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Abstract

We propose and analyse a novel statistical procedure, coined AgraSSt, to assess
the quality of graph generators which may not be available in explicit forms. In
particular, AgraSSt can be used to determine whether a learned graph generat-
ing process is capable of generating graphs which resemble a given input graph.
Inspired by Stein operators for random graphs, the key idea of AgraSSt is the
construction of a kernel discrepancy based on an operator obtained from the graph
generator. AgraSSt can provide interpretable criticisms for a graph generator train-
ing procedure and help identify reliable sample batches for downstream tasks. We
give theoretical guarantees for a broad class of random graph models. Moreover,
we provide empirical results on both synthetic input graphs with known graph
generation procedures, and real-world input graphs that the state-of-the-art (deep)
generative models for graphs are trained on.

1 Introduction

Generative models for graphs have received increasing attention in the statistics and machine learning
communities. Recently, deep neural networks have been utilised to learn rich representations from
graph structures and generate graphs [Dai et al., 2020, Li et al., 2018, Liao et al., 2019, You et al.,
2018]. However, due to the often opaque deep learning procedures, these deep generative models are
usually implicit, which hinders theoretical analysis to assess how close the generated samples are in
their distributional properties to the graph distribution they are meant to be sampled from.

Learning instead parametric models from an explicit pre-specified probability distribution class would
allow to use the learned parameters for model assessment. However, parametric models may only
capture a fraction of the graph features and have restricted modelling power. Parameter estimation can
be inconsistent [Shalizi and Rinaldo, 2013] even for well-specified models, and may lead to wrong
conclusions in model assessments. Using instead deep generative models for graphs may surpass
some of these issues by learning rich graph representations, but methods to assess the quality of such
implicit graph generators are lacking. In principle, nonparametric hypothesis tests can be useful to
assess complex models, such as kernel-based tests procedures that utilise functions in a reproducing
kernel Hilbert space (RKHS) [Berlinet and Thomas, 2004]. When the models are described in the
form of explicit probabilities, goodness-of-fit tests [Chwialkowski et al., 2016, Liu et al., 2016] may
apply; however, goodness-of-fit testing procedures are generally not applicable for implicit models.
Instead, if a large set of samples from the target distribution is observed, one may generate samples
from the implicit model and perform a two-sample test such as a maximum mean discrepancy (MMD)
test [Gretton et al., 2007] for model assessment [Jitkrittum et al., 2017, Xu and Matsuda, 2020, 2021].
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Figure 1: Illustration for the assessment task: a graph generator G, which is learned from training
samples, generates a set of network samples (vertices in blue), and is assessed against the target graph,
which here is Padgett’s Florentine marriage network (with vertices in red labelled as family names).

Yet, in real-world applications, often only a single graph from the target distribution is observed
[Bresler and Nagaraj, 2018, Reinert and Ross, 2019]. In this case, the MMD methods for model
assessment via two-sample testing procedures cannot be used to assess implicit graph generators. To
our knowledge, beyond simple Monte Carlo tests with often poor power, no principled test is available
for assessing the quality of implicit graph generators. Figure.1 illustrates the task: a given graph
generator G which is learned from a set of training samples can generate samples of user-defined size.
The task is to assess whether G can generate samples from the same distribution that generates the
observed graph, for example, Padgett’s Florentine marriage network [Padgett and Ansell, 1993]. The
samples in Figure.1 are generated by a Cross-Entropy Low-rank Logit (CELL) model [Rendsburg
et al., 2020] trained on Padgett’s Florentine marriage network, but any graph generator could be used.

This paper makes three main contributions. (1) We introduce Approximate graph Stein Statistics
(AgraSSt) in Section 3, which opens up a principled way to understand implicit graph generators.
AgraSSt is a variant of a kernel Stein discrepancy based on an empirical Stein operator for conditional
distributions of general random graph models. The testing procedure is inspired by gKSS, a goodness-
of-fit testing procedure for explicit exponential random graph models (ERGMs) [Xu and Reinert,
2021]. (2) We provide theoretical guarantees for AgraSSt (Section 3). (3) We propose interpretable
model criticisms when there is a model misfit, and we identify representative synthetic sample batches
when the model is a good fit (Section 4). Further, in Section 2 we review gKSS. We provide empirical
results in Section 5 and a discussion in Section 6. Proof details, more background, theoretical and
empirical results, and implementation details are found in the Supplementary Information (SI).The
code for the experiments is available at https://github.com/wenkaixl/agrasst.

