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Introduction 
Cerebral microbleeds are hypointense, small, and round or ovoid lesions1,2; visible on magnetic 

resonance imaging (MRI) with gradient echo, T2*, or susceptibility weighted (SWI) imaging3–5. 

Assessment of cerebral microbleeds is mostly performed by visual inspection, using validated rating 

scales such as the Microbleed Anatomical Rating Scale (MARS)6 or Brain Observer MicroBleed Scale 

(BOMBS)7. In the past decade, prior to the rise of deep learning technology in medical image analysis8, 

semi-automated tools to assist with cerebral microbleed detection have been developed. These 

include techniques based on unified segmentation9, support-vector machines10, or the radial 

symmetry transform11–13. In the more recent years, owing to the great advances provided by deep 

learning techniques, the number of methods for fully automatic microbleed detection has increased 

considerably14–17. 

In this work, we explore the use of nnU-Net18 as a fully automated tool for microbleed segmentation. 

This self-configuring deep learning-based semantic segmentation method has shown good 

performance in a number of international biomedical segmentation competitions19, but has not been 

applied to the task of cerebral microbleed detection and segmentation. 

Material and methods 

Data 
Data was provided by the “Where is VALDO?” challenge of MICCAI 2021 (https://valdo.grand-

challenge.org/). It consisted of T1, T2, and T2* images of 72 subjects; all aligned in the T2*-space. A 

manual segmentation of microbleeds was provided for every subject as a binary image. 

Pre-processing 
The world coordinates of the T2* image was copied into the T1 and T2 images, because they did not 

exactly match for all subjects. Images were renamed to match the requirements of nnU-Net. No 

further pre-processing was performed. 

nnU-Net 
Different settings and configurations of nnU-Net were explored for this task. The final method consists 

of nnU-Net in the “3D full resolution U-Net” configuration trained on all data (fold = ‘all’). No post-

processing options of nnU-Net were used. 

Post-processing 
A number of post-processing options was explored, to reduce the number of false positive detections 

by the nnU-Net. However, visual inspection of the results showed that most false positive detections 

are most likely true microbleeds, which were missed during the initial visual rating (see Results). This 

is very common in a difficult task like visual rating of microbleeds and happens often20. Therefore, no 

post-processing was applied to avoid removing possible true detections. 

https://valdo.grand-challenge.org/
https://valdo.grand-challenge.org/


Results 
The figure on the right shows the progress of nnU-Net 

during training. The blue line is the training loss and the 

red line the validation loss. The green line shows the 

estimated Dice. 

After training, nnU-Net reports a mean estimated Dice 

of 0.80 over all training cases. The reported False 

Discovery Rate (FDR) is 0.16 and the False Negative 

Rate (FNR) is 0.15. 

Visual inspection of the results showed that most of the 

reported false positives could be an actual microbleed 

that might have been missed during visual rating. For 

example, this location (see Figure) in sub-101 on slice 

23: 

Discussion 
The organizers of the VALDO challenge posted the 

microbleed-task as a semantic segmentation task. 

However, owing to the blooming effect21 of iron 

deposits on MR images, the visible size and volume of 

a microbleed is dependent on a number of factors; 

including field strength and echo time. Having a 

microbleed detection task, as opposed to a 

segmentation task, might therefore have been more logical choice.  

Taking that into account, we first explored detection methods that then would be followed by a 

segmentation method, to obtain results suitable for the challenge. A number of methods were 

explored, including the nnDetection22 framework that recently won the Aneurysm Detection And 

segMentation (ADAM) challenge23. Intermediate empirical results showed that a detection method 

followed by a segmentation method might not outperform nnU-Net for this task. 

More information 
Source code is available at: https://github.com/hjkuijf/MixMicrobleedNet. The docker container 

hjkuijf/mixmicrobleednet can be pulled from https://hub.docker.com/r/hjkuijf/mixmicrobleednet.  
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