
Under review as a conference paper at ICLR 2022

DCOM: A DEEP COLUMN MAPPER FOR SEMANTIC
DATA TYPE DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Detection of semantic data types is a very crucial task in data science for automated
data cleaning, schema matching, data discovery, semantic data type normalization
and sensitive data identification. Existing methods include regular expression-based
or dictionary lookup-based methods that are not robust to dirty as well unseen data
and are limited to a very less number of semantic data types to predict. Existing
Machine Learning methods extract a large number of engineered features from
data and build logistic regression, random forest or feedforward neural network
for this purpose. In this paper, we introduce DCoM, a collection of multi-input
NLP-based deep neural networks to detect semantic data types where instead of
extracting a large number of features from the data, we feed the raw values of
columns (or instances) to the model as texts. We train DCoM on 686,765 data
columns extracted from the VizNet corpus with 78 different semantic data types.
DCoM outperforms other contemporary results with a quite significant margin on
the same dataset achieving a support-weighted F1 score of 0.925.

1 INTRODUCTION

Robust data preprocessing pipeline enables organizations to make data-driven business decisions.
Most unstructured and semi-structured data after initial pre-processing is available in tabular format
for further processing. These tabular datasets have to go through a process of data curation and
quality check before consumption. Companies apply standard data quality checks/rules on business-
critical columns to access and maintain the quality of data. Additionally, some of these datasets
may contain sensitive information e.g. Protected Health Information (PHI), Personally Identifiable
Information(PII), etc and need to be masked/de-identified i.e. identifying all columns which are
Social Security Numbers, First Names, telephone numbers, etc. The first step in this data curation
and quality check process is column level semantic tagging/mapping. There have been many attempts
by Ramnandan et al. (2015), Limaye et al. (2010), Puranik (2012), Hulsebos et al. (2019), and
Zhang et al. (2019) to automate this process. Traditionally, Semantic tagging is usually done using
handcrafted rule-based systems e.g. tools from Google (2019), Microsoft (2019), etc. In some cases,
column descriptions are also available. However, as the data grows exponentially, the cost associated
with maintaining a rule-based system also increases. The semantic data type tagging is still largely
manual where data stewards manually scan through databases and map columns of interest. Most
ML-based approaches e.g. Zhang et al. (2019), Hulsebos et al. (2019) and Pham et al. (2016) use
corresponding metadata, atomic datatypes, column description along with handcrafted features as
input data for training the model.

We herein, propose DCoM-Deep Column Mapper; a generic collection of Deep learning based
Semantic mappers to map the columns to semantic data types. These models take the raw values of
the columns (or instances) as inputs considering those as texts and build NLP-based deep learning
architectures to predict the semantic type of the columns (or instances). We also extracted 19
engineered features and used those as auxiliary features to DCoM models. We refrained from
extracting a large number of features because we wanted to make the DCoM models learn those
features along with some interesting high-level features on their own, for better semantic data type
detection. As we are exploring NLP in this problem, we make the leverage of using advanced
NLP-based deep learning layers or models such as Bi-LSTM, BERT, etc.