2 Background: graph kernel Stein statistics

In [Xu and Reinert, 2021], a goodness-of-fit testing procedure called gKSS for exponential random
graph models is introduced, which assumes that only a single network may be observed in the sample.
As AgraSSt is inspired by gKSS, and gKSS serves as comparison method when the observed network
is known to be generated from an exponential random graph model (ERGM), we briefly review gKSS.
The notation introduced in this section is used throughout the paper.

ERGMs are extensively used for social network analysis [Wasserman and Faust, 1994, Holland and
Leinhardt, 1981, Frank and Strauss, 1986]; a special case are Bernoulli random graphs. ERGMs
model random graphs via a Gibbs measure with respect to a chosen set of network statistics, such
as number of edges, 2-stars, and triangles. Denote by Glab

n , the set of vertex-labeled graphs on n
vertices, with N = n(n− 1)/2 possible undirected edges. Encode x ∈ Glab

n by an ordered collection
of {0, 1}-valued variables x = (x(ij))1≤i<j≤n ∈ {0, 1}N where x(ij) = 1 if and only if there is an
edge between i and j. We denote an (ordered) vertex-pair index s = (i, j) by s ∈ [N ] := {1, . . . , N}.
Let t1(x) count the number of edges in x and let t2(x), . . . , tk(x) count other small graphs on at
most n vertices in x (possibly scaled; for details including a precise definition, Definition A.3, see
SI A.2). For β = (β1, . . . , βk)

⊤∈ Rk and t(x) = (t1(x), . . . , tk(x))
⊤ ∈ Rk we say that X ∈ Glab

n

follows the exponential random graph model X ∼ ERGM(β, t) if for ∀x ∈ Glab
n ,

q(X = x) =
1

κn(β)
exp

(
k∑

l=1

βltl(x)

)
. (1)
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Here κn(β) is a normalisation constant. In this model, tℓ, ℓ = 1, . . . , k, are sufficient statistics.
Parameter estimation β̂l for βl is only possible when the sufficient statistics are specified a priori; see
SI.B.1 for estimation details. In modern graph learning procedures, e.g. deep generative learning, the
sufficient statistics tl of Eq.(1) may not be obtained explicitly.

In [Reinert and Ross, 2019] the exponential random graph distribution in Eq. (1) is characterised
by a so-called Stein operator, as follows. Let es ∈ {0, 1}N be a vector with 1 in coordinate s
and 0 in all others; x(s,1) = x + (1 − xs)es has the s-entry replaced of x by the value 1, and
x(s,0) = x − xses has the s-entry of x replaced by the value 0; moreover, x−s is the set of edge
indicators with entry s removed. For a function h : {0, 1}N → R, let ∆sh(x) = h(x(s,1))−h(x(s,0)).
Set qX(x(s,1)|x−s) = P(Xs = 1|X−s = x−s). Define the operator

Aβ,tf(x) =
1

N

∑
s∈[N ]

A(s)
q f(x), A(s)

q f(x) = q(x(s,1)|x−s)∆sf(x) +
(
f(x(s,0))− f(x)

)
. (2)

Then under mild conditions Reinert and Ross [2019] show that if Ep[Aβ,tf ] = 0 for all smooth
test functions f , then p must be the distribution of ERGM(β, t). Thus, this operator characterises
ERGM(β, t). For the derivation of AgraSSt it is of interest to see how this operator is obtained. It is
indeed the generator of a so-called Glauber Markov chain on Glab

n with transition probabilities

P(x → x(s,1)) = N−1 − P(x → x(s,0)) = N−1qX(x(s,1)|x).

With the ERGM Stein operator in Eq.(2) and a rich-enough RKHS test function class H, Xu and
Reinert [2021] propose a graph kernel Stein statistics (gKSS) to perform goodness-of-fit testing on an
explicit ERGM when a single network sample is observed. With the summand components in Eq.(2),
the Stein operator can be seen as taking expectation over vertex-pair variables S ∈ [N ] with uniform
probability P(S = s) ≡ N−1 independently of x, namely

Aqf(x) =
∑
s∈[N ]

P(S = s)A(s)
q f(x) =: ES [A(S)

q f(x)].

