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Abstract

The emergence of Large Language Models001
(LLMs) has brought to light promising lan-002
guage generation capabilities, particularly in003
performing tasks like complex reasoning and004
creative writing. Consequently, distillation005
through imitation of teacher responses has006
emerged as a popular technique to transfer007
knowledge from LLMs to more accessible,008
Small Language Models (SLMs). While this009
works well for simpler tasks, there is a sub-010
stantial performance gap on tasks requiring in-011
tricate language comprehension and creativity,012
such as humor generation. We hypothesize013
that this gap may stem from the fact that cre-014
ative tasks might be hard to learn by imitation015
alone and explore whether an approach, involv-016
ing supplementary guidance from the teacher017
could yield higher performance. To address018
this, we study the effect of assigning a dual role019
to the LLM – as a “teacher” generating data, as020
well as a “critic” evaluating the student’s perfor-021
mance. Our experiments on humor generation022
reveal that the incorporation of feedback signif-023
icantly narrows the performance gap between024
SLMs and their larger counterparts compared025
to merely relying on imitation. As a result,026
our research highlights the potential of using027
feedback as an additional dimension to data028
when transferring complex language abilities029
via distillation.030

1 Introduction031

NLP is on a trajectory towards creating increasingly032

large models (OpenAI, 2023; Touvron et al., 2023).033

LLMs achieve high performance across many tasks034

in both zero and few-shot settings. However, there035

are growing concerns about the computational ef-036

ficiency and environmental sustainability of such037

approaches (Strubell et al., 2019).038

Knowledge distillation (Hinton et al., 2015b) has039

thus gained a renewed interest, where the term040

has evolved to denote the process of distilling the041

Figure 1: Performance gap between LLMs and SLMs:
Generations from a teacher LLM (Llama2) and a student
SLM (BART) finetuned on its outputs.

responses of LLMs to SLMs (West et al., 2022). 042

Recent work has explored the distillation of com- 043

monsense knowledge (Bhagavatula et al., 2023), 044

chain-of-thought reasoning (Li et al., 2023a), and 045

summarization abilities (Liu and Chen, 2022; Jung 046

et al., 2023) to smaller language models. However, 047

the exploration of distilling creative abilities such 048

as humor into SLMs remains an open and challeng- 049

ing area of research. 050

In this work, we explore the application of knowl- 051

edge distillation in the context of the creative 052

style-transfer task of conditional humor generation. 053

Given a literal text, the goal is to generate a hu- 054

morous meaning-preserving paraphrase, as shown 055

in Figure 1. While LLMs do not match the sub- 056

tleties of humor in human-written text (Hessel et al., 057

2023; Chakrabarty et al., 2023), they surpass their 058

smaller counterparts (Radford et al., 2019; Chen 059

et al., 2023; Hessel et al., 2023). 060

We argue that such creative tasks are challenging 061

for SLMs to learn. First, due to the inherent con- 062

straints of SLMs, such as reduced model capacity, 063

they are limited in their ability to explore diverse 064

solution spaces and generate innovative outputs. 065
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Second, although imitating a teacher model is a066