1



Under review as a conference paper at ICLR 2022

2 RELATED WORK

Microsoft (2019) Power BI and Google (2019) Data Studio use some regular expression based
patterns for dictionary looks ups of column headers and values to detect a limited number of semantic
data types. Venetis et al. (2011) build a database of value-type mappings, then assign semantic types
using a maximum likelihood estimator based on column values. Syed et al. (2010) use column values
and headers to build a Wikitology query to map columns to semantic classes. Ramnandan et al.
(2015) use heuristics to first separate numerical and textual types, then describe those types using
the Kolmogorov-Smirnov (K-S) test and Term Frequency-Inverse Document Frequency (TF-IDF),
respectively. Pham et al. (2016) use slightly more features, including the Mann-Whitney test for
numerical data and Jaccard similarity for textual data, to train logistic regression and random forest
models. Goel et al. (2012) use conditional random fields to predict the semantic type of each value
within a column, then combine these predictions into a prediction for the whole column. Limaye
et al. (2010) use probabilistic graphical models to annotate values with entities, columns with types,
and column pairs with relationships. Puranik (2012) proposes a “specialist approach” combining the
predictions of regular expressions, dictionaries, and machine learning models. More recently, Yan &
He (2018) introduced a system that, given a search keyword and set of positive examples, synthesizes
type detection logic from open source GitHub repositories. Hulsebos et al. (2019) built a multi-input
deep neural network model for detecting 78 semantic data types, extracting 686, 765 data columns
from VizNet corpus from Hu et al. (2019). They extracted a total of 1,588 features for each column
to train the model, thus resulting in a support-weighted F1 score of 0.89, exceeding that of machine
learning baselines, dictionary and regular expression benchmarks, and the consensus of crowdsourced
annotations. Zhang et al. (2019) introduced SATO, a hybrid machine learning model to automatically
detect the semantic types of columns in tables, exploiting the signals from the context as well as the
column values. It combines a deep learning model trained on a large-scale table corpus with topic
modelling and structured prediction to achieve support-weighted and macro average F1 scores of
0.925 and 0.735, respectively, exceeding the state-of-the-art performance by a significant margin.
Recently Deng et al. (2020) used a structure-aware Transformer encoder to capture semantics and
knowledge in large-scale data. Wang et al. (2021) proposed Table Convolution Network and Suhara
et al. (2021) proposed a multi-task learning approach (called Doduo) which outperform the existing
results in semantic data type detection. Iida et al. (2021) devised a simple pre-training objective
(corrupt cell detection) that learns exclusively from tabular data and reaches the state-of-the-art on a
suite of table-based prediction tasks.

While in this paper we do not experiment with the context information of the column values, our
work is mostly aligned to Hulsebos et al. (2019). Keeping that in mind, we are planning to research
and implement the context of the column values in tables in our DCoM models for our future works.
The paper is organized as follows: Section 3 describes the data used for DCoM models. In Section 4
we present the details of data preparation and architecture for DCoM models. Section 5 contains the
training, evaluation and inference procedures of DCoM models while Section 6 discussed about the
results of extensive experiments. In Section 7, we talk about some known limitations from the data as
well as application point of view and finally, in Section 8, we present the concluding remarks and
some future directions.

3 DATA

We have used the dataset prepared by Hulsebos et al. (2019) and compared our model performance
with them considering their results to be baselines. This dataset contains 686,765 instances with
78 unique classes (or semantic data types). It is divided into 60/20/20 training/validation/testing
splits. The instance count for classes varies from 584 (affiliate class) to 9088 (type class). The count
distribution for classes is shown in Figure 2 of Appendix A. To provide a more clear picture of the
data a sample of the dataset is also shown in Table 7 of Appendix A.

4 PROPOSED METHOD

Prior approaches (Venetis et al., 2011; Limaye et al., 2010) to semantic type detection trained
models, such as logistic regression, decision trees, feedforward neural network (Hulsebos et al.,
2019), extracting various features from the data. We, on the other hand, treated the data like natural

2



Under review as a conference paper at ICLR 2022

language (text) and used the data itself as the input to the model. We used a very small number of
hand-engineered features unlike Hulsebos et al. (2019). Therefore, our DCoM models have two
inputs, the values of the instances as text or natural language and hand-engineered features. We
present two types of DCoM models based on the way we feed the text input to the model.

4.1 DCOM WITH SINGLE SEQUENCE INPUT

In this subsection, we discuss how the values of each instance can be fed to the model as a
single sequence input to the DCoM. Considering the scenario, we can not simply pass the in-
puts separating values of each input with any separator token. This gives the model wrong
information about the sequence of the data resulting in faulty training and poor performance
on the unseen data. For example, if we consider the last example from Table 7 and cre-
ate the input, Deletes the property <SEP> Lets you edit the value of the
property <SEP> Script execution will be stopped for the model, the model gets
to learn that the value Lets you edit the value of the property has a relative po-
sition between Deletes the property and Script execution will be stopped,
which is quite wrong because the values in an instance do not have any relative position between
them.

To mitigate the problem we introduce permutations from mathematics. With permutation, we order r
items from the set of ni items. Here ni items are all the values of an instance i, and r ∈ [1, n]. Doing
so, the above instance can be broken down into multiple subsets. A sample of the subset is shown
in Table 1. If we feed all the new instances of the subset to the model, it does not learn any relative
positional information of Lets you edit the value of the property with respect to
other values in that instance unlike earlier. Therefore, for the value Deletes the property,
the model only learns the relative positions of the tokens e.g. Deletes, the, property, etc
in a value, but not the relative position of the values in an instance. This helps the model getting the
actual information present in the data for accurate prediction on the output. This permutation method
also helps in augmenting new instances which help in training the data-hungry deep learning models
with enriched data. It is not feasible to generate all the possible permutations before the training
because of the huge number of subsets. Instead, during training, we sample r between 1 and n for
each of the instances and generate one permutation for each instance. More than one instance can be
generated, but training the model for multiple epochs will result same for both cases.