For a fixed graph x, gKSS is defined as

gKSS(q;x) = sup
∥f∥H≤1

∣∣∣ES [A(S)
q f(x)]

∣∣∣, (3)

where the function f is chosen to best distinguish q from x. For an RKHS H associated with
kernel K, by the reproducing property of H, the squared version of gKSS admits a quadratic form
representation gKSS2(q;x) = ⟨ES [A(S)

q K(x, ·)],ES [A(S)
q K(x, ·)]⟩, which can be computed readily.

More background can be found in SI B.2.

3 AgraSSt: Approximate Graph Stein Statistic

An implicit graph generator may not admit a probability distribution in the form of Eq.(1). However,
the idea of constructing Stein operators based on Glauber dynamics using conditional probability
distribution for ERGM serves as a motivation for us to propose Stein operators for conditional graph
distributions, to facilitate an (approximate) characterisation for implicit random graph models.

3.1 Stein operators for conditional graph distributions

Let q(x) = P(X = x) be any distribution with support Glab
n . Let t(x) denote a statistic on graphs

which takes on finitely many values k and let qk(x) = P(X = x|t(x) = k). We assume that
qk(x) > 0 for all k under consideration. For a generic outcome we write qt. We introduce a Markov
chain on Glab

n which transitions from x to x(s,1) with probability

q(x(s,1)|t(x−s)) = P(Xs = 1|t(x−s)) =: qt(x
(s,1)), (4)

and which transitions from x to x(s,0) with probability q(x(s,0)|t(x−s)) = 1− qt(x
(s,1)); no other

transitions occur. Let

A(s)
q,tf(x) = qt(x

(s,1))f(x(s,1)) + qt(x
(s,0))f(x(s,0))− f(x). (5)
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Algorithm 1 Estimating the conditional probability
Input: Graph generator G; statistics t(x);
Procedure:

1: Generate samples {x1, . . . , xL} from G.
2: For s ∈ [N ], i ∈ [n], let ns,k be the number of graphs xl, l ∈ [L], in which s is present and

t(x−s) = k.
3: Estimate the conditional probability of the edge s being present conditional on t(x−s) = k by an

estimator ĝt(s; k), using a look-up table or smoothing.
Output: ĝt(s; k) that estimates q(x(s)= 1|t(x−s) = k).

For an ERGM, t(x) could be taken as a sufficient vector of statistics1, but here we do not assume a
parametric network model q(x), and t(x) does not have to be sufficient statistics for q(x).

Recall that an operator is a Stein operator for a distribution µ if its expectation under µ is zero. The
following result provides a theoretical foundation for AgraSSt and is proven in SI.A.

Lemma 3.1. If qk(x) > 0 for all k, then A(s)
q,t=k is a Stein operator for the conditional distribution

of X given t(X) = k, and
∑

s A
(s)
q,t=k is a Stein operator for the conditional distribution of X given

t(X) = k.

In particular, Eqt=k
[A(s)

q,t=k] = 0. Intuitively, if the distribution of X̃ is close to that of X , then
with Ỹt=k denoting the corresponding random graph with distribution that of X̃ given t(X̃) = k, it
should hold that E[A(s)

q,t=k(Ỹt=k)] ≈ 0. In this way the Stein operator in Eq.(5) can be used to assess
similarity between distributions.

3.2 Approximate Stein operators

For implicit models and graph generators G, the Stein operator A(s)
q,t in Eq.(5) cannot be obtained

without explicit knowledge of qt(x(s,1)). However, given a large number for samples from the graph
generator G, the conditional edge probabilities qt(x

(s,1)) can be estimated. Here we denote by
q̂t(x

(s,1)) an estimate of qt(x(s,1)); some estimators will be suggested in Section 3.3.

AgraSSt performs model assessment using an operator which approximates the Stein operator A(s)
q,t .