good starting point, it may result in superficial over-067

fitting to the teacher’s style rather than learning the068

task itself (Gudibande et al., 2023). Fig. 1 demon-069

strates that even after fine-tuning on the humorous070

responses from the LLM, the SLM outputs fall flat.071

Existing techniques that address this gap attempt072

to improve task understanding through distilling073

chains of thoughts (Mukherjee et al., 2023; Wang074

et al., 2023a). This approach is less applicable for075

creative generation tasks, which can’t be scripted.076

For instance, it is possible to solve a math reasoning077

problem systematically, but it is difficult to come078

up with a recipe for a joke (Hessel et al., 2023;079

West et al., 2023).080

To bridge this gap, and improve upon mimicry of081

the teacher, we propose a novel distillation frame-082

work involving both imitation and feedback. Fol-083

lowing the typical imitation stage in which the SLM084

learns from the LLM’s outputs, we use the LLM as085

a critic to provide feedback on the student’s outputs,086

facilitating iterative improvement.087

Evaluation of our student models on the proposed088

task based on EmpatheticDialogues (Rashkin et al.,089

2019) and Samsum (Gliwa et al., 2019) datasets090

confirms the advantage of learning from feedback;091

our student model, based on the small BART model,092

performs on par with LLMs that are orders of mag-093

nitude larger, such as Llama2-70B upto 65% of094

the time, and significantly outperform supervised095

fine-tuning by a margin of 18-20% . We assess096

the strengths and limitations of the critic in eval-097

uating the SLM by comparing it against human098

judgments. We found that our critics can match099

human judgements with up to 76% accuracy, but100

can also suffer from biases due to length, position101

or other biases. We explore the effect of data size,102

frequency of critic intervention, and the effect of103

potential evaluation biases on narrowing the gap104

between the SLM and LLM.105

Our work on distilling humor is a step towards106

more natural and engaging conversations (Ritchie107

et al., 2007), making SLMs more appealing for108

downstream applications where latency and com-109

putational efficiency need to be prioritized.1110

1We will make the code available upon publication.

2 Related Work 111

2.1 Computational Humor Generation 112

Computational humor is an interdisciplinary field at 113

the intersection of NLP and humor theory. Early ef- 114

forts in computational humor revolved around rule- 115

based systems and linguistically-motivated meth- 116

ods. Raskin (1979) introduced a semantic analysis 117

of humor which laid the foundation for subsequent 118

rule-based approaches to humor recognition (Mi- 119

halcea and Strapparava, 2005; Reyes et al., 2012; 120

Chen and Soo, 2018; Weller and Seppi, 2019). Con- 121

cerning the more challenging task of humor genera- 122

tion, early approaches were linguistically informed 123

and focused on specific types of humor, e.g. puns 124

or jokes (Ritchie, 2005; Petrović and Matthews, 125

2013). 126

With the advent of deep learning, the focus shifted 127

towards data-driven and neural approaches. This 128

ranges from using RNNs and GANs to create puns 129

(Yu et al., 2018; Luo et al., 2019), to more recent 130

transformer-based approaches (Garimella et al., 131

2020) that can complete or generate jokes. These 132

approaches enabled the generation of more con- 133

textually relevant and natural humor. Since neu- 134

ral approaches are primarily data-driven, this con- 135

currently led to the creation of large joke datasets 136

(Weller et al., 2020) and benchmarks (Hossain et al., 137

2020). 138

Recent research has delved into the generation of 139

figurative language such as sarcasm (Chakrabarty 140

et al., 2022), puns (Mittal et al., 2022), as well as 141

interactive chatbots with humor capabilities (Kul- 142

shreshtha et al., 2020). New multi-modal humor 143

benchmarks (Hessel et al., 2023) have been devel- 144

oped to gauge the humor understanding and ex- 145

planation abilities of LLMs. Weller et al. (2020) 146

proposed the first model for humor style transfer 147

building a transformer model that translates from 148

regular to humorous, and leveraging humor predic- 149

tion data from news headlines for humor genera- 150

tion. 151

2.2 LLMs as Evaluators 152

Automatic evaluation of Natural Language Genera- 153

tion (NLG) tasks is typically based on N-gram met- 154

rics such as BLEU (Papineni et al., 2002), ROUGE 155

(Lin, 2004) and embedding-based metrics such as 156

BERTScore (Zhang et al., 2020) which require 157

gold standard references. Recent research has ex- 158

plored a reference-free approach to assess NLG 159
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tasks by leveraging the implicit knowledge and in-160

