
Attributed Network Embedding based on Mutual Information
Estimation

Xiaomin Liang
Sun Yat-Sen University

liangxm23@mail2.sysu.edu.cn

Daifeng Li∗
Sun Yat-Sen University

lidaifeng@mail.sysu.edu.cn

Andrew Madden
Sun Yat-sen University
admadden@hotmail.com

ABSTRACT
Attributed network embedding (ANE) attempts to represent a net-
work in short code, while retaining information about node topolog-
ical structures and node attributes. A node’s feature and topological
structure information could be divided into different local aspects,
while in many cases, not all the information but part of the infor-
mation contained in several local aspects determine the relations
among different nodes. Most of the existing works barely concern
and identify the aspect influence from network embedding to our
knowledge. We attempt to use local embeddings to represent local
aspect information and propose InfomaxANE which encodes both
global and local embeddings from the perspective of mutual infor-
mation. The local aspect embeddings are forced to learn and extract
different aspect information from nodes’ features and topological
structures by using orthogonal constraint. A theoretical analysis
is also provided to further confirm its correctness and rational-
ity. Besides, to provide complete and refined information for local
encoders, we also optimize feature aggregation in SAGE with dif-
ferent structures: feature similarities are concerned and aggregator
is seperated from encoder. InfomaxANE is evaluated on both node
clustering and node classification tasks (including both transduc-
tive and inductive settings) with several benchmark datasets, the
results show the outperformance of InfomaxANE over competitive
baselines. We also verify the significance of each module in our
proposed InfomaxANE in the additional experiment.
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1 INTRODUCTION
Network mining is an important area of academic research, with
significant practical applications. The question of how to represent
a network is fundamental to network mining. Network embedding
(NE) aims to find a low-dimensional representation of nodes in the
network, while preserving information about the nodes’ proxim-
ity. The learned low-dimensional embeddings can be applied as
latent features for downstream tasks like node classification, link
prediction, and node recommendation.

Network embedding is treated as matrix factorization in the
early works [1–3]. Inspired by Skip-Gram model from NLP area,
the practice DeepWalk [4] and Node2vec [5] are arouse. Various
sampling strategies have been used to encode different types of
structural features [6, 7]. Researchers become interested in neural
networks following the development of deep learning, and several
typical neural network structures are adapted to network embed-
ding, such as GAN [8, 9], RNN [10], LSTM [11], CNN [12, 13]. The
aforementioned methods are designed to learn the topological in-
formation of the networks, but nodes are usually associated with
rich attribute information, which may play an important role in
the downstream tasks. Unlike plain network embedding, attribute
network embedding (ANE) takes into account, not only topological
structure information, but also attribute information. Collaborative
training is used to determine the nature of interactions between the
two types of information, after each has been embedded separately
[14, 15]. Besides, incorporating the node attributes matrix into the
factorization processing allows the matrix factorization methods
to take advantage of both types of information [16], or utilizing
attribute information to make a better random walk [17]. The effi-
ciency and effectiveness of multi-layer feature aggregation helped
to make the approach popular, it encodes topological structures
and attribute information by aggregating the features of nodes in
their K-order neighborhood [13, 18, 19].

In addition to the problem of information incorporation, the
question of how to capture high-quality embeddings is still to be
explored. An issue addressed here is that of maximizing the mutual
information between node features and embeddings to preserve
information that is “useful” to the objective. Mutual information
calculation is complicated, especially for high-dimensional and
continuous variables; however, Belghazi et al’s Mutual Informa-
tion Neural Estimation (MINE) approach [20] makes the effective
computation of mutual information possible. In this work, we will
use mutual information estimation theory to determine the node
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embeddings. Recent representative researches of mutual informa-
tion based graph embedding includes DGI [21], GMI [22] and etc,
which design different embedding structures to obtain high qual-
ity graph embeddings based on mutual information maximization.
However, most of above researches seldom consider locality and
local embeddings.

Locality is important in the task of training. Convolutional neural
networks (CNNs) that operate on locally connected regions really
make a breakthrough in image area; manifold learning aims to pre-
serve local structure in high-dimensional space while reducing the
dimensionality. The locality of node features in graph representa-
tion learning is also valuable, in citation networks for example, one
article may cite another because of global embedding similarities,
but the citation may also be due to partial aspect similarity: the two
articles may use a similar method, have common research objects or
share application scenarios. However, the locality of node features
is rarely concerned in current researches, since the principal prob-
lem is how to define the local parts of node features. These features
are discrete or continuous attributes, or are vector representations
derived from text associated with the nodes. The dimensions of
node features are not sequential, so changing the order of dimen-
sions will not change the expression of the node features as a whole.
Besides, the correlation between dimensions is unknown, so they
cannot be directly divided into parts or put into groups. In the work
presented here, we build up several encoders to learn the local
embeddings, and constrain the mutual information between local
embeddings to encourage them to learn diverse information.

To provide complete and refined information for above-mentioned
local encoders, we accept the feature aggregation idea to incorpo-
rate topological structure and node features, but we just aggregate
node features in each layer without trainable parameters mapping
and keep the dimensions of nodes unchanged. Besides, feature sim-
ilarity is added as aggregation weights considering a more similar
neighbor node should have more impact on one node.