We define the approximate Stein operator for the conditional random graph by

A(s)
q̂,tf(x) = q̂t(x

(s,1))f(x(s,1)) + q̂t(x
(s,0))f(x(s,0))− f(x). (6)

The vertex-pair averaged approximate Stein operator is

Aq̂,tf(x) =
1

N

∑
s∈[N ]

A(s)
q̂,tf(x). (7)

3.3 Estimation with chosen statistics on graphs

Using the Stein operator for conditional graph distributions, we can obtain the approximate Stein
operators in Eq. (6) and Eq. (7) for an implicit graph generator G by estimating qt(x

(s,1)). Here t(x)
are user-defined statistics. In principle, any multivariate statistic t(x) can be used in this formalism.
However, estimating the conditional probabilities using relative frequencies can be computationally
prohibitive when the graphs are very large and specific frequencies are rarely observed. Instead,
here we consider simple summary statistics, such as edge density, degree statistics or the number of
neighbours connected to both vertices of s. The estimation procedure is presented in Algorithm 1.

To estimate qt(x
(s,1)) in Step 3 of Algorithm 1, a look-up table can be used: If t(x) is a possibly

multivariate statistic with a discrete number of outcomes, generate many independent copies from the

1When conditioning on the sufficient statistics, for ERGMs the resulting Stein operator allows to establish
elegant approximation results [Bresler and Nagaraj, 2019, Reinert and Ross, 2019].
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synthetic graph generator, and count n(k, s), the number of times that vertex-pair s is present in the
simulated graphs and t(x−s) = k. Consistency follows from the law of large numbers. When using
smoothing to estimate the conditional probability, consistency will depend on the smoothing method.
If the underlying graph has exchangeable edge indicators then qt(x

(s,1)) does not depend on the
choice of vertex-pair s. Then we set set n(k) =

∑
s n(k, s), and Nk =

∑L
i=1

∑
s 1(t(x−s) = k); if

t = k we estimate q̂t(x
(s,1)) by

ĝt(k) =
nk

Nk
1(Nk ≥ 1). (8)

If kmin, kmax denote the minimum and maximum values of statistics from simulated graph samples,
then for k outside this set, the lookup table estimator Eq.(8) is set to estimate ĝ(k) = 0 .

If the underlying graph cannot be assumed to have exchangeable edge indicators or if the statistic t is
high dimensional, then any particular n(k, s) may not be observed very often. In such a situation we
can learn ĝt(s; k) using kernel ridge regression so that the conditional probabilities for similar t(x−s)
are predicted in a smooth manner. Estimating q(xs|t(x−s) ≤ k) instead of q(xs|t(x−s) = k) may
provide an alternative, smoother estimate for the conditional probabilities.

The next result shows that the approximate Stein operator achieves the Stein identity asymptotically.
For this result, which is proved in SI.A, we use the notation ∥∆f∥ = sups∈[N ],x ∥∆sf(x)∥.

Theorem 3.2. Assume q̂t(x
(s,1)) is a consistent estimator for qt(x(s,1)) as L → ∞. Then for any f

such that ||∆f || < ∞ we have Eq[Aq̂,tf(x)] → Eq[Aq,tf(x)] = 0 as L → ∞.

Proofs and additional analysis are included in SI A. Proposition A.1 in SI A.1 addresses consistent
estimation of q̂t and SI A.2 provides refined results for ERGMs, including a Gaussian approximation.

3.4 AgraSSt for implicit graph generators

The estimated conditional probabilities give an approximate Stein operator for Eq.(5). With the
appropriately defined Stein operator from an implicit model given in Eq.(6), we can define AgraSSt,
a kernel-based statistic analogous to gKSS in Eq.(3), as

AgraSSt(q̂, t;x) = sup
∥f∥H≤1

∣∣∣N−1
∑
s

A(s)
q̂,tf(x)

∣∣∣.
In SI.A we prove the following result for edge-exchangeable graphs, that is, graphs in which all
permutations of the edge indicators have the same distribution.