New Instance class
Deletes the property description

Lets you edit the value of the property description
Script execution will be stopped description

Deletes the property <SEP> Lets you edit the value of the property description
Lets you edit the value of the property <SEP> Script execution will be stopped description

Deletes the property <SEP> Lets you edit the value of the property <SEP> Script execution will be stopped description
Deletes the property <SEP> Script execution will be stopped <SEP> Lets you edit the value of the property description
Lets you edit the value of the property <SEP> Deletes the property <SEP> Script execution will be stopped description

Table 1: Permutations on the values of a single instance from class description.

4.2 DCOM WITH MULTIPLE SEQUENCES INPUTS

Input preparation with this method is straightforward compared to the earlier method. In this method,
we also use permutations to generate new instances, but the value of r is fixed during training and it
is used as a hyper-parameter, where r ∈ [1,∞). Once we decide the value of r, r number of inputs
are used as text inputs to the model. Aggregation of embedding vectors of the inputs are performed
once they are generated using the shared embedding weights. If r > n, where n is the number of
values of an instance, then this scenario can be handled in two ways. The first way is to pad r − n
inputs and aggregate the embedding vectors only for the non-padded inputs. Another way is while
generating new instances use permutation with replacement to always sample r values out of n values.
Therefore, padding is not required for the latter method. We tried both approaches and did not observe
any significant difference in the result.

We used 19 out of 27 global statistical features from Hulsebos et al. (2019) as our engineered features
for the DCoM models because we are only considering the unique values of columns. These features
are normalized before feeding to the model. The complete list of these features is shown in Table
5. Once the text and engineered inputs are prepared, we attach LSTM/Transformer/BERT layers
to the text input. The output of the earlier layers is aggregated with the engineered inputs. We use

3



Under review as a conference paper at ICLR 2022

some feed-forward layer after that. Finally, we use one softmax layer with 78 units to get the
probability of each of the classes as output. This is our generalized architecture design of DCoM
models. Extensive hyper-parameter tuning is performed to finalize the number of layers, number of
units in a layer and many other hyper-parameters in the model. This topic is discussed in detail in
section 5. To name the DCoM models, the type of the text input and the name of the deep learning
layers are used as suffixes with the name DCoM, e.g. DCoM model with single instance input and
LSTM layers are named as DCoM-Single-LSTM. The architecture design of DCoM models for
both single sequence and multiple sequences inputs are shown in Figure 1.

Figure 1: Architecture diagram of (a) DCoM-Single and (b) DCoM-Multi models.

5 TRAINING, EVALUATION AND INFERENCE

We trained our model on the train dataset, validated it on the validation dataset and finally reported
our results on the test dataset. As class imbalance is present, like Hulsebos et al. (2019), we also
evaluated our model performance using the average F1-score, weighted by the number of columns
per class in the test set (i.e., the support).

The DCoM models are trained in Tensorflow 2 (Abadi et al., 2015) and the hyperparameters are tuned
using keras-tuner (O’Malley et al., 2019). For inputs of DCoM models, we tried permutations
with replacement as well as without replacement, but we did not observe any significant difference in
outputs. The value of r for which we observed best performance for DCoM-Multi models is 45. For
tokenizing text inputs, we experimented with character-based, word-based and BERT Wordpiece (Wu
et al., 2016) tokenizers, and we found out BERT Wordpiece tokenizer stood out to be working better
with respect to the other tokenizers because of the obvious reasons stated in the paper (Wu et al.,
2016). We compared our result with and without pre-trained embedding weights. It is observed that,
though in the final output there is no considerable difference, training with pre-trained embedding
weights take approximately 40% less amount of time to converge. We experimented with the small,
base and large variations of several BERT architectures and finalized DistilBERT-base (Sanh
et al., 2019) and Electra-small (Clark et al., 2020) based on their performances. We used
Bi-directional LSTM layers in all the DCoM-LSTM variants. For Dropout layers we used 0.3 as our
dropout rate. We experimented mean, sum, concatenation and weighted sum functions
for aggregation, but there was not any significant difference in outputs based on these variations.
We used Adam (Kingma & Ba, 2014) optimizer with initial learning rate 10−4. Along with this, we
implement a learning rate reducer with a factor of 0.5, which reduces the learning rate by 50% if the
model performance does not improve on the validation dataset after consecutive 5 epochs. Assigning
class weights does not have much effect on the test results. As this is a multi-class (78 classes)
classification problem, the DCoM models are trained with categorical-crossentropy loss
and validated with accuracy and average F1 score metric.

