [K],
_ sz;i*““) <o (W;j,g) +IN <IN, 1ef3,..., L}, ke [K],
Omax (W% ) < &+ 14+ WThll2 < X, k € [K],
Omax (W5%) < 5+ 1+ [Wahlla < Thi, k€ [K].
(2) We next show that
1
Omin (Ffﬁjq) 2 EQOJW qc {Oa tee ,’U}', ke [K]
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It is sufficient to show opip (Fft,:r”) > iQO,k’ k € [K].

-, - | G (o),
(1)
< UmaX(Xk)”W{,thv - Wthk”F oD
(i1) np(2r —1) N A €0 (60°)
< oma (X)) P2~ x ! : 2
o022 i (1) T
€

where (i) results from the Lipschitz gradient of ¢ in Assumption@ and (ii) comes from (86).
If we choose small enough 7, which satisfies

1
120 1Nk
n< » N1 Xi 1 g1 r0 90) ©3)
Tmax(X)p(2" = 1) [ Xellp (5) 22112 — w2 - €
le[L]
then we have
1
HFTtJr’U _ B S 1@0’]@ (94)
(3) Next, we show that
P < p. (95)
Since we have already shown in (8T) that omax(ﬂ/lf,?”) < %5\1, O'min(Wlf?_U) > if\l and we have
shown in (B9) that o, (F]'TY) > igo - BY lemma we have
(DE 1LNllXH T
r le[L]
PO < s <p 96)
= A
(D) myth =2 As krg[lg] Qo i
(4) Next, we prove
Oy, (0;179) < (14 3pC"n) 1%y (6031), ¢ €10,...,v}, ke [K] (97)
We show
Py, (0;17) < (14 3pC'n) @y, (6;7) - (98)

First, we need to show @, has Lipschitz gradient within [§7¢T~1 §7¢+"], This is similar to the proof
of (30) in Lemma So we don’t include the details here. It is easy to show that, for 8} " ~"* .=

0 45 (07 — 07T, there is max (Umax (VVZT}?’” b S) , Omax (I/Vf,tj” 1)) < IX\. So
similarly we can derive the Lipschitz constant

LVI [ 7\2FY s N, LVL 0
=1L (4) Xl ks + Tk||xk||F<1+Lm|Xk||FR'> R\ fLr = welly
lE[L]
99)
such that Vs € [0, 1],
‘g;t-{-@ 1,s _gI:t+U_1H2 < lelezt-‘rv—l,s _ 6;t+v—1”2_ (100)

With Lipschitz gradient within [0, T* =", 67/7"], by Lemma we have

B (0577) < i (0 1) (W (051) 054 — 00+ D gt g

(101)
= B () + (g ) G g (102
<@ ()l N+ Q’f o ) (105
< ) ol G o (104
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Letn < g We have the above inequality
' v T v— v— Q T v— 2
@, (05) < @ (67770) + o [lgr ™ 1”2 Qk Va7 [ (105)
S (bk; (ezt‘l’v*l) + p,r] H ktJr’U 1||2 (106)
3omL (7 AL=1) 32 _
<® ertJrv o ML (b 97‘75+v 1 107
— k(k )+ Nk 4 mln)\2 (k )7 ( )
le[L]
where the third inequality comes from (31) in Lemma Recall ¢’ := m,?X(N% ( %)Q(L Y :\ET"/{),
tefr)
we have
@y, (07770 < @k (O (14 3pC'n). (108)
Now Step 1 is proved. Next we show Step 2.
(1) Show
Omax (IZVITU) g %_S\h u e {07 17 St 1}7 le [L] (109)
Omin (W) 24N we{0,1,...t+1} 1€{3,....L}
Deﬁne VWL kPr(0;") be the stochastic gradient over layer [ of each client. Denote ghrtt =
Z kath@k(GIZt+U> We have
k=1
t
wr(t+1 =l.ru =l.ru =l.rt+r—
[ || = a3 g g g (110)
; r—1
<0y ) (G 111
u=0v=0
t r—1
<Y Y 17l (112)
u=0v=0
By Step 1, we know forv € {0,1,...,r—1}, we have p"*T% < p. So by definition of p"*, we have

