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Abstract

In today’s digital world, it is increasingly com-001
mon for information to be multimodal: images002
or videos often accompany text. Sophisticated003
multimodal architectures such as ViLBERT,004
VisualBERT, and LXMERT have achieved005
state-of-the-art performance in vision-and-006
language tasks. However, existing vision007
models cannot represent contextual informa-008
tion and semantics like transformer-based lan-009
guage models can. Fusing the semantic-rich010
information coming from text becomes a chal-011
lenge. In this work, we study the alternative of012
first transforming images into text using image013
captioning. We then use transformer-based014
methods to combine the two modalities in a015
simple but effective way. We perform an em-016
pirical analysis on different multimodal tasks,017
describing the benefits, limitations, and situa-018
tions where this simple approach can replace019
large and expensive handcrafted multimodal020
models.021

1 Introduction022

In recent years, BERT (Devlin et al., 2019) and023

Transformer-based methods have revolutionized024

NLP and fine-tuning these pre-trained models be-025

came the standard approach for most language026

tasks. However, language in isolation is not enough027

to perform certain tasks. For example, a social me-028

dia post with the text Perfect beach weather! might029

completely change meaning if accompanied by a030

thunderstorm image. Also, tasks like visual ques-031

tion answering (Antol et al., 2015) are inherently032

multimodal.033

Prior work has approached this challenge using034

multimodal learning via attention (Li et al., 2019;035

Lu et al.; Zhang et al., 2021) or alignment tech-036

niques (Li et al., 2020). Despite their improve-037

ments, these methods require sophisticated hand-038

crafted architectures and introduce billions of ad-039

ditional parameters to the model, making it hard040

to disentangle the effects of increased complexity041

Figure 1: Multimodal learning traditionally requires
a fusion stage to combine visual and textual features.
This stage increases model complexity and often brings
marginal gains over strong language-based baselines.
Encapsulating the visual information via a caption
makes the fusion step straightforward and leverages
BERT’s semantic knowledge.

from the benefits of combining modalities. (Chen 042

et al., 2021) studies the impact of these methods for 043

named entity recognition (NER) and concludes that 044

existing fusion techniques can only bring marginal, 045

if any, improvements to existing language-based 046

models. Their recommendation is to use image 047

captions (Anderson et al., 2018; Johnson et al., 048

2016) to represent images, making the fusion step 049

straightforward as both representations are in the 050

textual domain, as shown in Figure 1. 051

In this work, we hypothesize that their findings 052

go beyond the NER task. We select a broader 053

range of tasks and experiment with coarse-grained 054

and fine-grained image caption techniques such 055

as BUTD (Anderson et al., 2018) and DenseCap 056

(Johnson et al., 2016). The generated captions carry 057

semantic information that is easier to combine with 058

textual features, as opposed to plain image features. 059

We perform our study on four multimodal 060

datasets of natural disasters, social media, visual 061

questions answering, and movie posters. We com- 062

pare the image captioning method to using BERT 063

without any image information (unimodal) and 064

to LXMERT, a strong multimodal baseline. The 065

method overcomes BERT(unimodal) and shows 066

competitive results with LXMERT. We also show 067

statistical analysis and model capacity relation with 068
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image captions semantic knowledge, where these069

