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Abstract

Minimum Bayes Risk (MBR) decoding can001
significantly improve translation performance002
of Multilingual Large Language Models003
(MLLMs). However, MBR decoding is com-004
putationally expensive. We show how the re-005
cently developed Reinforcement Learning tech-006
nique, Direct Preference Optimization (DPO),007
can fine-tune MLLMs to get the gains of MBR008
without any additional computation in infer-009
ence. Our method uses only a small mono-010
lingual fine-tuning set and yields significantly011
improved performance on multiple NMT test012
sets compared to MLLMs without DPO.013

1 Introduction014

MBR decoding (Kumar and Byrne, 2004; Eikema015

and Aziz, 2022; Suzgun et al., 2023) is a two-016

pass procedure that generates multiple transla-017

tion hypotheses and selects a hypothesis based on018

Bayesian risk. Recent work (Garcia et al., 2023;019

Suzgun et al., 2023; REDACTED, 2023) has shown020

that MBR decoding can significantly boost the021

translation performance of MLLMs (Lin et al.,022

2022; Muennighoff et al., 2023; Zeng et al., 2023a),023

outperforming greedy decoding and beam search.024

However, MBR decoding is expensive, both in com-025

putation and in latency.026

Our goal is to fine-tune a base MLLM so027

that it has the same single-pass decoding per-028

formance as MBR decoding. We propose1 a029

novel self-supervised fine-tuning method based on030

DPO (Rafailov et al., 2023). Our method uses031

MBR decoding on an MLLM to produce a pref-032

erence dataset consisting of pairs of ranked trans-033

lations. The DPO algorithm is used to fine-tune034

the MLLM to prefer the higher-ranked transla-035

tions over lower-ranked ones. MLLMs optimized036

for MBR preference achieve significantly better037

1Reviewers: This work originally appeared in an MPhil dis-
sertation submitted in August 2023, redacted for anonymity.

translation performance when decoded with beam 038

search, achieving translation quality on par with 039

MBR decoding of the original model. 040

2 MBR and DPO 041

We follow the expectation-by-sampling approach 042

to MBR (Eikema and Aziz, 2022). Given a set of 043

sampled translations H(x) = {y′ ∼ P (·|x)} and a 044

loss (or utility) function L(·, ·), the score (negative 045

Bayes risk) of each translation is found as 046

S(y) = − 1

|H(x)|
∑

y′∈H(x)

L(y′,y) (1) 047

and the MBR hypothesis is then computed as 048

y∗ = argmax
y∈H(x)

S(y) (2) 049

This is simple but expensive. Our goal is to train a 050

model that produces translations with scores con- 051

sistent with MBR, but without multi-step decoding. 052

2.1 DPO Fine-Tuning Objective 053

DPO (Rafailov et al., 2023) reformulates the usual 054

approach to Reinforcement Learning from Human 055

Feedback (RLHF) so as to avoid a distinct reward 056

modelling step. The typical RLHF criteria is 057

max
πθ

Ex∼D,y∼πθ(y|x) [rϕ(x,y)] (3) 058

− βDKL [πθ(y|x) ∥ πref(y|x)] 059

where rϕ is a reward model trained from human 060

feedback, πθ is the model being trained, and πref is 061

the reference model. DPO effectively replaces the 062

reward model with a preference distribution based 063

on πθ, the model being trained; DPO also retains 064

the KL regularization term with weighting β. 065

The preference dataset D for DPO consists of 066

triplets (x,yw,yl) where x is the input prompt, 067

yw is the winnng (prefered) response, and yl is the 068
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losing (disprefered) response. DPO uses the lan-069