Theorem 3.3. If the graph is edge-exchangeable, then AgraSSt2(q̂, t;x) is a consistent estimator of

gKSS2(q;x) = N−2
∑

s,s′∈[N ]

〈
A(s)

q K(x, ·),A(s′)
q K(·, x)

〉
H
. (9)

Re-sampling Stein statistic A computationally efficient operator for large N can be derived via
re-sampling B vertex-pairs sb, b = 1, . . . , B, from {1, . . . , N}, chosen uniformly with replacement,
independent of each other and of x. This procedure gives rise to a randomised operator; this
re-sampled operator is

ÂB
q̂,tf(x) =

1

B

∑
b∈[B]

A(sb)
q̂,t f(x).

where the expectation of ÂB
q̂,tf(x) with respect to re-sampling is

EB [ÂB
q̂,tf(x)]= ES [A(S)

q̂,t f(x)] = Aq̂,tf(x).

The corresponding re-sampled AgraSSt statistic is

̂AgraSSt(q̂, t;x) = sup
∥f∥H≤1

∣∣∣ 1
B

∑
b∈[B]

A(sb)
q̂,t f(x)

∣∣∣.
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Algorithm 2 Assessment procedures for graph generators
Input: Observed graph x; graph generator G and generated sample size L; estimation statistic t;

RKHS kernel K; re-sampling size B; number of simulated graphs m; confidence level α;
Procedure:

1: Estimate q̂(x(s)|t(x−s)) based on Algorithm 1.
2: Uniformly generate re-sampling index {s1, . . . , sB} from [N ] with replacement.

3: Compute τ = ̂AgraSSt
2
(q̂;x) in Eq.(10).

4: Simulate {z′1, . . . , z′m} from G.

5: Compute τi = ̂AgraSSt
2
(q̂; z′i) in Eq.(10).

6: Estimate empirical quantile γ1−α via {τ1, . . . , τm}.
Output: Reject the null if τ > γ1−α; otherwise do not reject.

Similar to Eq.(9), the squared version of ̂AgraSSt admits a representation in a quadratic form,

̂AgraSSt
2
(q̂, t;x) = B−2

∑
b,b′∈[B]

ĥx(sb, sb′), (10)

where ĥx(s, s
′) = ⟨A(s)

q̂,tK(x, ·),A(s′)
q̂,t K(·, x)⟩H. We note that the randomised operator obtained

via re-sampling is a form of stochastic Stein discrepancy as introduced in Gorham et al. [2020].

For fixed x, under mild conditions the consistency of ̂AgraSSt2(q̂, t;x) as B → ∞ is ensured by the
following normal approximation, which follows from Proposition 2 in Xu and Reinert [2021].

Proposition 3.4. Assume that ĥx(s, s
′) in (10) is bounded and that ̂AgraSSt(q̂, t;x) has non-zero

variance σ2. Let Z be a normal variable with mean AgraSSt(q̂, t;x) and variance σ2. Then there
exists an explicitly computable constant C > 0 such that for all 3 times continuously differentiable
functions g with bounded derivatives up to order 3,

E[g( ̂AgraSSt(q̂, t;x))− g(Z)] ≤ C/B.

4 Applications of AgraSSt

4.1 Assessing graph generators

AgraSSt measures the distributional difference between the underlying distribution of an implicit
graph generator G and an observed graph x, in order to assess the quality of the generator G. The
hypothesis testing procedure for the null hypothesis that the observed graph x comes from the same
distribution that generates the samples, against the general alternative, is shown in Algorithm 2. We
emphasise two features of this procedure. Firstly, for a given generator G, AgraSSt directly assesses
the quality of the implicit model represented via samples from G. Secondly, the generator G can be
trained on the observed graph x, for example through a deep neural network generator. By learning
a deep neural network generator with training samples from the same distribution that generate x,
AgraSSt can assess the quality of the training procedure, i.e. whether the deep neural network is
capable of learning the desired distributions. Additional details are discussed in SI.C.

4.2 Interpreting trained graph generators

If the procedure in Algorithm 2 rejects the null hypothesis, the generator may not be suitable for
generating samples from the distribution that generates the one observed graph. Hence, understanding
where the misfit comes from can be very useful, especially for models trained from black-box
deep neural networks. AgraSSt provides an interpretable model criticism by comparing the learned
q̂t(x

(s,1)) with the underlying qt(x
(s,1)) when available, such as in synthetic experiments from a

specified ERGM. Such an interpretation can be also useful to re-calibrate training procedures.