In this work, we propose InfomaxANE, an unsupervised attrib-
uted network embedding model that encodes node features’ global
and local information using mutual information estimation theory.
The mutual information between local embeddings are constrained
to enforce them to learn different local information. InfomaxANE
incorporates the topological structure and node features with re-
fined multi-layer feature aggregation, in which feature similarities
are concerned and aggregator is seperated from encoder. To sum
up, the main contributions of this work are as followed:

• We introduce mutual information estimation theory into
attributed network embedding and propose an attributed
network embedding model that considers both global and
local information of node features.

• We successfully encode the local information of node fea-
tures by minimizing the mutual information among different
local embedding, it works out according to the experiment.

• We demonstrate that both features similarity weights and
separation of aggregator and encoder during the feature
aggregation period can bring performance gains.

• We demonstrate the superiority of proposed method by com-
paring it with several advanced baselines on node clustering
task and transductive/inductive node classification task. It

should be noted that the proposed method achieves absolute
gains of 1.03% 8.61% in the node clustering task.

2 RELATEDWORK
Feature aggregation strategies. SAGE [18] is the first to bring
out the concept of feature aggregation which can learn the topo-
logical structure and node features simultaneously by aggragating
node features in the defined neighborhood. Feature aggregation in
SAGE is inherited from GCN [13] but with more flexibility. In sub-
sequent research, attention mechanism was used to capture better
aggregated features [23, 24], SPINE [19] redefine the neighborhood
by rooted random walk sampling. There is one thing that we notice,
feature aggregation and reduction are processed simultaneously in
the mentioned works, it means trainable parameters are introduced
in the lay-wise feature aggregation, lower layer aggregated features
will affect the follow-up feature aggregate layers, will it have an
influence on the final effectiveness and efficiency, it is one of the
problems we want to explored in this work. Except for this reason,
we want to provide complete node features for the follow-up en-
coder to encode global/local information, so we choose to separate
aggregator and encoder in this work.

Mutual information estimation. Mutual information (MI) is
an important theory in representation learning. In supervised learn-
ing, the information bottleneck theory [25, 26] considers the repre-
sentation problem as finding the short codes of inputs but preserv-
ing the maximum information of targets/labels. This theory has
been introduced to many deep neural networks commonly; it might
lighten the black box of deep learning in terms of information [27].
In unsupervised learning, mutual information maximization aims
to force embeddings to be distinctive by adding specific information
[28], such as manually added labels by negative sampling [29, 30].
Contrastive Predictive Coding (CPC) [29] maximizes the mutual in-
formation between the encoded representations. Deep Infomax [30]
maximizes the mutual information between input and global/local
embedding pairs. Feature locality is taken in to consideration in
Deep Infomax, but it is not suitable for network embedding, node
features are not “regular”, they cannot be directly divided into parts
like images can. However, Information Competing Process (ICP)
[28] suggests that it may be possible to constrain the encoded local
embeddings by minimizing the mutual information between them
to force them to learn different information.

Several network embedding approaches based on MI theory are
proposed recently. DGI [21] encodes the global and local structure
by maximizing the mutual information between patch representa-
tions and the corresponding high-level summaries of graphs. GMI
[22] measures the mutual information from both node features and
topological structure. Both DGI and GMI directly encode nodes’
feature and structural information into global embeddings without
considering and extracting local aspect information. In Infomax-
ANE, we aim to consider both global and local aspect information
into a unified framework and make full use of them to further
improve the embedding quality.

3 PROPOSED METHOD
Let G = {V, A, X} denotes an attributed directed/undirected network,
where V is a set of vertices with size |V|=N, A is the adjacencymatrix
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with size N*N, which represents the edges (relationship between
nodes), Aij=1 if node vi is linked with node vj, otherwise Aij=0. X is
the node features matrix with size N*f, where f represents the num-
ber of features of each node in V, so the ith row in X represents the
f-dimension features of node vi. The target of network embedding
is to find low-dimensional continuous embedding for each node, as
denoted by ZN*d, where d is the dimension of node embedding.

3.1 Preliminaries of mutual information
estimation

Mutual information is defined as: I (Z, X) = H(Z) - H(Z|X), where
H is the entropy, Z and X are two random variables. The mutual
information between Z and X can be perceived as the decrement
of the uncertainty of Z given X. I (Z, X) is equivalent to the KL
divergence between the join distribution P(Z, X) and production of
marginal distributions P(Z)P(X) (see Eq. 1).

I(Z; X) = 𝐻 (𝑍 ) − 𝐻 (𝑍 |𝑋 )

=
∑
𝑧

𝑝 (𝑧) log 1
𝑝 (𝑧) −

∑
𝑥,𝑧

𝑝 (𝑥, 𝑧) log 1
𝑝 (𝑧 |𝑥)

=
∑
𝑥,𝑧

𝑝 (𝑥, 𝑧) log 𝑝 (𝑥, 𝑧)
𝑝 (𝑥)𝑝 (𝑧)

= 𝐾𝐿(𝑃 (𝑋,𝑍 )∥𝑃 (𝑋 )𝑃 (𝑍 ))

(1)

KL-divergence is theoretically unbounded, so maximizing KL-
divergence is likely to get an infinite result (p(z) is infinitely close
to 0 accoring to Eq. 1), which is not convenient for the model to
maximize mutual information. Since what we want is to widen
the distance between p( Z, X) and 𝑝 (𝑋 ) 𝑝 (𝑍 ), we can replace KL-
divergence with a bounded divergence, for example, JS-divergence
[31]. The mutual information maximization between Z and X turns
out to be the maximization of the JS-divergence between p(X, Z) and
𝑝 (𝑋 ) 𝑝 (𝑍 ). We refer to the variational estimation of f-divergence in
f-GAN [31], where f-divergence is a general form of JS-divergence
as follow [31]:

JS(p(Z,X) | |p(X)p(Z)) = max
𝑇

(
E(𝑥,𝑧)∼𝑝 (𝑍 |𝑋 )𝑝 (𝑋 ) [log𝜎 (𝑇 (𝑥, 𝑧))]

+E(𝑥,𝑧)∼𝑝 (𝑋 )𝑝 (𝑍 ) [log(1 − 𝜎 (𝑇 (𝑥, 𝑧)))]
)
(2)

T(x, z) is a discriminator constructed by a neural network to
calculate the distance between input x and its representation vector
z. 𝜎 is an activation function. We can observe that the problem for
now is transformed from JS-divergence estimation into discriminate
network T(x, z) training issue. We can take the input x and its
corresponding embedding z as positive sample, x and randomly
selected z based on P(X)P(Z) distribution as negative sample, to
train the discriminator T(x, z).

3.2 Proposed method
The proposed method, InfomaxANE (see Figure 1), is comprised
of three modules: feature aggregator, global/local encoder and dis-
criminator. The feature aggregator is responsible for redefining
node feature and structural information by aggregating them from
their K-order neighborhood; the global/local encoder is targeted at

learning the low-dimensional continuous global/local embedding
for each node; and the task of distinguishing positive samples from
negative ones falls into discriminator. The general objective of In-
fomaxANE is to maximize the mutual information between inputs
and corresponding global and local embeddings (see Eq. 3):

L = max

(
𝛼 ∗ 𝐼global (𝑧;𝑥) + 𝛽

1
𝑐

𝑐∑
𝑖

𝐼local
(
𝑧 (𝑖) ;𝑥

))
(3)

x and z denotes global input and global embedding respectively;
z(i) denotes ith local embedding; c is the number of local embed-
dings; 𝛼 and 𝛽 are hyper-parameters that balance the contributions
of global and local mutual information loss.

Figure 1: An overview of InfomaxANE.

Feature aggregator. In SAGE, node feature aggregation and
encoding are processed simultaneously (Figure 2 (a)); but here, we
try to separate them. As a result, there are no trainable parameters
in aggregator, so feature aggregation can be pre-computed off-line.
Neighbors with more similar features should have greater influence
on the specific node: InfomaxANE attempts to take this into account.
The aggregate computation is shown in Eqs s. 4-5:

𝑥
(𝑘)
𝑢 =

∑
𝑣∈N𝑢

𝛼𝑢𝑣𝑥
(𝑘−1)
𝑣 (4)

𝛼𝑢𝑣 =

(
1 + 𝑥 (𝑘−1)𝑢 𝑥

(𝑘−1)T
𝑣

)
∑

𝑣∈N𝑢

(
1 + 𝑥 (𝑘−1)𝑢 𝑥

(𝑘−1)T
𝑣

) (5)

x(k)u denotes the features of node u in kth layer aggregation,
auv is the influence weight of node v on node u, N(𝑢) denotes
the neighbors of node u (including node u itself). InfomaxANE
can carry out multi-layer aggregation, in which the features in kth
comes from the aggregated features in (k-1)th.

Global/local encoder. Feeding only one part of the input into
the encoder at one time is an intuitive way to encode local infor-
mation (see 3(a)). However, the dimensions of node features are
not sequential, the correlation between different dimensions is un-
known, so we can’t just cut the input features into blocks or divide
them into groups. In InfomaxANE (see Figure 3(b), the complete
f-dimensional input features are fed into encoders and encoded
as c d-dimensional embeddings with a stacking parameter matrix
Wc*f*d as follow:
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Figure 2: Comparison of feature aggregation between SAGE
and InfomaxANE. (a) SAGE reduce the node features from f-
dim to d-dimwith parametersmatrixW in the ith layer after
aggregate node features from neighbors, and the operation
repeat in (i+1)th layer using the aggregated node features
obtained in ith layer. (b) InfomaxANE keeps the dimensions
of node features unchanged during the aggregation, and fea-
ture similarity is concerned in the aggregate operation.

Figure 3: Global and local embedding in InfomaxANE.

𝑍 (i) = 𝜎
(
𝑋 (𝑘)𝑊 (𝑖)

)
(6)

X(k) is the matrix of all nodes 𝑥 (𝑘)𝑢 in Eq. 4. W(i) is the ith matrix
in Wc*f*d with size f*d, RELU is used as activate function 𝜎 (�). We
take the maximum value of each dimension in c local embeddings
as the global embedding, in other words, the global embedding is
the max-pooling result of c stacking local embeddings (see Figure
3(b)). The global embedding is the final embedding for each node.

Discriminator. The general objective of InfomaxANE is to max-
imize the mutual information between inputs and global/local em-
beddings, namely,max 𝐼global (𝑍,𝑋 ) andmax 𝐼local

(
𝑍 (𝑖) , 𝑋

)
. All di-

mensions of node features are fed into each encoder, so the objec-
tives can be represented as follow:

max 𝐼global (𝑍,𝑋 ) = max
𝑇

( [log𝜎 (T(𝑥, 𝑧))]

+E(𝑥,𝑧)∼𝑝 (𝑥)𝑝 (𝑧) [log(1 − 𝜎 (𝑇 (𝑥, 𝑧)))]
) (7)

max 𝐼local
(
𝑍 (𝑖) , 𝑋

)
= max

𝑇

( [
log𝜎

(
𝑇

(
𝑥, 𝑧 (𝑖)