guage model likelihood to approximate the reward070

as βlog πθ(y|x)
πref(y|x) . During training, with πθ typically071

initialized from πref, the objective is to maximize072

the expected reward margin between yw and yl:073

LDPO = −E(x,yw,yl)∼D[logσ(M(yw,yl,x, θ))]
(4)074

where the reward margin M(yw,yl,x, θ) is075

β (log
πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

) (5)076

2.2 Related Work in Translation077

Previous work has explored the effectiveness of078

enhancing the translation performance of LLMs079

via Reinforcement Learning (RL) algorithms or su-080

pervised fine-tuning. Dong et al. (2023) proposed081

RAFT that iteratively generates samples and fine-082

tunes the model on the filtered samples ranked by083

a reward model. Gulcehre et al. (2023) proposed084

ReST that uses similar method for translation task,085

where they apply several fine-tuning steps on a086

sampled dataset, each time higher ranked samples.087

Similar to our pairwise preference learning,088

Zeng et al. (2023b) introduced a framework TIM089

to enhance the translation performance of LLMs090

by learning to compare good translations and bad091

translations via a preference learning loss.092

Contemporaneous with this work, Finkelstein093

et al. (2023) proposed MBR fine-tuning, which fine-094

tunes an NMT model on the MBR decoding outputs095

generated either by the model itself or by an LLM.096

However, their MBR fine-tuning utilizes only the097

final translations of MBR decoding whereas our098

fine-tuning method uses sets of sampled transla-099

tions ranked by MBR, thus enabling the model to100

learn the same ranking preferences as MBR.101

3 Methodology102

Our method combines MBR decoding and DPO103

fine-tuning (REDACTED, 2023). We use the MBR104

procedure to calculate a score (Equation 1) for each105

of a set of translation hypothesis generated by the106

base model. We then fine-tune the base model us-107

ing the DPO objective (Equations 4,5) where the108

winning and losing hypotheses provided to DPO109

are chosen based on their relative MBR scores. If110

successful, the fine-tuned model will have learned111

to rank translations consistently with MBR decod-112

ing under the base model.113

3.1 Creation of the DPO Preference Sets 114

Following Eikema and Aziz (2022), we use sam- 115

pling to generate the translation hypotheses that 116

will be used in DPO. For a source sentence x we 117

use simple ancestral sampling with a temperature 118

of 0.7 to create a set of translations H(x) = {y ∼ 119

πbase(y|x)} of size |H(x)|. We use this collection 120

as both the MBR evidence and hypothesis spaces 121

(Goel and Byrne, 2000). 122

The hypotheses in H(x) are ordered by their 123

MBR scores as y1,y2, ...,y|H| with the BLEURT 124

metric (Sellam et al., 2020) as the utility function. 125

The ordering reflects the MBR preference, i.e. y1 126

would be the most preferred MBR hypothesis. 127

Preference Selection Strategies DPO requires a 128

set of preference triplets D = {(x,yw,yl)} where 129

yw has better MBR score than yl and both of the 130

hypotheses are selected from the hypothesis set 131

H(x). There are numerous strategies for selecting 132

the preference pairs (yw,yl) from the hypothesis 133

set. We experimented with four selection schemes: 134

1. BW is a simple strategy that selects the 135

best and worst translation hypotheses from 136

the ranked sets. For each source sen- 137

tence x, we only have one preference triplet 138

(x,y1,y|H(x)|). 139

2. BMW adds the middle hypothesis ym from 140

the ranked lists with index m = ⌈|H(x)|/2⌉. 141