I gm‘*‘”j < p|| gT“+”||2 Then 1t is easy to verify that the assumptions in Lemma are satisfied,

where A; = 7)\1, Q. is defined in (63) and A = 14 3pC’n). Then by Lemma Lifn < C, , we have

~5- PLIX] A
ru+uv a r 1—=1 .
DD aaall <n2 (D) ety oy, an)

u=0v=0 l€[L]

Using the definition of P = ZIXIlr (%)Lfl (2" — 1), we have

N pLHXHF D VI
7Y > 13l <172 . (2 “Dom i toylla (114

u=0v=0 le[L]
5\1—>L : +
pi2L rt_ 115

i 2 7 = vle (115)
le[L] 0
A : u

<npP= N (14 3pC0) 5 | £ — w2, (116)
=

(117)
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where the last inequality comes from the induction assumption. Now let S = /1 + 3pCh, if we

1
choose n < »c» e get

t r—1 t

ru+v L u
> > IF e < P HA >+ 3pCm)E |15~ yla

u=0v=0 le[L)] u=0

)\
=npP =L ZSquL Yll2

Ie[L] u=0

;\1—>L ST+1
< npP =
=1p min )\; S%2 — 1
le[L]
/\1—>L S

min \; 3pC
le[L]

(S+ DI —vll2

=npP ”fL yll2

0
By LemmaH we have ST < %. Additionally, .S < 2, therefore, we have

LA Ap 2873
= 1—L
Y D NG e < npP== 31172 — il

== min A 3pCn

P 5\1—>L 25‘1) (90)
< - _
< Gy 12 = vlla

le[L]
2 £ (6°) |

= e 1z = yll2

LIXIr (3)7 Sk ‘

le[L]

< %Ahle{’?’a"'v[/}?
= 1, 1e{1,2}. ’

where the last inequality is from (68). So by Weyl’s ineuality, we have

Ouin (W;‘“*”) > omin (W7Y) — 10, = 1N, 1€{3,..., L}, k € [K],

Omas (W) < o (W77) + 400 < §0, LE {3, L}, k€ K],
e (W) <1+ omax (WI') < 3N, & € [K],
O (W37) < 14 omax(W55) < 340, e € [K].

(2) Show
onin (FT) > ;ao, wef0,....t+1} e[l
Similarly, we have
et = rt] = o (owa ) —o et

(%) _
2 ) 2 )

() 2 £ (09
< Omax(X) L1 XL £ )||f2_y”2
LIX|r(3)" ot
le(L]
2 £ (69

S”X”F N1 X, : E )Hfg_y”Q

L|| X r (5) min

le[L]

(1) 1
S 5&07
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where (i) is because o is 1—Lipschitz; (ii) comes from (I20), and (iii) is because (69) in[B.2} So
similarly by Weyl’s inequality, we have o, (F{ (tH)) > Omin ( Flo) =a— %Qo = %QO.

(3) Show

. 1
Omin (FT%) > 3%,k U E {0,...,t+1} 1elL]. (128)
Similarly, we have
e ], = o (xe57) = )]
(2) _
< Tmax(Xk) HW{““) - W?HF (130)
(i7) 2 £ (69
< Umax(Xk:) aNL—1 » . E )||f2—y||2 (13])
LIX|r (3)" 2%
le[L]
2 D (6°
< | Xklr T E )||f2—y||2 (132)
le[L]
(i) 1
< §QO,k, (133)

where (i) is because o is 1—Lipschitz; (ii) comes from (I20), and (iii) is because (69) in[B-2] So
similarly by Weyl’s inequality, we have o, (Fl"(kt‘*‘l)) > Omin Fﬂk =g — %Qo,k = %QO,k'
(3) Show

P <, (134)

Since we have already shown in (§T) that o pax (erl(fﬂ)) < 2N\, Oumin (W[,Sfﬂ > > 1)\, and we
have shown in (89) that Jmin(Ff(tH)) > %go. By Lemma we have

(%)L*lLN 5\1%%\

min \;
rt+1) < et <p. 135
g IC ) e P P m[lg] Qo g (13

(4) Show )
@ (0) < (1+3pCn)" @ (6°), we {0, t+ 1}, LE (L],

First, similar to the proof of (50), we can derive

2(L—-1
M.(3>( >,| e LL VL

2

Q=—5 +—HXHF<1+L5||X||FR>RHfL ylla,  (136)

le[L]