))]
+E(𝑥,𝑧)∼𝑝 (𝑥)𝑝 (𝑧)

[
log

(
1 − 𝜎

(
𝑇

(
𝑥, 𝑧 (𝑖)

)))] )
(8)

In the network embedding scenario, nodes should be close to
their neighboring nodes, so as a positive sample, we take input x
and its neighbor’s node embedding z pair, and as a negative sample,
we take x and sampled z pair. Distinguishing between positive and
negative samples is the task of discriminator. Similar with GMI
[22], the element-wise production of input pairs is used as input
for the discriminator. Consequently, the maximization of mutual
information can be expressed as Eq. 9, where u and v are neighbor
nodes, 𝑁𝑢 is the neighbor set of u and v n is a negative sample
corresponding to u and v. We used a simple negative sampling
strategy in this work: nodes randomly selected outside the h-order
of input nodes are taken as negative samples. The negative sampling
strategy is mainly based on the idea of graph embedding that the
target node has a higher probability to have strong correlations
with its 1-hop neighbors, while its correlations with h-hop nodes
could be neglected in most of cases. I(z u; x v) is mutual information
between z u and x v, which could be obtained by a discriminator
constructed by a neural network.

max 𝐼 (𝑧𝑢 , 𝑥𝑢 ) = max ©«
log𝜎 ©«

∑
𝑣∈N𝑢

𝑧𝑇𝑢 𝑧𝑣𝐼 (𝑧𝑢 , 𝑥𝑣)
ª®¬


+E(𝑣𝑛,𝑧𝑣𝑛 )∼𝑝 (𝑥)𝑝 (𝑧)

[
log

(
1 − 𝜎

(∑
𝑣𝑛

𝑧𝑇𝑢 𝑧𝑣𝑛 𝐼 (𝑧𝑢 , 𝑥𝑣𝑛 )
))])

(9)
Let’s retrospect to the mutual information minimization among

local embeddings, which encouraging local embeddings to learn
different local aspect information. If it is assumed that the local
embeddings of one node are represented as {z (1), z(2), . . . , z(c)},
the mutual information between every two of them is defined as
I(z(i), z(j)), then I(z(i), z(j)) reaches its minimum value zero when
𝑝

(
𝑧 (𝑖) , 𝑧 ( 𝑗)

)
= 𝑝

(
𝑧 (𝑖)

)
𝑝

(
𝑧 ( 𝑗)

)
, which indicates that z(i) and z(j)

are independent to each other, but it’s hard to compute the depen-
dency for such high-dimensional (compared to 2-dims or 3-dims)
and continuous vectors. Information Competing Process (ICP) [28]
builds two predictors for two parts of embeddings, so the two parts
can’t be transformed to each other. We took a similar approach,
but used c local embeddings. This required c(c-1), resulting in far
more costs. To alleviate this problem, we loosen the constraint of
independency to linear independency. Orthogonality is a special
case of linear independence of vector groups: mutually orthogo-
nal vector groups must be linear independent. So the constraint
of orthogonality between different local embeddings is added into
the main objective of enforcing the representation of different in-
formation. This constraint is fulfilled by minimizing the distance
between ZTZ and the identity matrix. In this study, L1 norm of
matrix difference is used as the matrix distance measure in this
work, then the constraint is defined as

��𝑍𝑇𝑍 − 𝐼
�� at the last.

A theorem is introduced to further confirm the correctness and
rationality of the proposed locality embedding, which could be seen
in Theorem 1.

Theorem 1. Assume the input of node v i is x i, which sat-
isfies probability distribution P(X), where X is the set of all N
nodes in graph G. Assume the locality embedding of x i is Z i
= {𝑧 (1)

𝑖
, 𝑧

(2)
𝑖
, . . . , 𝑧

(𝑐)
𝑖

}, where c is the number assignment of local

Full Paper Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

838



embedding, and the probability of Z i is P(Z i), Z = {𝑍 1, 𝑍 2, . . . , 𝑍N}.
Then the optimal classifier between the joint distribution p(X, Z)
and the product of marginals p(X)p(Z), has an error rate upper
bounded by

∑𝑁
𝑖=1 𝑝 (𝑋 i |𝑍 i)𝑝 (𝑍 i)2/2.

Proof. For each node i, the product of marginals is: p(Z i)p(X i) =
p(X i | Z i)p(Z i) 2, while for all the N nodes, the total probability of
drawing a sample from product of marginal is

∑𝑁
𝑖=1 𝑝 (𝑋 i |𝑍 i)𝑝 (𝑍 i)2.

As the count of error samples should be drawn from both joint and
product of marginal probability distributions, and samples from
joint distribution have lower error rate than those from marginal
probability [21], for an extreme situation of a binary classifier, all
samples drawn from marginal probability could not be identified
(50% error samples), if all the samples are also drawn by joint prob-
ability distribution, the total percentage of error samples should
be smaller than 50%, and an upper error rate bound should be∑𝑁
𝑖=1 𝑝 (𝑋 i |𝑍 i)𝑝 (𝑍 i)2/2.
For a mutual information based network embedding model with-

out considering locality embedding, such as GMI [22], assume the
node embedding of x i is 𝑍

′
𝑖
, then by applying similar proof process,

its upper error rate bound should be
∑𝑁
𝑖=1 𝑝 (𝑋 i |𝑍

′
𝑖
)𝑝 (𝑍 ′

𝑖
)2/2. Then

we could obtain a lemma as below:
Lemma 1. The error rate bound of { X, Z } is smaller than that

of { X, Z ’ }, which means locality embedding could obtain higher
quality of embeddings compare with methods without considering
locality.