This gives two triplets per source sentence: 142

(x,y1,ym) and (x,ym,y|H(x)|). 143

3. CP selects consecutive pairs from the ranked 144

list, yielding |H(x)| − 1 triplets per source 145

sentence, as (x,y1,y2), (x,y2,y3), . . . 146

4. CPS introduces a stride into the CP selection 147

strategy so as to avoid requiring DPO to learn 148

distinctions between translations that are sim- 149

ilarly ranked. For example, with a stride of 2 150

we select triplets (x,y1,y3), (x,y3,y5), . . . 151

3.2 DPO Fine-Tuning 152

With a set of preference triplets D selected by one 153

of the schemes above, DPO fine-tuning proceeds 154

as described in Section 2.1 and by Rafailov et al. 155

(2023). The base model serves as the reference 156

model in Equation 4. The base model is also used 157

to initialise πθ, which is the model being fine-tuned. 158

The only DPO hyper-parameter we tune is β, which 159

regulates how the fine-tuned model departs from 160

the reference model Rafailov et al. (2023). 161
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Figure 1: Reward margins for DPO MBR fine-tuning
of BLOOMZ and BLOOMZ-mt with BMW and CPS
(stride of 2) selection strategies. Margins are calculated
on the Zh-En fine-tuning set (WMT20 test set) as fine-
tuning proceeds over one epoch. Results are plotted as
moving averages with a window size of 20. CPS yields
more preference pairs than BMW.

4 DPO MBR Fine-Tuning and MT162

Datasets: We evaluate translation on the WMT21163

news translation test sets (Akhbardeh et al., 2021)164

and the WMT22 general translation for Chinese-165

English (Kocmi et al., 2022), and the IWSLT 2017166

test set for French-English (Cettolo et al., 2017).167

For DPO fine-tuning we use the source language168

text in the WMT20 test sets for Chinese-English169

(Barrault et al., 2020) and IWSLT 2017 validation170

sets for French-English. We do not use the cor-171

responding reference translations, as DPO MBR172

fine-tuning is unsupervised. The fine-tuning and173

test sets are distinct and do not overlap.174

Models: We use the BLOOMZ and BLOOMZ-mt175

models (Muennighoff et al., 2023) with 7.1 bil-176

lion parameters as our base model. BLOOMZ-mt177

was pre-trained on 366 billion tokens from mono-178

lingual texts and was fine-tuned for translation179

task on Flores-200 (NLLB Team et al., 2022) and180

Tatoeba (Tiedemann, 2020) datasets. To prompt the181

model for translation, we include two randomly se-182

lected translation examples from the fine-tuning set183

into the input prompt as demonstration examples;184

these prompts are kept fixed throughout.185

Evaluation Metrics: We use two evaluation met-186

rics: BLEU (Papineni et al., 2002) and BLEURT187

(Sellam et al., 2020). We follow Garcia et al. (2023)188

and use BLEURT as the main evaluation metric.189

BLEU serves only as a safety check: DPO fine-190

tuning should increase BLEURT with no decrease191

in BLEU.192

Baselines and Targets: We take the base model193

and evaluate it on all the test sets with both beam194

search and MBR decoding. Our fine-tuned models,195
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Figure 2: Reward margin distributions over all pref-
erence pairs extracted via the BMW scheme from a
held-out dataset (WMT18 Zh-En test). Distributions
are gathered over the entire held-out set at model check-
points at the beginning, a quarter, middle, three quarters,
and end of one epoch of DPO fine-tuning. |H| = 8
and β = 0.7. DPO fine-tuning generalises beyond its
fine-tuning set and yields improved reward margins on
held-out data.