4



Under review as a conference paper at ICLR 2022

We tried two approaches for inference on the test dataset. In the first approach, we performed
single time inference on each of the instances of the test dataset. While doing so, we set r to be the
total number of values (ni) for each instance for DCoM-Single models to perform inference. For
DCoM-Multi, as r values if prefixed, some values will be truncated for inputs with total values
n > r. The other approach is to generate k (where, k > 1) instances with permutation, sampling r
values k times between 1 and ni, where ni is the total number of values for instance i. Therefore,
we get k class predictions for each of the instances and finally with majority voting we pick the
prediction class for each instance. We used k value to be 10 in our case and it is observed that for both
DCoM-Single and DCoM-Multi, we observed 0.2 − 0.5% improvement in the test average
F1 score, but this improvement comes with the price of increased inference time by approximately k
times.

6 RESULTS

We compared DCoM against Sherlock and other types of models shown by Hulsebos et al. (2019)
along with SATO (Zhang et al., 2019), TURL (Deng et al., 2020), TABBIE (Iida et al., 2021),
DODUO (Suhara et al., 2021) and TCN (Wang et al., 2021) assuming those to be our baseline models.
All the models are compared on the dataset used by Hulsebos et al. (2019) in Sherlock paper. Table 2
presents the comparison of results on the test dataset for each of the models. Columns Engineered
Features and k are specific to DCoM models. Engineered Features says whether the
19 engineered features are used with the text inputs while training the model. k column tells the
number of times inference is performed on a single test instance. It is discussed in detail in section 5.
Runtime column is the average time in seconds needed to extract features and generate a prediction
for a single sample, and Size column reports the space required by the trained models in MB. From
the table, it is seen that several DCoM models outperform all the baseline models in both F1 score
and inference run time with significant margins.

Hulsebos et al. (2019) extracted various features e.g. global statistics, character-level distributions,
word embeddings, paragraph vectors from the data and used those features to fit a feedforward neural
network model. On the other hand, we treated the data as texts and feed those to more advanced NLP-
based models. This allows the DCoM models to extract and learn more useful features that Hulsebos
et al. (2019) were unable to extract using hand-engineering. Along with this, hand-engineering takes
a considerable amount of time to calculate the features which increase the inference time of Sherlock
(Hulsebos et al., 2019) by 3 to 20 times with respect to DCoM models.

Method Engineered Features k F1 Score Runtime (s) Size (MB)
DCoM-Single-LSTM Yes 1 0.895 0.019 ± 0.01 112.1
DCoM-Single-LSTM Yes 10 0.898 0.152 ± 0.01 112.1
DCoM-Single-LSTM No 1 0.871 0.018 ± 0.01 97.8
DCoM-Single-LSTM No 10 0.877 0.141 ± 0.01 97.8
DCoM-Multi-LSTM Yes 1 0.878 0.046 ± 0.01 4.7
DCoM-Multi-LSTM Yes 10 0.881 0.416 ± 0.01 4.7
DCoM-Multi-LSTM No 1 0.869 0.044 ± 0.01 4.6
DCoM-Multi-LSTM No 10 0.871 0.401 ± 0.01 4.6
DCoM-Single-DistilBERT Yes 1 0.922 0.162 ± 0.01 268.2
DCoM-Single-DistilBERT Yes 10 0.925 1.552 ± 0.01 268.2
DCoM-Single-DistilBERT No 1 0.901 0.158 ± 0.01 202.3
DCoM-Single-DistilBERT No 10 0.904 1.492 ± 0.01 202.3
DCoM-Single-Electra Yes 1 0.907 0.093 ± 0.01 53.1
DCoM-Single-Electra Yes 10 0.909 0.894 ± 0.01 53.1
DCoM-Single-Electra No 1 0.890 0.092 ± 0.01 45.7
DCoM-Single-Electra No 10 0.892 0.887 ± 0.01 45.7
SATO (Zhang et al., 2019) - - 0.891 0.51 ± 0.01 25.7
TABBIE (Iida et al., 2021) - - 0.897 0.058 ± 0.01 613.4
DODUO (Suhara et al., 2021) - - 0.904 0.020 ± 0.01 155.8
TCN (Wang et al., 2021) - - 0.897 0.017 ± 0.01 108.7
TURL (Deng et al., 2020) - - 0.894 0.017 ± 0.01 110.2
Sherlock (Hulsebos et al., 2019) - - 0.890 0.42 ± 0.01 6.2
Decision tree (Hulsebos et al., 2019) - - 0.760 0.26 ± 0.01 59.1
Random Forest (Hulsebos et al., 2019) - - 0.840 0.26 ± 0.01 760.4
Dictionary (Hulsebos et al., 2019) - - 0.160 0.01 ± 0.03 0.5
Regular expression (Hulsebos et al., 2019) - - 0.040 0.01 ± 0.03 0.01
Consensus (Hulsebos et al., 2019) - - 0.320 33.74 ± 0.86 -