Proof. Because
∑𝑁
𝑖=1 𝑝 (𝑋 i |𝑍 i)𝑝 (𝑍 i)2/2 =

∑𝑁
𝑖=1 𝑝 (𝑋 i)𝑝 (𝑍 i)/2, so

proving p(Z i) < p(𝑍
′
𝑖
) is equal to providing evidence that Z has

bigger solution space than that of Z ’. Firstly, Z with orthogonal
constraint

��𝑍𝑇𝑍 − 𝐼
�� could be seen as a set of orthonormal basis

of the space, which could represent all the allowable states in the
space of Z ’. Secondly, by taken

��𝑍𝑇𝑍 − 𝐼
�� as a regularization term,

all allowable states in the space of Z ’ could be generated as new
states in the space of Z by adding Hessian matrix based offset
value on each dimension. Thus the parameter space of Z ’ is almost
included by Z’s parameter space and we can conclude that Z is a
generalization of Z ’, and Lemma 1 has been proved.

The final objective function in InfomaxANE is shown in Eq. 10
after putting all parts together. 𝛼, 𝛽,𝛾 are hyper-parameters that bal-
ance the three items in the objective. We used Stochastic Gradient
Descent (SGD) as optimizer to update trainable parameters.

L = min ©«−𝛼 ∗ ©«
log𝜎 ©«

∑
𝑣∈N𝑢

𝑧𝑇𝑢 𝑧𝑣𝐼 (𝑧𝑇𝑢 ; 𝑧𝑣)
ª®¬


+E(𝑥,𝑧)∼𝑝 (𝑥)𝑝 (𝑧)

[
log

(
1 − 𝜎

(∑
𝑣𝑛

𝑧𝑇𝑢 𝑧𝑣𝑛 𝐼 (𝑧𝑇𝑢 ; 𝑧𝑣𝑛 )
))])

− 𝛽 ∗ 1
𝑐

𝑐∑
𝑖

©«
log𝜎 ©«

∑
𝑣∈N𝑢

𝑧𝑇𝑢 𝑧
(𝑖)
𝑣 𝐼 (𝑧𝑇𝑢 ; 𝑧

(𝑖)
𝑣 )ª®¬


+E(𝑥,𝑧)∼𝑝 (𝑥)𝑝 (𝑧)

[
log

(
1 − 𝜎

(∑
𝑣𝑛

𝑧
(𝑖)
𝑢

𝑇 𝑧
(𝑖)
𝑣𝑛 𝐼 (𝑧

(𝑖)
𝑢

𝑇 ; 𝑧 (𝑖)𝑣𝑛 )
))])

+𝛾 ∗
���𝑍𝑇𝑍 − 𝐼

���)
(10)

Table 1: Statistics of datasets used in our experiment. * The
task on PPI is a multilabel classification problem.

Dataset Nodes Edges Features Classes

Cora 2,708 5,278 1,433 7
Citeseer 3,312 4,660 3,703 6
Wiki 2,405 12,761 4,973 17

PubMed 19,717 44,327 500 3
Reddit 232,965 11,606,919 602 41
PPI 56,944 806,174 50 121*

4 EXPERIMENTS
4.1 Settings
Dataset. To evaluate the proposed method, we used four estab-
lished benchmark datasets (Cora, Citeseer, Wiki and PubMed) in
the node clustering task and transductive node classification task,
and two benchmark datasets (Reddit and PPI) in inductive node
classification task. Table 1 gives a summary of these datasets.

Cora, Citeseer and PubMed are academic citation networks in
which each node of network is an article and each edge of network
is a citation. Features of each node are expressed in a bag-of-words
representation extracted from the corresponding article. Wiki is a
web-page linking network in which each node is a web page. The
edges of Wiki denote the hyperlink between web pages, and the
feature of each node is also a bag-of-words representation. The
node label in these four datasets refers to the topics that a node
belongs to. We use the public datasets provided by DANE [15].

Reddit is a large-scale social network in which each node rep-
resents a different post. The node label in Reddit is the topical
community that the node belongs to [18]. PPI is a protein-protein
interactions dataset consists of multiple graphs, each graph in PPI
is related to a different human tissue [32], the node labels in PPI
reveal the protein functions that the node have. Reddit and PPI
are available in the website: http://snap.stanford.edu/graphsage/,
provided by SAGE [18].

Baselines. For node clustering task and transductive classifica-
tion task, we compare InfomaxANE against the following baselines:

SVD-att, SVD-adj, SVD-mix: node embeddings are reduced vec-
tors coming from features, adjacency and the concatenation of both
using SVD.

LINE [33]: LINE employs Skip-Gram with negative sampling to
learn the node embedding, the node pairs come from neighbors or
two-hop away nodes.

Node2vec [5]: Node2vec uses Skip-Gram with negative sampling
to learn the node embedding, the node pairs are generated by a
flexible random walk balancing the BFS and DFS.

GAE/VGAE [34]: GAE/VGAE is a combination of GCN and auto-
encoder/variational auto-encoder.

SAGE [18]: SAGE learns the node embedding by sampling and
aggregating the features of a node’s K-order neighborhood. We use
the same negative sampling strategy with InfomaxANE in SAGE
for better comparison.

DANE [15]: DANE captures the underlying high non-linearity in
both topological structure and attributes with deep auto-encoders.
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Table 2: Parameters setting in InfomaxANE.