when decoded with beam search, should achieve 196

similar performance as MBR decoding under the 197

base model and show improvement over the base 198

model. We investigate two questions: 199

(1) Can DPO teach MLLMs to learn their MBR 200

translation preferences? 201

(2) Does preference learning with DPO lead to 202

improved translation? 203

4.1 DPO Fine-Tuning Teaches a MLLM to 204

Learn Its MBR Preferences 205

Figure 1 shows that the reward margins remain 206

positive and, with some fluctuations, increase as 207

fine-tuning proceeds, for all three models. This 208

suggests that DPO MBR fine-tuned models learn to 209

put more probability mass on the winning hypothe- 210

ses. The larger the margins, the more the models 211

prefer the winning over the losing hypotheses. 212

To further investigate DPO MBR fine-tuning, we 213

plot the distribution of reward margins on a held- 214

out set, shown in Figure 2. The median of the dis- 215

tributions increase consistently as fine-tuning pro- 216

ceeds, indicating that the MBR preferences learned 217

in fine-tuning also generalize to unseen data. 218

4.2 DPO MBR Translation 219

Table 1 gives our main translation results. Com- 220

paring Rows 3 & 4 and 7 & 8, we can see 221

that DPO MBR fine-tuned models, when decoded 222

with beam search, achieve similar performance in 223

BLEURT (≈ ±1) as the base model decoded with 224

MBR. Both configurations outperform the base 225

model’s beam search results by ≈ 3 BLEURT. 226
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# Model (Decoding) WMT21 WMT22 IWSLT17

zh-en en-zh zh-en en-zh fr-en en-fr

1 BLOOMZ (Beam) 59.6 | 16.4 59.2 | 22.3 59.9 | 14.0 55.9 | 22.2 72.7 | 38.1 69.3 | 37.6
2 BLOOMZ (MBR |H| = 8) 61.9 | 14.3 62.5 | 19.7 62.1 | 11.6 62.7 | 20.3 73.6 | 34.2 70.4 | 32.6
3 BLOOMZ (MBR |H| = 32) 63.5 | 15.0 64.7 | 20.2 64.0 | 12.4 64.9 | 21.2 74.8 | 36.3 72.6 | 34.1
4 BLOOMZ-DPO-MBR (Beam) 62.3 | 17.2 62.5 | 23.7 64.0 | 15.6 64.2 | 26.5 76.5 | 40.6 72.2 | 38.9

5 BLOOMZ-mt (Beam) 60.3 | 16.4 59.2 | 22.5 60.9 | 14.7 59.0 | 26.2 74.8 | 38.7 70.3 | 37.8
6 BLOOMZ-mt (MBR |H| = 8) 61.6 | 13.5 62.6 | 20.2 63.0 | 12.2 64.7 | 23.3 75.4 | 35.2 71.0 | 31.8
7 BLOOMZ-mt (MBR |H| = 32) 63.4 | 14.3 64.9 | 20.8 64.8 | 13.0 66.8 | 24.0 76.3 | 36.9 73.2 | 33.8
8 BLOOMZ-mt-DPO-MBR (Beam) 63.9 | 18.0 64.0 | 22.7 65.1 | 15.9 67.6 | 26.9 76.5 | 40.4 71.9 | 38.3

Table 1: Translation performance in BLEURT and BLEU (BLEURT | BLUE) for models with beam search and
MBR decoding on two language pairs from WMT21 news translation test sets, WMT22 general translation test
sets, and IWSLT 2017 test sets. DPO-MBR indicates our translation performance with our fine-tuning method.
All the DPO MBR models were fine-tuned using the BMW strategy and β = 0.7. We set |H| = 32 to fine-tune
BLOOMZ-mt-DPO-MBR on English-Chinese direction, |H| = 16 on the French-English direction, and set |H| = 8
to fine-tune other DPO MBR models. DPO-MBR improves BLEURT and BLEU in all conditions.

# β BLEU BLEURT

1 (Baseline) 16.4 60.3

2 0.1 9.9 64.5
3 0.3 11.8 64.8
4 0.5 14.3 64.0
5 0.7 16.4 63.3
6 0.9 17.6 61.8

Table 2: Effect of regularization parameter β for DPO
MBR fine-tuning of BLOOMZ using CPS. |H| = 8.