Table 2: Support-weighted F1 score, runtime at prediction, and size of DCoM and other benchmarks

5



Under review as a conference paper at ICLR 2022

Type F1 Score Precision Recall Support

Top 5 Types

ISBN 0.988 0.999 0.993 1430
Grades 0.988 0.995 0.992 1765
Birth Date 0.987 0.985 0.986 479
Jockey 0.983 0.988 0.986 2817
Industry 0.984 0.984 0.984 2958

Bottom 5 Types

Person 0.813 0.596 0.688 579
Rank 0.586 0.764 0.663 2978
Director 0.702 0.549 0.616 225
Sales 0.667 0.435 0.526 322
Ranking 0.695 0.348 0.464 439

Table 3: Top and bottom five types by F1 score on the test dataset for DCoM-Single-DistilBERT
model variant.

Examples True Type Predicted Type

Low Precision
1, 5, 4, 3, 2 Day Rank
1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Region Rank
1, 2, 3 Position Rank

Low Recall
41, 2, 36 Ranking Rank
0, 2, 4 Ranking Plays
1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Ranking Rank

Table 4: Examples of low precision and low recall types on the test dataset for
DCoM-Single-DistilBERT model variant.

6.1 PERFORMANCE FOR INDIVIDUAL TYPES

Following Hulsebos et al. (2019), we also prepared Table 3 which displays the top and bot-
tom five types, as measured by the F1 score achieved by the best performing DCoM model,
DCoM-Single-DistilBERT for single inference (k = 1) for that type. . High performing
classes such as grades, industry, ISBN, etc. contain a finite set of valid values which help DCoM
models to extract distinctive features with respect to the other classes. To understand types for which
DCoM-Single-DistilBERT performs poorly, we include incorrectly predicted examples for the
lowest precision type (Rank) and the lowest recall type (Ranking) in Table 4. From the table, it is
observed that purely numerical values or values appearing in multiple classes, cause a challenge for
the DCoM models to correctly classify the semantic type of the data. This issue is discussed in detail
in section 7.

6.2 FEATURE IMPORTANCE

To calculate the feature importance of 19 engineered features used in trained
DCoM-Single-DistilBERT model, we extracted the learned feature weight matrix, W
from the dense layer used after the engineered features input, where W ∈ R19×D. Here D is the
number of units used in the dense layer. W contains the weights/contribution of each of the 19
features on each of the D units, thus forming a 19 × D array, which contains both positive and
negative values based on the direction of contribution. We take the absolute value of all the elements
of W , as we are only interested in the amount of contribution of each of the engineered features, not
the direction. After that, we take the mean across the 19 features that result in a 19-dimensional array.
We normalized the array by dividing the maximum value of the array by each of the elements. Table
5 enlists the importance of the engineered features in decreasing order. The feature importance score
of the engineered features changes with the different variants of DCoM models but the rank of the
top 10 features remain intact.