Parameter Explanation Cora Citeseer Wiki PubMed Reddit PPI

K Layers of aggregator 2 2 1 2 2 2
c Number of local embeddings 4 8 8 4 8 8
h Negative sampling range 5 5 4 3 - -
lr Learning rate 0.7 0.7 0.1 0.7 0.01 0.00001
𝛼 Global mutual information loss 2 1 1 2 1 0.1
𝛽 Local mutual information loss 0.5 0.1 0.1 0.5 1 0.1
𝛾 Constraint loss 1 0.1 1 1 1 0.1

For inductive node classification task, we adopt the following
advanced baselines:

DGI [21]: maximize the mutual information between patch rep-
resentations and summaries of corresponding graphs.

GMI [22]: maximize mutual information from two aspects (node
features and topological structures).

Parameters settings. The key parameters settings of baselines
were as follows: For SVDs (including SVD-feat, SVD-adj, SVD-mix),
we selected the optimal result within the embedding dimension
range of [16, 32, 64, 128]. For LINE [33], the number of negative
samples was set as 5, the final embedding was the concatenation of
first-order embedding and second-order embedding. For Node2vec
[5], the embedding dimension was set as 128, the window size was
10, the walk length was 80 and the number of walks for each node
was 10. For GAE/VGAE [34], the embedding dimension was 16, the
hidden size was 32. For SAGE [18], the embedding dimension was
set as 128, the layers of aggregation was set as 2, the number of
negative samples was 5, and batch-size was 256. For DANE [15],
we use the default parameters provided by source codes on all ex-
periment datasets. In order to obtain a more impartial evaluation
results, some parameters assignment of baseline models are opti-
mized, for example, by adopting the same negative sampling with
InfomaxANE, the performance of SAGE is significantly improved
compared with its original version.

For proposed InfomaxANE, we fixed the output dimensions of
encoder as 128, batch size as 256, the number of negative samples
as 5. Table 2 gives the other parameter settings in InfomaxANE
on different datasets. To make full use of aggregated features and
achieve optimal results, for Reddit and PPI, we put each-layer ag-
gregated features including original features into the same encoder,
and concatenated the output embeddings, so that the final embed-
ding dimension for Reddit was 128*3=384. We found it beneficial
to take the concatenation of global embeddings and mean vectors
of local embeddings as final node embeddings for PPI, so the final
embedding dimensions for PPI was 128*3*2=768. 1

4.2 Node clustering
For the node clustering task, we used K-means to cluster the learned
embeddings of nodes, and we used clustering accuracy as the eval-
uation metric. Results of the clustering task are shown in Table 3.
InfomaxANE was found to outperform the baselines (by 1.03% to
8.61%) on all four experiment datasets.

1Codes and links to the datasets: https://github.com/lxm36/InfomaxANE

Table 3: Node clustering results. Elements in bold are the
best results, those with underline are second-best. The “im-
provements” row shows the difference between the best and
second best results.

Baselines Cora Citeseer Wiki PubMed

SVD-feat 50.41 64.49 33.22 36.26

SVD-adj 35.01 25.18 25.32 39.57
LINE 45.24 28.99 39.46 64.18

Node2vec 62.78 40.61 41.95 63.74

SVD-mix 35.04 24.28 31.48 39.59
GAE 66.03 55.01 43.24 67.05
VGAE 64.55 57.10 44.03 68.81
SAGE 63.44 61.47 41.58 71.35
DANE 71.53 45.53 41.29 64.58

InfomaxANE 74.19 69.20 52.64 72.32
improvements +2.66 +4.71 +8.61 +1.03

Figure 4 shows a visualization of the learned embeddings with
t-SNE [35]. Due to limited space, only the visualization of partial
baselines on dataset Cora are shown. Our aim was to group learned
embeddings, so that those in the same category are close to each
other, while those in different categories are further apart. We can
observe that our approach achieves better clustering performance
than the others for most cases.

4.3 Node classification
Transductive learning. For the transductive classification task,
as with the evaluation setting with DANE [15], we employ one
versus rest strategy to train a multi-class classifier with Logistic
Regression as base classifier, different ratios of node labels (1%, 5%,
10%, 30%, 50%) are randomly selected to act as training set, and
the rest nodes compose testing set. Micro-F1 and Macro-F1 are the
metrics of node classification task. Table 4-7 are the summaries of
transductive classification results. We can find that our proposed
method InfomaxANE is significantly superior to the feature-only
and structure-only approaches, and outperforms the other feature
+ structure approaches in most cases.

InfomaxANE clearly outperforms Cora (Table 4) and Citeseer
(Table 5). For Wiki (Table 6) and PubMed (Table 7) the picture
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Figure 4: Visualization results of differentmethods for Cora.

is more mixed. For Wiki, the best performing baseline was SVD-
mix, a simple reduction on the concatenation of raw features and
adjacency. It should be noted that the raw features in Wiki are
discriminative. Raw features with SVD already manage to perform
better than the other baselines in most cases. This is particularly
noticeable when they are compared to feature-aggregated methods
such as GAE/VGAE and SAGE. However, this is not true of the
proposed InfomaxANE, which outperforms SVD-feat and performs
almost as well as SVD-mix. We can infer from this finding that
complicate operation may sometimes ruin the distinguishability of
raw features, making it necessary to take more considerations in
such cases. For PubMed, InfomaxANE comes a close to DANE, the
best baseline. InfomaxANE performs better with the lower labeled
ratios, while DANE outperforms with higher labeled ratios, and
even with the higher labeled ratios, the differences are no more
than 1.5%. Finally, compared to SAGE, InfomaxANE performs better
on all the experiment datasets.