L _ _ _ _ _
where R = [ max (1, 2X,), such that VO™ = "t + s(6"(+1) — g7t) s € [0, 1], we have

p=1
‘ g,.(t+1),s _ gr(t-i-l)H2 < Q ‘ ér(t-i-l),s _prt . (137)
Then by Lemma 5 we have
P (ér-(t+1)) —® (ért gt — .. — ngrt—&-r—l)
— — =T T— 2
<) — (gt 7+ T+ %n lg+ .+ ass)

<@ (07) +nllg”ll, g7+ + 57 1||2+QnQHgf‘f+ g2
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By @9) in Lemma ifn < p%, we have A = 2, and we have

N min

L—-1
i} . pL|X||F (7 A A
5+, < X () oy Doty ey, pp ALy,
4 min A\
le[L] ez

(139)

Then we have

nr /) = r— Q =
(D) <@ (@) wnllg T T S 5
(140)
. . Ao Q A
©(07) +nllglly - PP IE = ylla + 50?0 P? HL zI7E ol
lE[L] lE[L]
(141)
art rt ) Q 2 2p2 1—>L 2
®(67) +nllg”(l, - P 17 = yll2 + 5 0P0"P S = wll3
min \; min
le(L] lE[L]
(142)
@ . mpPL|X|p (3\*7! X2 Q
<o)+ LR (3) Sty i+ Gttty i
le[L] le[L]
(143)
here (i " i L L LIXIe( ()
where (i) comes from @31)) in Lemma i Letn < =5 55— = 55—y, We get
o (07D < @ (§rt npPL|X|F (3 bt /\:f—>L Q , 2P2 1—>L 2
<o)+ P (D) ekl vl Gt
le[L) lefL]
(144)
oy 3 mpPL|X|lp (37 32
ey o 9. 4 1oL 2
o (0 )+2 N 5 mln/\2||f —yll3
le[L]
_ PL|X | (3\"" X2
P art 1 377p et M =L
( ) + N 2 mm)\
le[L]
3 L—1 )\
Recall C = PL||X||p (3)"  Si=4s, then we have
tefz) !
) (é’"““)) < (14 3pCn) ® (") . (145)
(5) Show
B[] < (1 — uCn) @ (0°), w e {0,1,...,t+1}
By (138), we have
_ _ _ 1112
(I)<or(t+1)) S(I)(ort) _77<grt,§rt+ _|_grt+r 1>_|_ 772 ”+§7"t+ 1” (146)
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Given 0", take expectation of the stochastic gradient on both sides conditioned on 6"* and the past,
we get

E[(b(ér(tJrl))] < E[‘b (ért) _ n<grt’grt 4. _|_g7“t+?” 1> 4 Qn2p2 2 1—>L H H }
le[L]
<E[@(07) =n{g".rg") —nlg" Zg”+”—’ + Qn2p2 ? HL 7 175" = il
le[L]
r—1
<E®O") —urlg™ 13 +nlg™ 2 x 1> g — g™ |2 + §n2p2P2 HL || —yl3]
v=1 le[L]
(147)

Now it is easy to verify the assumptions in Lemmaare satisfied. Let A; = 2, Q defined in (T36),
A =1+ 3pC'n < 2, by (1) in Lemmal[8}, we have

Z gty — gl < npL(2" —1) (7 bt 5\1%&
- N 4 min \;

K
ST QXK — w2 (148)

v=1 2 le[L] k=1
Plug (T48) into (T47), we get:
r—1
nr nr r T —rt+v -7 Q
E[@(67)] < E[q’ (@) = nrllg™ 15 +nllg™ 2 x 1> g7 =g 2 + 77202132 HL H F—yl3
v=1 le[L]
L—1 K
o . . npL(2" = V)| X||r (7 2
< E[‘? (@) —urllg™ 13 +nllg" |2 ¥ T 3 Q2 Xl
k=1
ML (o Q
x === Lt—y\\2+*n202p2 HL Hf -yl
min \; 2
le[L) lE[L
@ - ez, LT = DIXr 21, | &
sE[@ () — g1+ TEPE I e 15 02 il
k=1
A2 Q A2
DL il + 3Pyl
le[L le[L
(@) nrt 2(L—2 1 2(L 1) 2 2 -t 2
£ E[@(ev)— e (3) Basadlrr -l
=’
2 21 LS 2
Lp(2" = || X[[r (%) Z 1 Xk 32
2 k=1 Y 2p2 1L Tt 2
n < N2 + 2p mln)\lZ ||fL y||2 )
le[L]
=B