DPO MBR improves the translation ability of227

BLOOMZ and BLOOMZ-mt across a range of test228

sets. BLOOMZ-mt shows a notable improvement229

in BLEURT after DPO MBR fine-tuning, achieving230

the best performance on four out of six test sets.231

4.2.1 KL-Divergence Regularization232

We investigated the role of β, the KL-divergence233

regularization factor, in DPO. Table 2 shows234

that fine-tuning with small β values yields high235

BLEURT score (exceeding 64), but also a degrada-236

tion in BLEU (from 16.4 to less than 12). Anecdo-237

tally, we find that small values of β lead to repeti-238

tive outputs that are penalised heavily under BLEU.239

Gains in both BLEU and BLEURT are readily240

found, but we conclude that DPO MBR fine-tuning241

requires some care in regularization.242

4.2.2 Effects of Pair Selection Strategy243

Table 3 shows that models trained on preference244

datasets constructed with three different pair se-245

lection strategy achieve similar performance on246

WMT21 Zh-En, with BLEURT scores in the range247

62.9-63.9. DPO MBR appears robust to the se-248

lection of preference pairs. However, in terms of249

Selection Strategy |H|=8 |H|=16 |H|=32

BW 63.3 63.9 63.9
BMW 63.9 64.2 63.6
CPS (strides of 2, 4, and 8) 62.3 63.5 62.9

Table 3: WMT21 Zh-En BLEURT scores for BLOOMZ
with DPO MBR fine-tuning with different preference
pair selection strategies and hypothesis set sizes.

training efficiency, the BW and BMW strategies 250

require fewer preference pairs (1 and 2 per source 251

sentence, resp.) compared to the CP strategy. 252

4.2.3 Effects of Size of Hypothesis Set 253

Table 3 shows that the number of hypotheses 254

needed in the training preference dataset is less 255

than that needed for MBR decoding (Rows 3 & 7 256

in Table 1). The best performance (BLEURT of 257

63.9) can be achieved with 16 hypotheses for the 258

BW strategy and 8 hypotheses for the BMW strat- 259

egy, an improvement over MBR decoding of the 260

base model with |H| = 8 (Row 2 & 6 in Table 1). 261

5 Conclusion 262

We introduce DPO MBR fine-tuning, an unsuper- 263

vised preference optimization algorithm that lever- 264

ages the ranked lists from MBR decoding to teach 265

MLLMs the preference of MBR decoding. Our 266

method enables MLLMs to achieve significant per- 267

formance improvement when decoded with beam 268

search in one pass, on par with the performance 269

gained from two-pass MBR decoding2. 270

2Open source code for replicating these experiments will
be released via GitHub if accepted
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6 Limitations271

Our method was evaluated on WMT 2021 and272

WMT 2022 and IWSLT 2017 test sets, with high-273

resource languages only (English, Chinese, and274

French). While our fine-tuned models performed275

well on these diverse test sets, behaviour may be276

different on medium-resource or low-resource lan-277

guages or on other domains.278

Our experiments focus on BLOOMZ and279

BLOOMZ-mt due to the ease of working with them280

and because BLOOMZ-mt is fine-tuned for transla-281

tion. Other (M)LLMs may yield different results.282

We report MBR results using simple ancestral283

sampling. Other work (Freitag et al., 2023) has284

found that there may be advantages in using other285

sampling schemes, such as epsilon sampling, for286

MBR. Those other sampling methods potentially287

offer further gains beyond what we have already288

shown.289

We do not report human assessments of transla-290

tion quality to verify improvements, but we note291

that Freitag et al. (2022) have reported extensive re-292

sults showing that MBR decoding under BLEURT293

leads to improvements in translation quality as as-294

sessed by human judges. We therefore take im-295

provement in BLEURT as our main measurement296

of improved translation quality.297

7 Risks298

Our unsupervised fine-tuning technique could po-299

tentially amplify undesirable biases or language300

already present in the baseline systems. This could301

possibly happen if the MBR utility function, in our302

case BLEURT, somehow encourages consensus303

amongst similar translations that are also undesir-304

able. Mitigation should be straightforward, in that305

any monitoring of the baseline models could also306

be applied after DPO MBR fine-tuning to reject307

fine-tuned models that exhibit any increase in bad308

behaviour. Although it is not a focus of this work,309

DPO MBR could possibly be used as a strategy for310

risk mitigation by penalizing undesirable behaviour311

through introduction of specific penalties into the312

MBR utility function.313
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