struction following abilities of LLMs. Fu et al.161

(2023) proposed GPTScore, which prompts LLMs162

with instructions and aspect definitions (e.g. flu-163

ency or coherence). The score is computed by164

calculating the conditional probability of generat-165

ing the target text. GEval (Liu et al., 2023a) is166

an alternative metric, that presents the instructions167

in a form-filling paradigm and uses the probabil-168

ities of output tokens from LLMs to normalize169

the scores (e.g. score between 1 and 5) resulting170

in finer-grained continuous scores. In contrast to171

GPTScore and GEval, LLM-Eval (Lin and Chen,172

2023) uses a single prompt to evaluate multiple173

evaluation aspects, thus minimizing the calls to the174

LLM. Additionally, LLMs have also been used to175

assess the factuality of generated text (Zha et al.,176

2023). Mehri and Shwartz (2023) propose a learned177

evaluation metric via instruction tuning.178

2.3 Imitation Learning from LLMs179

The emergence of LLMs has caused a paradigm180

shift in NLP from traditional knowledge distilla-181

tion (Hinton et al., 2015a) to an imitation-based182

data or response distillation. These approaches183

use LLMs as training data generators and train a184

smaller language model on this data (West et al.,185

2022). With subsequent work demonstrating that186

this may be a sparse form of distillation, leading187

to the student mimicking the style of the teacher,188

but not the reasoning abilities (Mukherjee et al.,189

2023; Gudibande et al., 2023), further extensions190

have been developed to distill a complete “Chain-191

of-Thought” (Wei et al., 2023) from the teacher192

model (Li et al., 2023a; Wang et al., 2023a; Shrid-193

har et al., 2023; Magister et al., 2023; Hsieh et al.,194

2023), improving the performance of smaller lan-195

guage models.196

2.4 LLM-based Alignment197

A growing body of research leverages feedback198

from a language model to iteratively enhance its199

performance. This feedback may encompass writ-200

ten comments, numerical scoring, rankings, or ex-201

planations. Humpback (Li et al., 2023b) aims to202

construct a better instruction-tuning dataset through203

an iterative self-training algorithm. Self-Refine204

(Madaan et al., 2023) and REFINER (Paul et al.,205

2023) explore LLMs to engage in self-reflection,206

providing feedback and encouraging the use of this207

feedback to enhance their responses. I2D2 (Bha-208

gavatula et al., 2023) demonstrates that small lan-209

guage models may improve if trained on their re- 210

fined outputs generated using constrained decoding 211

and filtered with a simple supervised critic model. 212

Our work is inspired by BRIO (Liu et al., 2022, 213

2023b) for summarization, which reuses the gen- 214

eration model as the evaluation model to rank the 215

candidates with contrastive learning. However, we 216

avoid a ranking-based approach and use pairwise 217

feedback due to the challenges in mitigating po- 218

sitional and length biases among multiple gener- 219

ations. Concurrent to our work, Zephyr (Tunstall 220

et al., 2023) uses preference learning to align a 221

student model to user intent by using preferences 222

derived from different candidate models from a 223

large teacher. 224

3 Method 225

Our proposed knowledge distillation framework is 226

depicted in Fig. 2. Assuming that the teacher out- 227

performs the student in the humor generation task, 228

our objective is to bring the student’s performance 229

closer to that of the teacher. We attempt to achieve 230

this in two phases. First, in the imitation phase 231

(Sec 3.1), the student undergoes finetuning using 232

a set of humorous outputs O = O1, O2, ..., On gen- 233

erated by the teacher for a given input I . In the 234

critique phase (Sec 3.2), the finetuned student gen- 235

erates candidate output pairs P = P1, P2, which 236

are then evaluated by a critic model. The scores 237

obtained from the critic model are employed to 238

train the student through a feedback-incorporation 239

method. 240

3.1 Imitation Phase 241

During the imitation phase, we construct a dataset 242

consisting of < literal, humorous > pairs and use it 243

to directly train the student. As depicted in Fig. 2, 244

the process begins with a literal text input (I) and 245

prompting the teacher to generate N = 3 humorous 246

paraphrases (O) of the input in a zero-shot setting. 247

The utilization of N outputs encourages diversity 248

in student outputs, as it demonstrates multiple pos- 249

sible humorous paraphrases for a given input. The 250

student is then finetuned on the constructed dataset 251

by minimizing the cross entropy loss between the 252

reference and predicted outputs. 253

3.2 Critique Phase 254

In the critique phase, we aim to improve the stu- 255

dent’s task comprehension by teaching the student 256

to differentiate between effective and ineffective 257
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Candidates

Teacher

LLM


A mysterious black 
cat had 

me purr-fectly 
freaked out.