Inductive learning. For inductive node classification task, we
feed the learned embeddings of nodes in training set into a logistic
regression classifier and calculate the micro-F1 on test nodes, we
repeat the classifier training for 50 times and take the average
micro-F1 score as the final evaluation metric [21, 22]. Suggested by
DGI [21], for PPI, we standardize the learned embeddings across
training set before providing them to logistic regression classifier.

Table 8 reports the average micro-F1 scores of InfomaxANE
and baselines. As observed, our proposed InfomaxANE manage
to outperform all other competitive baselines, which substantiates
the effectiveness of InfomaxANE. It should be mentioned that the

node features in PPI is extreme sparse, around 1.9% of elements in
feature matrix are nonzero values, besides, 42% of nodes have zero
feature values [20], [32]. We consider the strong performance of
InfomaxANE partially benefits from fully usage of different level
aggregated features.

4.4 Module analysis
To establish the significance of each module in InfomaxANE, we
trained several variants of the models derived from InfomaxANE,
but with one module removed. The importance of different mod-
ules was then assessed by evaluating the node clustering task on
the experimental datasets. The variant models’ settings and node
clustering results are shown in Table 9. Sage and DANE are taken
as baselines, while Sage is optimized by tuning parameters and
adopting new negative sampling strategy, so the performance of
Sage is better than its original version. The proposed InfomaxANE
was better than the other variant models in most cases on Cora,
Wiki and Pubmed, but for Citeseer, InfomaxANE-global gave the
best results.

The proposed InfomaxANE benefits from feature similarities
added in aggregation compared with InfomaxANE-no_sims, espe-
cially for Wiki, while for Citeseer and PubMed, the contribution of
feature similarity is small. To further illustrate this phenomenon,
average degree, average clustering coefficient, average feature den-
sity are calculated in Table 10, Wiki has the highest score on both
structure and feature attributes, which could have positive contri-
bution on the effectiveness of similarity matrix. Besides, compared
with Pubmed, connections among each node and its neighbors are
stronger in Cora. The variant model which only considers global
mutual information loss (InfomaxANE-global), compared poorly
with InfomaxANE, with decrements ranging from 0.42% to 2.03%.
Infomax-local, which only considers local embeddings, performed
poorly overall, the infomax-unconstained, which take both global
mutual information loss and local mutual information loss into
consideration but not constrain the mutual information between
local embeddings, performs worse than infomaANE and close to
InfomaxANE-global. Besides, compared with traditional trainable
aggregator, the proposed aggregator in InfomaxANE could improve
training speed by about 2 times on average, while the performance
has no significant difference.

Three interesting observations emerge from these results: 1)
Global embedding is the key component of the proposed method.
Without it, performance would be poor. 2) local embedding is help-
ful, but it won’t work without constraints. 3) Taken as a whole,
InfomaxANE is the best of all the variants. Every module in Info-
maxANE have its contributions to the final performance.

4.5 Running efficiency
Running efficiency is an important factor of the model evaluation
except for task performance. SAGE is comparable to InfomaxANE
since they have similar structure. Therefore, we compared the run-
ning efficiency of InfomaxANE with that of SAGE. We ran Infomax-
ANE and SAGE on dataset Cora three times (100 iterations each
time) in the same running environment and calculated the average
running time for a single iteration. The results are 7.75 seconds
and 6.71 seconds respectively. InfomaxANE is around one second
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Table 4: Node classification result of Cora.

Labeled ratio 1% 5% 10% 30% 50%
micro macro micro macro micro macro micro macro micro macro

SVD-feat 49.38 44.57 66.34 63.22 68.50 64.95 70.73 67.05 71.20 67.87

SVD-adj 40.69 39.35 60.05 59.34 66.78 64.70 74.00 72.19 76.37 74.64
LINE 47.22 44.93 65.92 63.09 72.15 70.85 79.11 77.58 81.02 79.89

Node2vec 62.40 58.15 72.21 70.87 75.39 73.47 79.43 77.76 80.65 79.63

SVD-mix 55.46 50.40 73.53 70.03 76.83 74.07 82.07 80.26 82.13 80.60
GAE 67.47 67.50 79.13 77.26 79.61 78.18 82.86 81.13 83.09 81.45
VGAE 63.33 63.95 74.93 71.57 76.83 74.90 79.43 77.61 81.09 79.28
SAGE 67.36 56.24 78.90 76.60 80.15 77.37 84.18 82.29 85.75 84.19
DANE 52.14 44.73 75.71 73.63 78.92 77.43 83.70 82.29 83.83 82.28

InfomaxANE 75.42 72.54 81.15 79.60 83.92 82.49 87.34 85.60 88.63 87.12
improvements +7.95 +5.04 +2.02 +2.34 +3.77 +4.31 +3.16 +3.31 +2.88 +2.93

Table 5: Node classification result of Citeseer.