4.3 Identifying reliable graph samples

If the procedure in Algorithm 2 does not reject the null hypothesis, there is not enough evidence to
reject the hypothesis that the generator is capable of generating graphs that resembles the observed
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graph. If a generator G has passed this hurdle then it can be recommended for generating graph
samples of the desired type. AgraSSt can also be put to use for the task of sample batch selection. In
many scientific studies, only a small batch of representative graph samples may need to be generated
for downstream tasks such as privacy-preserving methods where users only access a small number of
graph data, or a randomised experimental design for community interaction. To quantify the quality
of sample batches via p-values : (1) we generate a sample batch of size m, say; (2) we perform the
steps in Procedure from Algorithm 2; (3) we compute the p-value m−1

∑m
i=1 1(τ > τi), with τ as

in step 3 and {τ1, . . . , τm} as in step 5. If the p-value is smaller than a pre-specified threshold, we
generate another sample batch; otherwise we accept the current sample batch.

5 Empirical results

We first illustrate the performance of AgraSSt on synthetic data, where the null distribution is known
and we have control of the set-up; in particular we can illustrate the use of AgraSSt for interpretable
model criticism. Then we show the performance of AgraSSt on a real-world data application to assess
graph generators trained via various deep generative models.

5.1 Synthetic experiments

Only few competing approaches are available for our task and many of them are devised specifically
for ERGMs. Hence here we use an ERGM, namely the Edge-2Star-Triangle (E2ST) model with

q(x) ∝ exp (β1Ed(x) + β2S2(x) + β3Tr(x)) , (11)

where Ed(x) denotes the number of edges of x, S2(x) denotes the 2-Star statistics and Tr(x) denotes
the triangle statistics. The parameter vector β = (−2.00, 0.00, 0.01) is chosen as the null model,
while alternative models are constructed by perturbing the coefficient β2 as in Yang et al. [2018], Xu
and Reinert [2021]. This particular type of ERGM is chosen because it is the currently most complex
ERGM for which a thorough theoretical analysis for parameter estimation is available, see Mukherjee
and Xu [2013]2.

5.1.1 Related approaches for comparisons

To assess the performance of AgraSSt, we consider the following test statistics which are either
tailored or modified to perform assessment for implicit graph generators:

• Deg is a degree-based statistics for goodness-of-fit test of exchangeable random graphs
[Ouadah et al., 2020] based on the estimated variance of the degree distribution. The
statistics can be obtained from empirical degrees from samples generated from the implicit
model.

• TV_deg denotes the Total-Variation (TV) distance between degree distributions. Hunter
et al. [2008] proposes a simulation-based approach to construct graphical goodness-of-fit
tests. Xu and Reinert [2021] quantifies this approach using the total-variation distance
between the distributions of chosen network statistics; see SI.D.4 for details.

• MDdeg is the Mahalanobis distance between degree distributions [Lospinoso and Snijders,
2019].

In the synthetic experiment where the parametric model is known (Eq.(11)), the coefficients β are
estimated from generated samples for model assessment to provide our baseline approach, denoted
by Param. Details can be found in SI.B.1. Knowing the explicit null model in the synthetic setting,
we can also compute gKSS in Eq.(3), denoted by Exact as our benchmark. The Weisfeiler-Lehman
graph kernel [Shervashidze et al., 2011] with height parameter 3 is used for kernel-based approaches.

5.1.2 Simulation results

The rejection rates for various settings are shown in Figure.2. As the null model is relatively sparse
(edge density 11.2%), the sparser alternatives are much harder to distinguish while the denser ones are

2The model also satisfies conditions in Theorem 1.7 in Reinert and Ross [2019] where theoretical properties
are studied.
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(b) AgraSSt: different estimations
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(c) AgraSSt with re-sampling

Figure 2: Synthetic experiment on the E2ST model in Eq.(11) with β2 varying on the x-axis: 100
trials; α = 0.05; L = 1000. Abbreviations as in Section 5.1.