I swear, the black 
cat was stalking me 
like a feline 
paparazzo!

A sneaky black kitty 
had me wondering  if 
I was in a horror 
movie.

Imitation Phase Critique Phase

It was so creepy 
when I saw a 
black cat 
following me on 
my walk!

C1, C2…Cn

P1, P2

I

Relative Scoring

Feedback

Incorporation

DPO/Ranking

Candidate Generation

Candidate 
Pairs

Critic

LLM


Student

SLM


SFT

It was a real cat-astrophe 
when I spotted a black 
one tailing me on my 
stroll.


I had a feline friend 
following me on my 
walk, and it wasn't a cute 
little kitten.

O1

O2

O3

Figure 2: The proposed knowledge distillation framework: We perform task-specific distillation from a large,
general language model, in two phases: an initial imitation phase, followed by a critical feedback phase which
controls the quality of the generated humorous outputs from the student.

humor.258

Critic The critic, an LLM (Large Language259

Model), evaluates the humor quality of outputs260

from the finetuned student. Drawing from prior261

work on computational humor (Valitutti, 2011) and262

LLM-based scoring (Liu et al., 2023a,b), we adopt263

a pairwise relative scoring approach to mitigate sub-264

jectivity as opposed to providing an absolute score265

on a humorous output. To obtain the preferred out-266

put from the pair, we use Multiple Choice Prompt-267

ing (MCP) (Robinson and Wingate, 2023), which,268

presents both paraphrases simultaneously and asks269

the LLM to pick the better humorous output. For270

two humorous paraphrases, P1 and P2, of the same271

input text I, we present them as candidates labeled272

with symbols (e.g., “1” and “2”). The critic LLM273

predicts a token ("1" or "2"), with associated prob-274

abilities indicating preference, which we denote as275

the Win Tie Rate (WTR) of P1 against P2. 2276

Feedback Incorporation Subsequently, we277

leverage feedback from the pairwise scorer to re-278

fine the student model. Starting with the finetuned279

student (Fig. 2), we generate a set of k = 6 candi-280

dates using either diverse beam search or nucleus281

sampling. From this candidate pool, we select a282

pair of diverse humorous paraphrases, denoted as283

P1 and P2, where diversity is measured by a max-284

2The prompts used for WTR are shown in Appendix B

imum pairwise n-gram-based edit distance score. 285

The critic then scores these pairs, resulting in can- 286

didates categorized as either positive or negative 287

based on their performance. Our objective here is to 288

improve the finetuned student by discerning which 289

output is preferred. To integrate this feedback, we 290

explore the following feedback objectives. 291

1. DPO (Rafailov et al., 2023) provides an alter- 292

native to RLHF, aiming to align language models 293

using human feedback without training an explicit 294

reward model. When comparing two humorous 295

paraphrases Pi and Pj , if Pi receives a higher 296

quality score from the critic, DPO increases the 297

likelihood of its completion over Pj . It employs 298

the Bradley-Terry reward model, approximating 299

reward modeling with a sigmoid loss function, 300

LDPO (πθ;πref ) = 301

− E(x,yw,yl)∼D

[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

− 302

β log
πθ (yl | x)
πref (yl | x)

