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Abstract

In today’s digital world, it is increasingly com-
mon for information to be multimodal: images
or videos often accompany text. Sophisticated
multimodal architectures such as ViLBERT,
VisualBERT, and LXMERT have achieved
state-of-the-art performance in vision-and-
language tasks. However, existing vision
models cannot represent contextual informa-
tion and semantics like transformer-based lan-
guage models can. Fusing the semantic-rich
information coming from text becomes a chal-
lenge. In this work, we study the alternative of
first transforming images into text using image
captioning. We then use transformer-based
methods to combine the two modalities in a
simple but effective way. We perform an em-
pirical analysis on different multimodal tasks,
describing the benefits, limitations, and situa-
tions where this simple approach can replace
large and expensive handcrafted multimodal
models.

1 Introduction

In recent years, BERT (Devlin et al., 2019) and
Transformer-based methods have revolutionized
NLP and fine-tuning these pre-trained models be-
came the standard approach for most language
tasks. However, language in isolation is not enough
to perform certain tasks. For example, a social me-
dia post with the text Perfect beach weather! might
completely change meaning if accompanied by a
thunderstorm image. Also, tasks like visual ques-
tion answering (Antol et al., 2015) are inherently
multimodal.

Prior work has approached this challenge using
multimodal learning via attention (Li et al., 2019;
Lu et al.; Zhang et al., 2021) or alignment tech-
niques (Li et al., 2020). Despite their improve-
ments, these methods require sophisticated hand-
crafted architectures and introduce billions of ad-
ditional parameters to the model, making it hard
to disentangle the effects of increased complexity
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Figure 1: Multimodal learning traditionally requires
a fusion stage to combine visual and textual features.
This stage increases model complexity and often brings
marginal gains over strong language-based baselines.
Encapsulating the visual information via a caption
makes the fusion step straightforward and leverages
BERT’s semantic knowledge.
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from the benefits of combining modalities. (Chen
et al., 2021) studies the impact of these methods for
named entity recognition (NER) and concludes that
existing fusion techniques can only bring marginal,
if any, improvements to existing language-based
models. Their recommendation is to use image
captions (Anderson et al., 2018; Johnson et al.,
2016) to represent images, making the fusion step
straightforward as both representations are in the
textual domain, as shown in Figure 1.

In this work, we hypothesize that their findings
go beyond the NER task. We select a broader
range of tasks and experiment with coarse-grained
and fine-grained image caption techniques such
as BUTD (Anderson et al., 2018) and DenseCap
(Johnson et al., 2016). The generated captions carry
semantic information that is easier to combine with
textual features, as opposed to plain image features.

We perform our study on four multimodal
datasets of natural disasters, social media, visual
questions answering, and movie posters. We com-
pare the image captioning method to using BERT
without any image information (unimodal) and
to LXMERT, a strong multimodal baseline. The
method overcomes BERT(unimodal) and shows
competitive results with LXMERT. We also show
statistical analysis and model capacity relation with



image captions semantic knowledge, where these
two components are crucial for good performance.

In summary, our contributions include:

* A study of multiple ways to fuse image and
textual modalities, with a focus on incorpo-
rating image captions as a replacement for
traditional image features.

* An examination of the dependency between
image captioning semantic representation and
model capacity.

2 Related work

2.1 Multimodal learning

Researchers are working on multimodal tasks such
as image captioning (Krishna et al., 2017; Faghri
et al., 2018; Aneja et al., 2019), visual question an-
swering (Antol et al., 2015; Hudson and Manning,
2019; Goyal et al., 2017), and visual reasoning
(Zellers et al., 2019).

These tasks require an understanding of tex-
tual and visual representations. Kruk et al. (2019)
projects these modalities to the same space vector
and learns a classification model. In addition to
this intuitive approach, modern transformers mod-
els learn a joint representation of these modalities.
VisualBERT (Li et al., 2019) aligns elements of text
to its associated image regions using self-attention,
whereas VILBERT (Lu et al.) has separate Trans-
formers for vision and language that only attend to
each other, resulting in a much heavier and expen-
sive model. On the other hand, LXMERT (Tan and
Bansal, 2019) bridges vision and language seman-
tics via handcrafted pre-training tasks.

In contrast to previous self-attention approaches,
OSCAR (Li et al., 2020) uses object tags detected
in images as anchor points for semantic alignment.
VinVL (Zhang et al., 2021) extends this approach
adding importance to object-centric representation
using an attention mechanism.

As opposite to attention-based and alignment ap-
proaches, we encode images in a more similar rep-
resentation to textual data, using image captions.

2.2 Image captioning

Image captioning is an application that combines
visual and textual modalities by generating a textual
description from an image (Krishna et al., 2017;
Faghri et al., 2018; Aneja et al., 2019). BUTD
(Anderson et al., 2018) produces captions integrat-
ing attention with feature weighting. The bottom-
up attention mechanism proposes image regions,

each with a corresponding feature vector, and a
top-down mechanism determines feature weight-
ings to generate a caption. DenseCap (Johnson
et al., 2016) enhances BUTD predicting a set of de-
scriptions across image regions using a localization
network.