easier problems. Figure.2(a) compares the AgraSSt procedure with the approaches from Section 5.1.1;
it shows that AgraSSt performs competitively to the benchmark Exact, which is only available when
the model is known explicitly, and outperforms other assessment procedures for implicit models.
TV_deg is slightly less powerful than AgraSSt but outperforms Deg. For sparser alternatives (smaller
β2), MDdeg and Param have a much lower rejection rate and thus are less powerful. In Figure.2(b),
we compare the performance of AgraSSt using different estimation methods for q̂t(x(s,1)); the degree
deg(k) of a vertex k is calculated excluding the vertex-pair s = (i, j). The estimation methods are

• Sum_deg: for s = (i, j) we set t = deg(i) + deg(j);
• Cum_deg: the cumulative distribution function of sum of degrees are used;
• Bi_deg: for s = (i, j) the 2-dimensional vector t = (deg(i), deg(j)) is used;
• Edges: t is the edge density after removing vertex-pair s.

From the results, we see that Edges outperforms the other estimates, which echos the theoretical
results shown in Theorem A.5 in SI, as the coefficient β for E2ST satisfies its assumptions. Hence
this is the statistics which is used in our real-world experiments, with an exception of SI.D.3. We
also see that using both vertex degrees as 2d vector predicts substantially better than using predictors
based on sum of degrees of two vertices. In Figure.2(c), the comparison with re-sampling is shown.
With increase in re-sampling size, the power of AgraSSt increases.

5.2 Real-world applications on deep graph generators

We now assess the performances of a set of state-of-the-art deep generative models for graphs trained
on ERGMs and the Karate Club network collected by Zachary [1977]. The Karate Club network has
34 vertices and 78 edges representing friendships. Soon after the data collection the Karate Club
separated into two factions. This graph is a benchmark graph for community detection. One would
not expect this graph to be close to an G(n, p)3 graph or to be well modelled by an ERGM.

5.2.1 Graph generation methods

The graph generation methods to which we apply AgraSSt are the following.

• GraphRNN [You et al., 2018] is an architecture to generate graphs from learning two
recurrent neural networks (RNN), one a vertex-level RNN and the other an edge-level RNN.
The procedure starts from a breadth-first-search for vertex ordering; two RNNs are trained
from a sequential procedure.

• NetGAN [Bojchevski et al., 2018] utilises an adversarial approach by training an interplay
between a generator and a discriminator neural network on graph data.

• CELL [Rendsburg et al., 2020] improves on the NetGAN idea by solving a low-rank
approximation problem based on a cross-entropy objective.

• MC is the standard Monte-Carlo network sampling in the ergm suite in R and is used as a
baseline when the simulated network is known to follow the model in Eq.(1); q(x) needs to
be known.

3Bernoulli random graph of size n, edge probability p ∈ [0, 1].
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5.2.2 Generator assessment results

AgraSSt Deg MDdeg TV_deg

GraphRNN 0.42 0.02 0.04 0.27
NetGAN 0.81 0.13 0.61 0.54

CELL 0.05 0.06 0.09 0.12

MC 0.04 0.03 0.02 0.09

Table 1: Rejection rates on various assessment ap-
proaches, with L = 1000; 200 samples to simulate the
null; 100 trials; α = 0.05. The higher the rejection rate,
the worse the model fit. MC is the baseline.

We first train the generative models with
samples from ERGMs to assess their abil-
ity to generate ERGMs. The test results
are shown in Table.1. From the result,
we see that for the “reliable” MC genera-
tor all the assessment statistics presented
have well-controlled type-I error. Samples
generated from CELL deviate not too far
from the test level, indicating a good gen-
erative model for ERGMs. NetGAN and
GraphRNN both encounter a high rejec-
tion rate, implying that the generated sam-
ples that are not close to the training E2ST
model.

From the density based AgraSSt, taking a G(n, q) model, we can interpret the model misfit by
checking the estimated q̂. For the true E2ST model used to generate training samples, we have
= 0.112, while CELL has q̂ = 0.116 which is close to the null. GraphRNN estimates q̂ = 0.128
which is substantially higher than the null. Although GraphRNN can be powerful in learning local
patterns and structures for neighbourhoods [You et al., 2018], here it does not take the overall density
sufficiently into account. Due to its limited “look back” and absence of “look forward” on the
ordered vertex set during training, the over-generation of edges may have caused this significant
difference for learning ERGMs. NetGAN, on the other hand, produces a close estimate q̂ = 0.106.
However, counting triangles, it only has on average 12.6 triangles , which is far less from the null
with expected number of triangles 46.3. NetGAN, due to its random walk adversarial procedure, may
not be effective in learning such clustered patterns.