303

where, πθ represents the ratio of chosen to rejected 304

scores from the fine-tuned LM, while πref signi- 305

fies the same ratio for an exact frozen copy of the 306

model. The first term in the sigmoid denotes the 307

shift in the preferred completion, while the second 308

term indicates the shift in the dispreferred comple- 309

tion. 310
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2. BRIO (Liu et al., 2022), a sequence-level con-311

trastive (ranking) objective proposed for abstrac-312

tive summarization. For a given input I , when313

faced with two candidate humorous paraphrases,314

Pi and Pj , and Pi attains a higher quality score315

from the critic, the student is guided to assign a316

probability to Pi that exceeds twice that of Pj .317

L̂ctr(θ) =
∑

Si,Sj∈Sc,i<j

max (0, p̄s (Sj | D; θ)

−p̄s (Si | D; θ) +
1

λ
log 2(j − i)

)318

where λ corresponds to the average output length,319

and p̄s corresponds to the length normalized log320

probabilities of paraphrases i and j. Following321

Liu et al. (2022), we combine the cross-entropy322

loss used in the imitation phase with the margin323

loss as a multi-task loss, to maintain the generation324

abilities of the student.325

3. BRIO-DPO: We also experiment with combin-326

ing both ranking and preference learning - for327

this variant, we obtain the contrastive pairs for328

the BRIO training from the teacher instead of the329

student, by letting the teacher rank two of its own330

responses. In this case, the BRIO loss is considered331

as supervision rather than feedback. The prefer-332

ence pairs for DPO still come from the student. To333

achieve this, we first train the student on BRIO,334

and use this model to initialize the DPO training.335

We experiment with both one-shot and iterative336

feedback as shown in Figure 2, where the student337

may receive feedback from the teacher more than338

once.339

4 Experimental Setup340

Dataset. Similar to FLUTE (Chakrabarty et al.,341

2022), we pick literal input sentences from the342

EmpatheticDialogues dataset (Rashkin et al., 2019).343

Each conversation is obtained by pairing a speaker344

and a listener, where the speaker talks emotionally345

about personal matters, and the listener infers the346

underlying emotion and responds empathetically.347

We sample 12,000 sentences from the training set348

and generate N = 3 responses from the teacher349

to create 36,000 literal-humorous text pairs. We350

sampled 1,000 sentences from the validation and351

test sets for evaluating the student and 100 samples352

from the test set for human evaluation. For out-353

of-distribution (OOD) evaluation, we sample 500354

literal inputs from Samsum (Gliwa et al., 2019).355

Teacher Model. We use the 70B chat version 356

of Llama 2 (Touvron et al., 2023) as the teacher 357

model. We generate responses from the teacher 358

using a temperature of 0.8 using nucleus sampling 359

with top_p = 1. 360

Student Model. For student model, we focus on 361

BART-large (Lewis et al., 2020). All the BART stu- 362

dent responses are obtained using beam search with 363

the number of beams set to 5 during generation. 364

Metrics. Traditional generation metrics such as 365

ROUGE (Lin, 2004), may not work well for the 366

creative task of generating humor. Inspired by prior 367

work (Liu et al., 2023a; Fu et al., 2023), we use 368

the LLM-based metric of Win Tie Rate (WTR) 369

also described in Sec 3.2 for automatic evaluation. 370

WTR aims to compare a pair of paraphrases and 371

measures whether one paraphrase is equally (tie) 372

or more (win) creative/humorous than the other, 373

while preserving the meaning of the original input 374

(consistency). In this work, we are more interested 375

in humor than consistency - humor is essential, con- 376

sistency can be subjective and optional based on 377

the type of humor used (e.g. sarcasm). To make 378

it more straightforward for human evaluation, we 379

ask humans to provide individual WTR for the hu- 380

mor WTR separately from consistency WTR. We 381

compute the automatic WTR of the student models 382

using both the critic model based on Llama2-70B 383

and GPT4 (OpenAI, 2023). 384

Length and Positional Biases The critic is prone 385

to two major biases - Position Bias, where evalu- 386

ation changes based on the encoding order of the 387

responses and Length Bias, the tendency to favor 388

longer responses. To mitigate length bias, during 389

the feedback training phase, we incorporate only 390

a subset of the candidate training pairs, filtered to 391

maintain near-equal length between the two candi- 392

dates (with a length ratio falling within the range 393

of 0.8 to 1.2). This selection is intended to coun- 394

teract the length bias resulting from the teacher’s 395

inclination towards longer outputs which has also 396

been observed in prior work regarding AI (Saha 397

et al., 2023a) as well as human feedback(Shen et al., 398

2023). To mitigate positional bias, we average all 399

our win rates by letting the paraphrases take both 400

position 1 and position 2. 401

Baselines. We finetune BART-large for 10 402

epochs on the teacher data using the Maximum 403

Likelihood Estimation (MLE) objective (Sec. 3.1). 404
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This baseline is denoted as BART-FT-WS (WS405