where (i) uses @ to provide an upperbound for ||g"*|, (ii) uses (28) to provide a lower bound for

lg"t||. Let n < L=, we have
E[@@" )] < E[® (6™) — |1 17" — I3 +w* Bl — yll3] (149)
<SE[@O) (1 -] (150)
_ 1)\ 2D
= E[® (ert)] (1 ”NVQ(L 2) (2> A§%La3> (151)
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o 2(L—2) (1)2(L=1)y2
Let p = 27 (2)0 2559 , we have
E[@(0"D)] < (1 — uCn)E[@ ()], (152)
where puC = 1. O

Now we summarize the choice of m, it should be smaller than all the following quantities:

1 1 11 min {minge(r) 3, § }
5 AN\ L(2r—1 L—1 P(60)
pC"" pmax(Qg)’ pC’ uC’ p (Nk )HXk”F (g) mu?;;LL - = y||2,5 (6 )
%Q(),ka

: 7\L-1 X £2009) ) (153)

O (X0) p(27 = 1) Xl (1) izt 2 =0,
Remark 8. 7o satisfy the initialization assumptions defined in (69) and (68), we initialize the neural
network coeﬁ?czents such that we have \1_,;, ~ O(1/€). Note from the definition of 11" in (152)) that
this implies ji' ~ O(\5_,;) = O\, ;) = O(1/e?). Also, note from the choice of step-size in
(T33) that, we have n ~ O(e x 1/\1_,1) = O(€?). Note that this follows from the fact that 0 is
smaller than each quantity defined in (153) above. Thus, we have p'n = O(1) and we can always
choose n = ¢/’ for some ¢ € (0, 1), which guarantees linear convergence of the objective in each
communication round (see Theorem([I).

C EXPERIMENT SETTING AND RESULT

C.1 MODEL AND PARAMETER SETTINGS:

To analyze the performance of FedAvg-SGD on the MNIST data set, we use a single hidden-layer
fully-connected neural network (MLP) with ReLU activation. We set the hidden-layer size to be
32 (resp. 1,000) for the small (resp. large) network. We choose the mini-batch size m = 10 and
choose the number of local steps to be r = 10. Using the above network, we also compare the
random initialization with the special initialization strategy in (23)),24) with MNIST and Fashion
MNIST dataset. For the CIFAR-10 data set, we analyze the performance of FedAvg-SGD on two
network architectures — convolutional neural network (CNN) and ResNet. We design the smaller
CNN using two 5 X 5 comnvolutional layers followed by 2 X 2 max pooling, each has 6 and 16
channels, connected by 2 fully-connected layers with 120 and 84 hidden neurons. For larger CNN,
we use three 3 X 3 convolutional layers each with 128 channels followed by 2 x 2 max pooling.
The ReLU activation function is used after each hidden layer for small/large CNN. For ResNet, we
compare the performance on ResNet18 with ResNet50 architectures. For both the CNN and ResNet,
we use a mini-batch size of m = 32 and number of local steps to be r = 5. We randomly sample 10
clients in each epoch and perform FedAvg-SGD for more efficient training.

C.2 EXPERIMENT RESULT FOR MNIST
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Figure 4: MNIST with MLP: Comparison of FedAvg on large and small size MLP.
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Figure 5: Log-scale loss.

28

20 40 60
Training Epochs

80 100

o4



	Introduction
	Problem Setup
	The FedAvg Algorithm
	Convergence Analysis
	Numerical Experiments
	Related Work
	Proof of Main Result
	Proof of Lemmas
	Initialization Strategy
	Proof of Theorem 1

	Experiment Setting and Result
	 Model and Parameter Settings:
	Experiment Result for MNIST