7 KNOWN LIMITATIONS

The major limitation of the process is with the pre-processed data prepared by Hulsebos et al. (2019)
used to train DCoM models. The same values of instances are present in multiple classes, thus

6



Under review as a conference paper at ICLR 2022

Rank Aux Features Score
1 Std of # of Numeric Characters in Cells 1.00
2 Std of # of Alphabetic Characters in Cells 0.63
3 Entropy 0.63
4 Std of # of Special Characters in Cells 0.62
5 Std of # of Words in Cells 0.53
6 Mean # Words in Cells 0.50
7 Mean # of Numeric Characters in Cells 0.48
8 Minimum Value Length 0.45
9 Kurtosis of the Length of Values 0.41
10 Mean # Special Characters in Cells 0.39
11 Number of Values 0.34
12 Fraction of Cells with Alphabetical Characters 0.33
13 Fraction of Cells with Numeric Characters 0.31
14 Sum of the Length of Values 0.31
15 Maximum Value Length 0.30
16 Skewness of the Length of Values 0.28
17 Mean # Alphabetic Characters in Cells 0.28
18 Median Length of Values 0.27
19 Mode Length of Values 0.20

Table 5: Feature importance of 19 engineered features used in DCoM-Single-DistilBERT
model.

Values Class
F, M gender
M sex
M gender
M, F sex
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 ranking
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 position
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 rank
Fresno State, Oregon, UCLA, South Carolina team
Michigan, Indiana, Wisconsin, Purdue team name

Table 6: A sample example of class overlapping of the data used to build up models

resulting in strong class overlapping among some classes. It makes the models confusing during
training to learn distinctive features for proper classification. Therefore, for some classes in the test
dataset, the models perform very poorly. Table 6 presents a sample of examples of class overlapping
in the data prepared by Hulsebos et al. (2019). It is to be noted that the proportion of this class overlap
is considerably large in numbers with respect to the total number of instances. Therefore, it affects
the training as well as the model performance on the test dataset by a significant margin. Besides the
class overlap, faulty or wrong values are present in some classes.

From the application point of view of semantic data type detection models, identifying and preparing
a good dataset for training is very challenging as well as time-consuming. Non-standardized column
names are a major challenge large organizations face in doing semantic detection. For example,
social security numbers can be called as ssn, ssn_id, soc_sec_bnr etc. Non-
standardized data columns also pose a major challenge in information ambiguity. For example,
Gender column can have values Male, Female, unknown, or 0,1,2. Some organization
can have mixed attributes which poses a major challenge in data security. For example, use of PII
data like Social security Number in Customer ID columns. Some other challenges like
corrupt/missing metadata also exist.

7



Under review as a conference paper at ICLR 2022

8 CONCLUSION

DCoM presents a novel permutation-based method by which the instances can be fed to the deep
learning models directly as natural language. This takes the leverage of using more advanced NLP-
based layers/models unlike feedforward neural networks in Sherlock (Hulsebos et al., 2019). The
permutation-based method also helps in generating a large number of new instances from the existing
ones, helping DCoM models to boost their performance effectively, thus outperforming Sherlock
(Hulsebos et al., 2019) and other recent works by quite a significant margin in both F1 scores as well
as inference time. We also present an ensembling approach during inference time which improves
the test average F1 score by 0.2− 0.5%.

As mentioned earlier, the next step of it to introduce the context of the column values to DCoM
models while predicting the semantic types in relational tables.

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA: Pre-training
Text Encoders as Discriminators Rather Than Generators. arXiv e-prints, art. arXiv:2003.10555,
March 2020.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. TURL: Table Understanding through
Representation Learning. arXiv e-prints, art. arXiv:2006.14806, June 2020.

Aman Goel, Craig A. Knoblock, and Kristina Lerman. K.: Exploiting structure within data for
accurate labeling using conditional random fields. In In: Proceedings of the 14th International
Conference on Artificial Intelligence (ICAI, 2012.

Google. Google data studio, 2019. URL https://datastudio.google.com.

Kevin Hu, Neil Gaikwad, Michiel Bakker, Madelon Hulsebos, Emanuel Zgraggen, César Hidalgo,
Tim Kraska, Guoliang Li, Arvind Satyanarayan, and Çağatay Demiralp. Viznet: Towards a large-
scale visualization learning and benchmarking repository. In Proceedings of the 2019 Conference
on Human Factors in Computing Systems (CHI). ACM, 2019.

Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel Zgraggen, Arvind Satyanarayan, Tim
Kraska, Çagatay Demiralp, and César Hidalgo. Sherlock: A deep learning approach to semantic
data type detection. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery &#38; Data Mining. ACM, 2019.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. TABBIE: Pretrained Representations
of Tabular Data. arXiv e-prints, art. arXiv:2105.02584, May 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv e-prints,
art. arXiv:1412.6980, December 2014.

Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. Annotating and searching web tables
using entities, types and relationships. Proc. VLDB Endow., 3(1–2):1338–1347, September 2010.
ISSN 2150-8097. doi: 10.14778/1920841.1921005. URL https://doi.org/10.14778/
1920841.1921005.

Microsoft. Power bi, interactive data visualization bi, 2019. URL https://powerbi.
microsoft.com.

8

https://www.tensorflow.org/
https://datastudio.google.com
https://doi.org/10.14778/1920841.1921005
https://doi.org/10.14778/1920841.1921005
https://powerbi.microsoft.com
https://powerbi.microsoft.com


Under review as a conference paper at ICLR 2022

Tom O’Malley, Elie Bursztein, James Long, François Chollet, Haifeng Jin, Luca Invernizzi, et al.
Keras Tuner. https://github.com/keras-team/keras-tuner, 2019.

Minh Pham, Suresh Alse, Craig Knoblock, and Pedro Szekely. Semantic labeling: A domain-
independent approach. pp. 446–462, 10 2016. ISBN 978-3-319-46522-7. doi: 10.1007/
978-3-319-46523-4_27.

N. Puranik. A specialist approach for the classification of column data. 2012.

S.K. Ramnandan, Amol Mittal, Craig A. Knoblock, and Pedro Szekely. Assigning semantic labels to
data sources. In Fabien Gandon, Marta Sabou, Harald Sack, Claudia d’Amato, Philippe Cudré-
Mauroux, and Antoine Zimmermann (eds.), The Semantic Web. Latest Advances and New Domains,
pp. 403–417, Cham, 2015. Springer International Publishing. ISBN 978-3-319-18818-8.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. arXiv e-prints, art. arXiv:1910.01108, October 2019.

Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çağatay Demiralp, Chen Chen, and Wang-
Chiew Tan. Annotating Columns with Pre-trained Language Models. arXiv e-prints, art.
arXiv:2104.01785, April 2021.

Zareen Syed, Timothy W. Finin, Varish Mulwad, and A. Joshi. Exploiting a web of semantic data for
interpreting tables. 2010.

Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen, Fei Wu, Gengxin
Miao, and Chung Wu. Recovering semantics of tables on the web. Proc. VLDB Endow., 4
(9):528–538, June 2011. ISSN 2150-8097. doi: 10.14778/2002938.2002939. URL https:
//doi.org/10.14778/2002938.2002939.

Daheng Wang, Prashant Shiralkar, Colin Lockard, Binxuan Huang, Xin Luna Dong, and Meng
Jiang. TCN: Table Convolutional Network for Web Table Interpretation. arXiv e-prints, art.
arXiv:2102.09460, February 2021.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson,
Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s Neural
Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv
e-prints, art. arXiv:1609.08144, September 2016.

Cong Yan and Yeye He. Synthesizing type-detection logic for rich semantic data types using open-
source code. In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD ’18, pp. 35–50, New York, NY, USA, 2018. Association for Computing Machinery.
ISBN 9781450347037. doi: 10.1145/3183713.3196888. URL https://doi.org/10.1145/
3183713.3196888.

Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, Çağatay Demiralp, and Wang-Chiew
Tan. Sato: Contextual Semantic Type Detection in Tables. arXiv e-prints, art. arXiv:1911.06311,
November 2019.

9

https://github.com/keras-team/keras-tuner
https://doi.org/10.14778/2002938.2002939
https://doi.org/10.14778/2002938.2002939
https://doi.org/10.1145/3183713.3196888
https://doi.org/10.1145/3183713.3196888


Under review as a conference paper at ICLR 2022

A DATASET DETAILS

Figure 2: Count of instances for each of the 78 classes in the dataset Hulsebos et al. (2019).

Instance Class
1, 2, 3, 4, 5, 6, 7, 8 day
4:59, 2:44, 2:04, 2:05, 1:13, 3:14 duration
Education, Poverty, Unemployment, Employment category
c;, end-code, code name, label name command
31 years, 22 years, –, 39 years, 24 years age
1, 2 position
LA, CA, AL, Warwickshire] state
Deletes the property, Lets you edit the value of the property, Script execution will be stopped description

Table 7: A sample of the dataset.

10


	Introduction
	Related Work
	Data
	Proposed Method
	DCoM with Single Sequence Input
	DCoM with Multiple Sequences Inputs

	Training, Evaluation and Inference
	Results
	Performance for Individual Types
	Feature Importance

	Known Limitations
	Conclusion
	Dataset Details