stands for Warm Start). We further refine this base-406

line to create students trained without and with407

feedback losses. For the first class of student mod-408

els, we compare against,409

• BART-FT: BART-FT-WS further finetuned410

using the same MLE objective.411

• BART-SD: Indicating Self-Distillation (SD),412

BART-FT-WS is trained on only the positive413

candidates obtained from the critic(Sec. 3.2).414

For the proposed feedback-based baselines,415

• BART-BRIO: BART-FT-WS finetuned using416

the BRIO ranking objective for 10 epochs.417

• BART-DPO: BART-FT-WS finetuned using418

the DPO objective for 10 epochs.419

• BART-BRIO-DPO: BART-FT-WS finetuned420

using BRIO for 10 epochs, followed by DPO421

for an additional 10 epochs.422

5 Experiments423

Our overall goal is to investigate whether a cre-424

ative generation ability such as humor can be425

taught through a combination of examples from426

the teacher, and feedback on the student responses.427

To answer this question, we focus our experiments428

on answering the following research questions:429

1⃝ RQ1: How does the teacher perform as a430

critic?431

2⃝ RQ2: How do students trained with and with-432

out feedback compare?433

3⃝ RQ3: How frequently should the teacher in-434

tervene?435

4⃝ RQ4: How does data size affect student per-436

formance?437

5⃝ RQ5: Does the length bias of the critic affect438

student responses?439

5.1 RQ1: How does the teacher perform as a440

critic?441

In order to validate the role of the teacher as a442

critic model, we conduct blind human evaluation443

by some of the authors (“annotators”). In Table 1,444

we analyze the alignment between human and LLM445

evaluation and compare two versions of the critic.446

Cloze prompting scores each paraphrase separately447

based on the perplexity of the template “The funny448

paraphrase of I is Pi” (for i = 1, 2). Conversely, 449

Multiple Choice Prompting (MCP) presents the 450

two paraphrases to the model and instructs it to 451

choose the better one. 452

We ask the annotators to perform pairwise scoring 453

of 100 blind pairs of humorous outputs. Annotators 454

are asked to rank the paraphrases based on how hu- 455

morous they are and how consistent they are with 456

respect to the meaning of the input. We compare 457

overall (WTR) and individual win tie rates for hu- 458

mor (WTR-H) and consistency (WTR-C) of the 459

humorous outputs with the input using the critic 460

model (Llama2-70B). We use the following metrics 461

inspired by Saha et al. (2023b) to evaluate the two 462

scoring methods: 463

AgH and AgC. We measure the LLM-Human 464

Agreement (Ag) which is a score between [0, 1] 465

indicating the percent of pairs that the annotator 466