5.2.3 Case study: Karate Club network

AgraSSt Deg MDdeg TV_deg

GraphRNN 0.00 0.01 0.15 0.00
NetGAN 0.00 0.02 0.59 0.00

CELL 0.34 0.09 0.17 0.61

Table 2: p-values for models trained on the Karate Club
network; 100 samples to simulate the null distribution;
rejection at α = 0.05 is marked red.

Next, we assess the performances of these
generative models by training on the Karate
Club network [Zachary, 1977]. The p-
values for different testing procedures are
shown in Table.2. From the results, we
see that AgraSSt rejects samples generated
from both GraphRNN and NetGAN trained
with the Karate Club network. Although
the edge densities generated from the
trained GraphRNN (edge density 15.3%)
and NetGAN (edge density 13.4%) are comparable with the Karate Club edge density of 13.9%, vi-
sual inspection indicates that both GraphRNN and NetGAN samples exhibit a single large component
rather than two fairly separated communities in the Karate Club network. This difference is picked
up by AgraSSt, Deg and TV_deg, which all reject both models. On the other hand, CELL generates
samples that are not rejected by all tests at significance level α = 0.05. In Figure.5 in the SI, the
Karate Club network is shown in Figure.5(a). Samples from GraphRNN, NetGAN and CELL are
shown in Figure.5(b), 5(c) and 5(d) respectively.

SI D includes additional results, including on efficiency, and visualisations. A second case study —
the Florentine marriage network from Padgett and Ansell [1993] — is presented in SI D.2; additional
visualisations of the reliable sample batch selection procedure described in Section 4.3 are also given.

6 Discussions and future directions

In this paper, we propose AgraSSt, a unique general purpose model assessment and criticism
procedure for implicit random graph models. As it is based on a kernel Stein statistic, we are able
to give theoretical guarantees. AgraSSt not only solves an important problem but also opens up a
whole set of follow-up research problems of which we list a few here. (i). Currently AgraSSt is only
applied to undirected and unweighted graphs. Extensions to more general graphs as well as to time
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series of graphs will be interesting to explore in follow-up work. (ii). AgraSSt could be also helpful
to improve design and training of deep graph generative models, e.g. by regularising graph features if
there is a misfit. (iii). ERGMs allow for exogenous features to be included in the sufficient statistics.
AgraSSt can be based on a variety of statistics t(x); further examples are found in SI D.3. It would
also be possible to incorporate exogenous features in the statistics t(x) in AgraSSt, for example using
ideas from graph attention networks [Veličković et al., 2018]. Exploring this idea in more detail will
be another topic of further research.

As AgraSSt depends on the chosen summary statistic t(x), results have to be interpreted with regards
to the respective conditional distributions. Also multiple tests will have the p-values to be adjusted to
avoid misinterpretation of tests, which could have serious consequences for example in the area of
personal health. Investigating the effect of choice of t(x) will be part of future work.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods and Applications,
volume 8. Cambridge University Press, 1994.

Wenkai Xu and Takeru Matsuda. A Stein goodness-of-fit test for directional distributions. Interna-
tional Conference on Artificial Intelligence and Statistics, 2020.

Wenkai Xu and Takeru Matsuda. Interpretable Stein goodness-of-fit tests on Riemannian manifolds.
International Conference on Machine Learning, 2021.

Wenkai Xu and Gesine Reinert. A Stein goodness-of-test for exponential random graph models. In
International Conference on Artificial Intelligence and Statistics, pages 415–423. PMLR, 2021.

Jiasen Yang, Qiang Liu, Vinayak Rao, and Jennifer Neville. Goodness-of-fit testing for discrete
distributions via Stein discrepancy. In International Conference on Machine Learning, pages
5557–5566, 2018.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generating
realistic graphs with deep auto-regressive models. In International conference on machine learning,
pages 5708–5717. PMLR, 2018.

Wayne W Zachary. An information flow model for conflict and fission in small groups. Journal of
Anthropological Research, 33(4):452–473, 1977.

12