In this work, we use BUTD (Anderson et al.,
2018) and DenseCap (Johnson et al., 2016) for
image captioning. DenseCap generates a dense
set of image descriptions to facilitate learning with
their corresponding textual data.

2.3 Image encoding as captions

Chen et al. (2021) uses captions to represent images
as text in Multimodal Named Entity Recognition
(MNER), and argues that semantic-understanding
models such as image captioning may provide bet-
ter image representations.

In this work, we still represent images via cap-
tions, however, in addition to traditional image
captioning, we use a set of dense captions from
(Johnson et al., 2016), and extend it for multimodal
classification tasks on social media, visual question
answering, and movies domains.

3 Experimental setup

3.1 Image captioning encoders

We represent visual data via image captions with
the following approaches.

* BERT + capts. Captions are generated using
BUTD (Anderson et al., 2018) and concatenated
to input text before being fed into the same
BERT-based architectures. This baseline asses
how caption type and quality influence perfor-
mance. BUTD’s drawback is that it creates
coarse-grained semantic text, and may lose some
details. Thus, we capture fine-grained and di-
verse captions with BERT + dense_capts.

* BERT + den_capts. First, we compute diverse
captions (Johnson et al., 2016) from images us-
ing Visual Genome dataset (Krishna et al., 2017).
We select the ten most confident captions and
concatenate them with the instance correspon-
dent text. Finally, this textual data is feed to a
BERT model (Devlin et al., 2019).

3.2 Baselines

We compare our image captioning BERT models
with with two different baselines:



* BERT (unimodal) (Devlin et al., 2019). Image
components of our data are ignored, and we sim-
ply use the BERT-based architectures without
any alterations to the input text. This baseline
allows us to understand how much we gain by
using visual information.

* LXMERT (Tan and Bansal, 2019). It receives
an image representation and its related sentence;
It produces three outputs: language representa-
tions, image representations, and cross-modality
representations. We use the cross-modal repre-
sentations for the classification tasks. Its perfor-
mance is near to the state-of-the-art in various
vision-and-language tasks.

3.3 Evaluation tasks

We use four evaluation tasks which have frequently
been used for multimodal (image and text) domain:
CrisisMMD (Alam et al., 2018) with informative
(CI) and humanitarian (CH) classification tasks
(e.g. injured or death people, rescue effort, vehicle
damage) from seven major natural disasters around
the world with 12’708 instances; Hateful memes
(HM) (Kiela et al., 2020) with hateful and non hate-
ful annotations for 10’000 instances; visual ques-
tion answering (VQ) (Antol et al., 2015; Zhang
et al., 2016) composed of 33’383 (image, ques-
tion) pairs, and yes/no answers for binary classifi-
cation; and movie posters (MP) (Cascante-Bonilla
et al., 2019) composed of 5000 movies with image
posters and plots categorized in action, adventure,
romance, comedy, drama, fantasy, among others.

3.4 Evaluation protocol

For each dataset, we use the provided train, valida-
tion, and test splits. The only exception is for VQ,
where we split the validation set into two halves.
To increase reliability, we run five repetitions with
different seeds.

We evaluate all baselines using Huging Face
transformers framework (Wolf et al., 2020). We
use Adam optimizer, a learning rate of 5e-5, and 30
epochs. At the end of each epoch, the network was
evaluated on a validation set, and the network with
a higher F1_weighed score over a validation set
was selected for testing. We report F1 and accuracy
metrics in our experiments.

4 Experimental results

4.1 Comparison to baselines

Tables 1 and 2 show average accuracy and weighted
F-measure per dataset, respectively. In both tables,
we observe that BERT + den_capts and LXMERT
methods perform similarly and are the best meth-
ods among all baselines. Our BERT + den_capts
is better for CH and HM datasets, while LXMERT
has better performance for the remaining datasets.
Also, we add a multi-label dataset in Table 3, where
BERT + den_capts is the best performer. We be-
lieve this top performance is due to the complex
dataset, where poster images do not provide too
much information about movie categories, while a
textual description may provide semantic details.
We observe that LXYMERT is the worst approach,
while other competitors with some semantic knowl-
edge are accurate.

Accuracy CI CH vQ HM Avg
BERT (unimodal) | 0.859 0.814 0.513 0.580 || 0.691
BERT + capts. 0.879 0.836 0.513 0.642 || 0.717
BERT + den_capts | 0.887~ | 0.854 0.513V | 0.654™ || 0.727
LXMERT 0.892~ | 0.844V | 0.518 0.645~ || 0.725

Table 1: Comparative results for BERT using accuracy
on Crisis Informative (CI), Crisis Humanitarian (CH),
Visual Question Answering (VQ), and Hateful Memes
(HM) datasets.