Labeled ratio 1% 5% 10% 30% 50%
micro macro micro macro micro macro micro macro micro macro

SVD-feat 50.11 45.72 64.22 58.90 67.06 62.06 71.37 66.39 70.77 66.22

SVD-adj 24.70 19.27 42.10 37.66 46.13 41.96 49.98 45.14 52.60 46.77
LINE 29.06 23.69 43.76 39.48 48.81 45.05 58.52 55.27 63.41 59.54

Node2vec 40.35 35.22 45.22 41.21 50.59 46.76 55.07 51.60 57.19 53.18

SVD-mix 55.96 49.08 66.76 59.92 66.02 60.14 71.19 65.82 71.98 67.11
GAE 49.62 44.08 64.38 55.67 65.58 57.24 69.00 61.21 68.24 60.54
VGAE 48.58 43.22 61.39 54.75 64.81 56.22 66.15 57.63 65.04 56.33
SAGE 67.34 59.53 69.88 61.37 70.78 63.37 73.48 65.89 73.91 69.00
DANE 40.96 35.01 58.25 53.09 60.68 56.27 69.81 65.88 71.44 67.05

InfomaxANE 70.81 64.09 71.78 65.21 73.06 66.27 75.59 70.47 75.79 70.76
improvements +3.47 +4.55 +1.90 +3.84 +2.28 +2.90 +2.11 +4.08 +3.81 +1.76

Table 6: Node classification result of Wiki.

Labeled ratio 1% 5% 10% 30% 50%
micro macro micro macro micro macro micro macro micro macro

SVD-feat 47.88 27.02 64.73 53.68 69.10 57.44 75.59 64.60 76.64 66.21

SVD-adj 26.29 14.88 45.51 37.53 51.93 42.58 59.80 47.31 63.26 50.42
LINE 26.08 14.66 49.76 40.52 57.32 47.42 62.89 49.34 66.83 54.41

Node2vec 26.46 14.47 51.74 43.13 57.04 44.62 63.02 46.18 65.09 52.83

SVD-mix 48.09 27.28 69.06 56.75 73.44 61.59 79.22 69.34 79.88 67.54
GAE 29.53 15.34 57.46 44.07 60.60 46.49 63.66 49.05 65.42 49.86
VGAE 29.90 14.35 52.65 38.88 58.01 41.96 62.00 43.51 63.84 46.89
SAGE 27.59 14.29 59.17 43.31 66.05 52.48 68.88 53.27 71.07 58.16
DANE 41.23 21.34 66.52 52.69 72.89 60.07 75.30 63.18 78.89 70.04

InfomaxANE 45.44 23.47 70.81 57.34 74.69 62.80 77.26 66.14 79.55 69.23
improvements -2.65 -3.81 +1.75 +0.59 +1.25 +1.21 -1.96 -3.20 -0.33 -0.81
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Table 7: Node classification result of PubMed.(%)

Labeled ratio 1% 5% 10% 30% 50%
micro macro micro macro micro macro micro macro micro macro

SVD-feat 75.66 76.21 82.19 82.26 83.48 83.54 84.39 84.44 85.06 85.18

SVD-adj 68.55 66.49 75.39 73.29 76.77 75.02 77.97 76.46 78.39 76.94
LINE 71.06 68.66 78.50 76.65 79.44 77.85 80.32 79.02 80.53 79.22

Node2vec 72.11 69.86 74.95 72.92 75.92 74.24 77.02 75.46 78.02 76.81

SVD-mix 79.89 79.59 83.55 83.17 84.38 84.04 85.12 84.82 85.42 85.21
GAE 81.02 80.34 81.99 81.29 82.12 81.50 82.17 81.54 82.27 81.71
VGAE 81.12 80.66 81.88 81.29 81.92 81.38 82.38 81.88 82.64 82.19
SAGE 82.27 81.44 82.85 82.02 83.26 82.58 83.75 83.15 84.01 83.46
DANE 80.61 80.17 84.88 84.47 86.22 85.93 87.49 87.23 88.44 88.26

InfomaxANE 85.29 84.64 86.17 85.58 86.47 85.87 86.83 86.28 87.35 86.85
improvements +3.02 +3.20 +1.29 +1.11 +0.25 -0.06 -0.66 -0.95 -1.09 -1.41

Table 8: Average micro-F1 scores on inductive tasks (%).

Method Reddit PPI

Raw features 58.5 42.2
DeepWalk 32.4 -

DeepWalk+Features 69.1 -
SAGE-GCN 90.8 46.5
SAGE-mean 89.7 48.6
SAGE-LSTM 90.7 48.2
SAGE-pool 89.2 50.2

DGI 94.0 ±0.10 63.8 ±0.20
GMI-mean 95.0 ±0.02 65.0 ±0.02
InfomaxANE 95.6 ± 0.01 67.9 ± 0.03

slower than SAGE in every iteration on average due to its larger
number of parameters and more calculations in feature aggregation.
Figure 5 is drawn to show the changing of node clustering accuracy
along with the iterations. We can observe that InfomaxANE has a
higher starting point and more stable rising curve, which show the
efficiency and stability of InfomaxANE.

5 CONCLUSION
We propose InfomaxANE, an unsupervised attributed network em-
bedding approach. We treat the node embedding problem as mutual
information maximization between inputs and embeddings, not
only global embedding but also local embedding of node features
is concerned in InfomaxANE to better utilize the node information.
We encourage local embeddings to learn different local information
by constraining the mutual information between every two of them.
We leverage feature aggregation to complete the combination of
topological structure and node attributes but separate aggregation
from encoding. We also add node feature similarity into feature
aggregation for better service to the subsequent encoding work.
Our proposed InfomaxANE successfully obtains higher quality em-
beddings according to the significant superior on node clustering

Figure 5: Running process of InfomaxANE and SAGE for
dataset Cora

task, transductive/inductive node classification task. We also verify
the contributions of each module in InfomaxANE.
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