two components are crucial for good performance.070

In summary, our contributions include:071

• A study of multiple ways to fuse image and072

textual modalities, with a focus on incorpo-073

rating image captions as a replacement for074

traditional image features.075

• An examination of the dependency between076

image captioning semantic representation and077

model capacity.078

2 Related work079

2.1 Multimodal learning080

Researchers are working on multimodal tasks such081

as image captioning (Krishna et al., 2017; Faghri082

et al., 2018; Aneja et al., 2019), visual question an-083

swering (Antol et al., 2015; Hudson and Manning,084

2019; Goyal et al., 2017), and visual reasoning085

(Zellers et al., 2019).086

These tasks require an understanding of tex-087

tual and visual representations. Kruk et al. (2019)088

projects these modalities to the same space vector089

and learns a classification model. In addition to090

this intuitive approach, modern transformers mod-091

els learn a joint representation of these modalities.092

VisualBERT (Li et al., 2019) aligns elements of text093

to its associated image regions using self-attention,094

whereas ViLBERT (Lu et al.) has separate Trans-095

formers for vision and language that only attend to096

each other, resulting in a much heavier and expen-097

sive model. On the other hand, LXMERT (Tan and098

Bansal, 2019) bridges vision and language seman-099

tics via handcrafted pre-training tasks.100

In contrast to previous self-attention approaches,101

OSCAR (Li et al., 2020) uses object tags detected102

in images as anchor points for semantic alignment.103

VinVL (Zhang et al., 2021) extends this approach104

adding importance to object-centric representation105

using an attention mechanism.106

As opposite to attention-based and alignment ap-107

proaches, we encode images in a more similar rep-108

resentation to textual data, using image captions.109

2.2 Image captioning110

Image captioning is an application that combines111

visual and textual modalities by generating a textual112

description from an image (Krishna et al., 2017;113

Faghri et al., 2018; Aneja et al., 2019). BUTD114

(Anderson et al., 2018) produces captions integrat-115

ing attention with feature weighting. The bottom-116

up attention mechanism proposes image regions,117

each with a corresponding feature vector, and a 118

top-down mechanism determines feature weight- 119

ings to generate a caption. DenseCap (Johnson 120

et al., 2016) enhances BUTD predicting a set of de- 121

scriptions across image regions using a localization 122

network. 123

In this work, we use BUTD (Anderson et al., 124

2018) and DenseCap (Johnson et al., 2016) for 125

image captioning. DenseCap generates a dense 126

set of image descriptions to facilitate learning with 127

their corresponding textual data. 128

2.3 Image encoding as captions 129

Chen et al. (2021) uses captions to represent images 130

as text in Multimodal Named Entity Recognition 131

(MNER), and argues that semantic-understanding 132

models such as image captioning may provide bet- 133

ter image representations. 134

In this work, we still represent images via cap- 135

tions, however, in addition to traditional image 136

captioning, we use a set of dense captions from 137

(Johnson et al., 2016), and extend it for multimodal 138

classification tasks on social media, visual question 139

answering, and movies domains. 140

3 Experimental setup 141

3.1 Image captioning encoders 142

We represent visual data via image captions with 143

the following approaches. 144

• BERT + capts. Captions are generated using 145

BUTD (Anderson et al., 2018) and concatenated 146

to input text before being fed into the same 147

BERT-based architectures. This baseline asses 148

how caption type and quality influence perfor- 149

mance. BUTD’s drawback is that it creates 150

coarse-grained semantic text, and may lose some 151

details. Thus, we capture fine-grained and di- 152

verse captions with BERT + dense_capts. 153

• BERT + den_capts. First, we compute diverse 154

captions (Johnson et al., 2016) from images us- 155

ing Visual Genome dataset (Krishna et al., 2017). 156

We select the ten most confident captions and 157

concatenate them with the instance correspon- 158

dent text. Finally, this textual data is feed to a 159

BERT model (Devlin et al., 2019). 160

3.2 Baselines 161

We compare our image captioning BERT models 162

with with two different baselines: 163
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• BERT (unimodal) (Devlin et al., 2019). Image164