F1-weighted CI CH vQ HM Avg
BERT (unimodal) | 0.856 | 0.814 | 0.348 | 0.555 | 0.643
BERT + capts. 0.877 | 0.835 | 0.348 | 0.621 | 0.670
BERT + den_capts | 0.885™ | 0.854 0.348V | 0.637™~ | 0.681
LXMERT 0.892™~ | 0.844V | 0.384~ | 0.636™ || 0.689

Table 2: Comparative results for BERT using Fl1-
weighted.

MP F1 macro | F1 weighted
BERT (unimodal) 0.338 0.511
BERT + capts. 0.348 0.527
BERT + den_capts. | 0.360 0.542
LXMERT 0.295V 0.513V

Table 3: Comparative results for BERT using F1 met-
rics for multi label movie posters dataset.

It is important to highlight that textual captions
boost initial performance as shown in Tables 1,
2, and 3; where BERT (unimodal) and BERT +
den_capts. improve performance over BERT -
capts. We believe the success of BERT + den_capts.
is due to encapsulation of visual information via



a caption semantic representation and its diverse
fine-grained captions. Captions capture semantics
in a more structured and meaningful representation
that images alone, and also it is easy to combine
with textual representation for multi modal tasks.

4.2 In-depth analysis

From our previous section, we observe that BERT
+ den_capts. and LXMERT show similar per-
formance and we dig on this result via a statis-
tical t-test on the last two rows on Tables 1, 2
and 3. We observe that there is no statistical
difference (pyqiue > 0.05) on CI and HM tasks
with symbol ~. And there is statistical difference
(Povaiue < 0.05) for the remaining three tasks. CH
and MP tasks are in favor of BERT + den_capts.
(A), while vqa is for LXYMERT (/\). Hence, we
can sum up that BERT + den_capts. outperforms
LXMERT.

4.3 Model capacity

Our previous results support that semantic repre-
sentation of images improves multimodal learning,
however, it is still unclear if model capacity is also
a key component.

We replicate our previous experiments with dis-
tillBERT on Tables 4, 5, and 6. We observe that
in average distillBERT + capts. is the best per-
former. From accuracy table, distillBERT + capts.
outperforms other baselines for two datasets, while
distillBERT + den_capts. outperforms for CH and
MP data sets.

It is interesting to note that distillBERT +
den_capts. outperforms for complex tasks such
as movie poster classification, where poster im-
ages alone can be intriguing and have an advertis-
ing intent, than providing context about the movie
category. In this case, captions facilitate suitable
semantic knowledge for machine learning models
(See Tables 3 and 6).

Accuracy CI CH VQ HM Avg
dBERT (unimodal) | 0.804 | 0.668 | 0.513 | 0.550 || 0.634
dBERT + capts. 0.827 | 0.725 | 0.513 | 0.540 || 0.651
dBERT + den_capts. | 0.802 | 0.769 | 0.513 | 0.510 || 0.648

Table 4: Comparative results for distill-BERT using Ac-
curacy on Crisis Informative (CI), Crisis Humanitarian
(CH), Visual Question Answering (VQ), and Hateful
Memes (HM) datasets.

Overall, we still observe improvement adding
captions over distillBERT (unimodal), however, dis-
tlIIBERT + den_capts. is not the best performer

F1-weighted CI CH vQ HM Avg
dBERT (unimodal) | 0.801 | 0.703 | 0.348 | 0.535 || 0.597
dBERT + capts. 0.825 | 0.754 | 0.348 | 0.518 || 0.611
dBERT + den_capts. | 0.775 | 0.780 | 0.348 | 0.345 || 0.562

Table 5: Comparative results for distill-BERT using F1-
weighted.

MP F1 macro | F1 weighted
dBERT (unimodal) 0.154 0.336
dBERT + capts. 0.152 0.340
dBERT + den_capts. 0.170 0.383

Table 6: Comparative results for distill-BERT using F1
metrics for multi label movie posters dataset.

for all datasets as in the BERT model. We believe
an explanation is that distillBERT does not have a
good capacity to manage a diverse set of captions
as opposed to BERT, which is a much deeper and
complex model.

5 Conclusion

In this work, we study the use of image captions
in multimodal systems as a replacement for tradi-
tional image features. We show that this simple
but effective approach can yield comparable, when
not superior, results to strong multimodal baselines
for most tasks. By leveraging the existing seman-
tic knowledge from text-based models, fusing the
original text to the image captions becomes trivial,
reducing model complexity at the fusion stage. We
also show the impact of model capacity and that
the results still hold even when models are smaller.
Our findings benefit practitioners, as incorporating
captions as image representations might be more
efficient than handcrafting complex multimodal
alternatives, and help determine future directions
for research in image captioning and multimodal
fusion.

An interesting future direction is incorporating
external knowledge for multimodal learning for
subjective tasks such as ads understanding (Hus-
sain et al., 2017; Ye and Kovashka, 2018) and per-
sonalization (Murrugarra-Llerena and Kovashka,
2019; Veit et al., 2018). These tasks are more com-
plex and may benefit from external knowledge to
disambiguate and better understand the context.
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