and the LLM agreed on. We compute agreement 467

by independently matching each human judgment 468

for each pair with the model judgment. 469

Positional Bias (PB). We measure the fraction of 470

samples where the critic’s scoring changes based 471

on the order in which the paraphrases are presented 472

to it. 473

Length Bias (LB). LB aims to measure the 474

model tendency to favor longer responses when 475

the human did not. We measure length bias as 476

the fraction of samples where humans prefer the 477

shorter response, but the critic model prefers the 478

longer response. 479

We observe that overall, MCP performs signifi- 480

cantly better in terms of human agreement when 481

compared to the cloze style evaluation, with an 482

agreement on humor up to 76% and consistency of 483

up to 65% across both forward and backward posi- 484

tions. Concerning length bias, both methods exist 485

length bias in about 20-25% of the cases where they 486

tend to prefer longer outputs than the humans. Al- 487

though sub-metrics based on Humor (WTR-H) and 488

Consistency (WTR-C) look promising, we found 489

that combining them using simple (MEAN, AND) 490

or more complex methods like BSM (Saha et al., 491

2023b) results in amplifying positional biases to a 492

huge extent for this task. Hence, we use the overall 493

WTR as the automatic metric to evaluate model 494

responses both during training and evaluation. 495
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Arbiter Type Ag-H↑ Ag-C↑ PB↓ LB↓

Cloze WTR-H 57 - 0 18
Cloze WTR-C - 46 0 21
Cloze WTR 57 47 0 25
MCP WTR-H 76 - 18 17
MCP WTR-C - 65 28 19
MCP WTR 76 59 15 20

Table 1: Evaluation of Human Agreement with different
Arbiters - Agreement with Humor wins (Ag-H), Agree-
ment with Consistency wins (Ag-C) and Positional Bias
(PB), Length Bias (LB), Scores are multiplied by 100.

Student WTRGPT4↑ WTRllama2↑

BART-FT 30 28
BART-SD 35 36

BART-BRIO 48 53
BART-DPO 52 60
BART-BRIO-DPO 56 65

Table 2: LLM-based Evaluation of student models - Win
Tie Rate(WTR) is measured against the teacher (Llama2-
70B) by the critic llama2 (WRllama2) or external critic
GPT-4 (WRGPT4) using the method described in Sec 3.2.
WTR is scaled by 100.

Student WTRllama2↑

BART-FT 34
BART-BRIO 42
BART-DPO 47
BART-BRIO-DPO 49

Table 3: LLM-based Evaluation of student models on
OOD test set (500 examples from (Gliwa et al., 2019)

Model # Data Frequency WTRllama2↑

BART-FT 36K - 30
BART-FT 24K - 26
BART-FT 12K - 24

BART-BRIO 36K 1/10 epochs 53
BART-BRIO 24K 1/10 epochs 45
BART-BRIO 12K 1/10 epochs 43

BART-BRIO 12K 2/10 epochs 56
BART-BRIO 12K 10/10 epochs 66

Table 4: Effect of data size and frequency of feedback
on win rate of student models against the teacher.