components of our data are ignored, and we sim-165

ply use the BERT-based architectures without166

any alterations to the input text. This baseline167

allows us to understand how much we gain by168

using visual information.169

• LXMERT (Tan and Bansal, 2019). It receives170

an image representation and its related sentence;171

It produces three outputs: language representa-172

tions, image representations, and cross-modality173

representations. We use the cross-modal repre-174

sentations for the classification tasks. Its perfor-175

mance is near to the state-of-the-art in various176

vision-and-language tasks.177

3.3 Evaluation tasks178

We use four evaluation tasks which have frequently179

been used for multimodal (image and text) domain:180

CrisisMMD (Alam et al., 2018) with informative181

(CI) and humanitarian (CH) classification tasks182

(e.g. injured or death people, rescue effort, vehicle183

damage) from seven major natural disasters around184

the world with 12’708 instances; Hateful memes185

(HM) (Kiela et al., 2020) with hateful and non hate-186

ful annotations for 10’000 instances; visual ques-187

tion answering (VQ) (Antol et al., 2015; Zhang188

et al., 2016) composed of 33’383 (image, ques-189

tion) pairs, and yes/no answers for binary classifi-190

cation; and movie posters (MP) (Cascante-Bonilla191

et al., 2019) composed of 5000 movies with image192

posters and plots categorized in action, adventure,193

romance, comedy, drama, fantasy, among others.194

3.4 Evaluation protocol195

For each dataset, we use the provided train, valida-196

tion, and test splits. The only exception is for VQ,197

where we split the validation set into two halves.198

To increase reliability, we run five repetitions with199

different seeds.200

We evaluate all baselines using Huging Face201

transformers framework (Wolf et al., 2020). We202

use Adam optimizer, a learning rate of 5e-5, and 30203

epochs. At the end of each epoch, the network was204

evaluated on a validation set, and the network with205

a higher F1_weighed score over a validation set206

was selected for testing. We report F1 and accuracy207

metrics in our experiments.208

4 Experimental results 209

4.1 Comparison to baselines 210

Tables 1 and 2 show average accuracy and weighted 211

F-measure per dataset, respectively. In both tables, 212

we observe that BERT + den_capts and LXMERT 213

methods perform similarly and are the best meth- 214

ods among all baselines. Our BERT + den_capts 215

is better for CH and HM datasets, while LXMERT 216

has better performance for the remaining datasets. 217

Also, we add a multi-label dataset in Table 3, where 218

BERT + den_capts is the best performer. We be- 219

lieve this top performance is due to the complex 220

dataset, where poster images do not provide too 221

much information about movie categories, while a 222

textual description may provide semantic details. 223

We observe that LXMERT is the worst approach, 224

while other competitors with some semantic knowl- 225

edge are accurate. 226

Accuracy CI CH VQ HM Avg
BERT (unimodal) 0.859 0.814 0.513 0.580 0.691

BERT + capts. 0.879 0.836 0.513 0.642 0.717
BERT + den_capts 0.887∼ 0.8544 0.5135 0.654∼ 0.727

LXMERT 0.892∼ 0.8445 0.5184 0.645∼ 0.725

Table 1: Comparative results for BERT using accuracy
on Crisis Informative (CI), Crisis Humanitarian (CH),
Visual Question Answering (VQ), and Hateful Memes
(HM) datasets.

F1-weighted CI CH VQ HM Avg
BERT (unimodal) 0.856 0.814 0.348 0.555 0.643

BERT + capts. 0.877 0.835 0.348 0.621 0.670
BERT + den_capts 0.885∼ 0.8544 0.3485 0.637∼ 0.681

LXMERT 0.892∼ 0.8445 0.3844 0.636∼ 0.689

Table 2: Comparative results for BERT using F1-
weighted.

MP F1 macro F1 weighted
BERT (unimodal) 0.338 0.511

BERT + capts. 0.348 0.527
BERT + den_capts. 0.3604 0.5424

LXMERT 0.2955 0.5135

Table 3: Comparative results for BERT using F1 met-
rics for multi label movie posters dataset.

It is important to highlight that textual captions 227

boost initial performance as shown in Tables 1, 228

2, and 3; where BERT (unimodal) and BERT + 229

den_capts. improve performance over BERT - 230

capts. We believe the success of BERT + den_capts. 231

is due to encapsulation of visual information via 232
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a caption semantic representation and its diverse233

fine-grained captions. Captions capture semantics234

in a more structured and meaningful representation235

that images alone, and also it is easy to combine236

with textual representation for multi modal tasks.237

4.2 In-depth analysis238

From our previous section, we observe that BERT239

+ den_capts. and LXMERT show similar per-240

formance and we dig on this result via a statis-241

tical t-test on the last two rows on Tables 1, 2242

and 3. We observe that there is no statistical243

difference (pvalue > 0.05) on CI and HM tasks244

with symbol ∼. And there is statistical difference245

(pvalue < 0.05) for the remaining three tasks. CH246

and MP tasks are in favor of BERT + den_capts.247

(4), while vqa is for LXMERT (4). Hence, we248

can sum up that BERT + den_capts. outperforms249

LXMERT.250

4.3 Model capacity251

Our previous results support that semantic repre-252

sentation of images improves multimodal learning,253

however, it is still unclear if model capacity is also254

a key component.255

We replicate our previous experiments with dis-256

tillBERT on Tables 4, 5, and 6. We observe that257

in average distillBERT + capts. is the best per-258

former. From accuracy table, distillBERT + capts.259

outperforms other baselines for two datasets, while260

distillBERT + den_capts. outperforms for CH and261

MP data sets.262

It is interesting to note that distillBERT +263

den_capts. outperforms for complex tasks such264

as movie poster classification, where poster im-265

ages alone can be intriguing and have an advertis-266

ing intent, than providing context about the movie267

category. In this case, captions facilitate suitable268

semantic knowledge for machine learning models269

(See Tables 3 and 6).270

Accuracy CI CH VQ HM Avg
dBERT (unimodal) 0.804 0.668 0.513 0.550 0.634

dBERT + capts. 0.827 0.725 0.513 0.540 0.651
dBERT + den_capts. 0.802 0.769 0.513 0.510 0.648

Table 4: Comparative results for distill-BERT using Ac-
curacy on Crisis Informative (CI), Crisis Humanitarian
(CH), Visual Question Answering (VQ), and Hateful
Memes (HM) datasets.

Overall, we still observe improvement adding271

captions over distillBERT (unimodal), however, dis-272

tillBERT + den_capts. is not the best performer273

F1-weighted CI CH VQ HM Avg
dBERT (unimodal) 0.801 0.703 0.348 0.535 0.597

dBERT + capts. 0.825 0.754 0.348 0.518 0.611
dBERT + den_capts. 0.775 0.780 0.348 0.345 0.562

Table 5: Comparative results for distill-BERT using F1-
weighted.

MP F1 macro F1 weighted
dBERT (unimodal) 0.154 0.336

dBERT + capts. 0.152 0.340
dBERT + den_capts. 0.170 0.383

Table 6: Comparative results for distill-BERT using F1
metrics for multi label movie posters dataset.

for all datasets as in the BERT model. We believe 274

an explanation is that distillBERT does not have a 275

good capacity to manage a diverse set of captions 276

as opposed to BERT, which is a much deeper and 277

complex model. 278

5 Conclusion 279

In this work, we study the use of image captions 280

in multimodal systems as a replacement for tradi- 281

tional image features. We show that this simple 282

but effective approach can yield comparable, when 283

not superior, results to strong multimodal baselines 284

for most tasks. By leveraging the existing seman- 285

tic knowledge from text-based models, fusing the 286

original text to the image captions becomes trivial, 287

reducing model complexity at the fusion stage. We 288

also show the impact of model capacity and that 289

the results still hold even when models are smaller. 290

Our findings benefit practitioners, as incorporating 291

captions as image representations might be more 292

efficient than handcrafting complex multimodal 293

alternatives, and help determine future directions 294

for research in image captioning and multimodal 295

fusion. 296

An interesting future direction is incorporating 297

external knowledge for multimodal learning for 298

subjective tasks such as ads understanding (Hus- 299

sain et al., 2017; Ye and Kovashka, 2018) and per- 300

sonalization (Murrugarra-Llerena and Kovashka, 301

2019; Veit et al., 2018). These tasks are more com- 302

plex and may benefit from external knowledge to 303

disambiguate and better understand the context. 304
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