5.2 RQ2:How do students trained with and496

without feedback compare?497

Table 2 shows the results of the automatic evalua-498

tion for the proposed student models using the Win499

Tie Rate (WTR) metric. To gauge the student’s500

performance against the teacher that provided the501

training data, we compare the student outputs to502

the teacher’s references. Hence, we measure the503

WTR of the student vs. the teacher. 504

When employing BRIO for ranking feedback, 505

BART-BRIO surpasses the imitation-based stu- 506

dents (BART-FT and BART-SD) with notable 507

increases in performance—13-18% and 19-25% 508

based on evaluations by both GPT-4 and Llama2- 509

70B, respectively. This suggests that in approxi- 510

mately 50% of cases, the student achieves compa- 511

rable or superior performance to the teacher. When 512

incorporating the same critic feedback as a pref- 513

erence learning objective through DPO (BART- 514

DPO), we observe a similar trend of performance 515

enhancement in the student, with the DPO baseline 516

outperforming BRIO by a modest margin of 4-6%. 517

Subsequently, we explore a combined approach uti- 518

lizing both BRIO and DPO objectives, resulting in 519

a further improvement of 4-6% over using DPO or 520

BRIO independently. 521

OOD Test Set We show the performance of the 522

BART-based student models on the OOD test set 523

in Table 3. We can observe a similar trend of 524

student performance improving with both BRIO 525

and DPO feedback objectives. However, the BRIO- 526

DPO variant results in a very minor performance 527

boost indicating that further investigation is needed 528

in combining ranking and preference learning ob- 529

jectives. 530

5.3 RQ3: How frequently should the teacher 531

intervene? 532

To test whether the student can benefit from an 533

increased frequency of feedback, we compare dif- 534

ferent versions in which we seek feedback from 535

the teacher iteratively after every K epoch which 536

varies from 1, 5, and 10 (static). Table 4 shows 537

that more frequent feedback has a positive impact 538

on student performance, but the performance gains 539

may saturate as feedback frequency is increased. 540

There is also a trade-off between the communica- 541

tion cost with the teacher, which needs to be consid- 542

ered when providing more frequent feedback. This 543

motivates future work in investigating this trade-off 544

further, and approaches such as curriculum learn- 545

ing or active learning could be leveraged to choose 546

which samples should receive feedback. 547

5.4 RQ4: How does data size affect student 548

performance? 549

In this experiment, we assess the influence of the 550

amount of data that is used to supervise the stu- 551

dent. We examine the relationship between data 552
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Input: I am a stay at home mom.

BART-FT BART-DPO

I’m a stay-at-home mom,
and I’m loving every
minute of it!

I’m a stay-at-home superhero,
saving the world one diaper
change at a time.

(a)

Input: i felt bad about sleeping in today.

BART-FT BART-BRIO

I was feeling a bit guilty
about my morning
snooze-fest.

I woke up feeling like a sloth
who’s been snoozed out for so
long, I’m pretty sure I’ve heard
the sound of snores echoing off
the walls.

(b)

Input:My son failed a really important test.

BART-FT BART-BRIO-DPO

My son’s test score was
lower than a
Kardashian’s Instagram
followers.

My son’s test results were so
bad, I’m pretty sure he’s been
secretly practicing his
’I’m-not-a-complete-failure’
face for weeks.

(c)

Input:My wife and I are going to buy are very first
brand new car this week

BART-DPO BART-DPO-ITER2

We’re finally upgrading
our ride from a rusty old
clunker to a sleek, sexy
beast of a car.

We’re upgrading our
transportation game from "legs"
to "wheels" this week!

(d)

Table 5: Qualitative Examples showcasing variants trained with different types of feedback

size and performance by varying data size between553

4,000, 8,000, and 12,000 literal sentences, in all554

cases providing 3 humorous paraphrases per exam-555

ple. Table 4 shows that simply increasing the data556

size may be insufficient to improving the perfor-557

mance. The performance is lower than that of the558

more sophisticated teaching approach, specifically559

incorporating feedback, which proved to be more560

beneficial and data-efficient. We can observe that,561

the model with feedback trained on 12K examples562

still performed better than a model trained without563

feedback with triple the number of examples.564

5.5 RQ5: Does length bias of the critic affect565

student responses?566

The length bias in the teacher is propagated to the567

student, especially when trained over longer peri-568

ods and more so with the BRIO or ranking objec-569

tive. Without any mitigation strategies, the length570

of the student outputs can almost double compared571

to the input text. As described in our Sec 3, we572

also filter pairs that are significantly longer than573

one another during training to prevent the student574

from learning to optimize for length. This is similar575

to the length correlation observed in human feed-576

back (Singhal et al., 2023). Addressing this issue577

requires addressing length bias in Multiple Choice578

Prompting in LLMs, which is an evolving research579

area (Wang et al., 2023b; Shen et al., 2023).580

6 Qualitative Analysis581

Figure 5 highlights instances where each of the582

feedback objectives (BART-DPO, BART-BRIO,583

and BART-BRIO-DPO) outperforms the BART-FT 584

baseline trained solely through imitation learning. 585

In Figure 5a, BART-DPO produces a response that 586

exhibits a higher degree of humor compared to 587

BART-FT. In Figure 5b, both BART-FT and BART- 588

BRIO generate humorous responses, with BRIO’s 589

output slightly edging in humor but at the expense 590

of being longer. Figure 5c, BART-BRIO-DPO gen- 591

erates a more contextually relevant and amusing 592

paraphrase in comparison to the BART-FT student. 593

Lastly, Figure 5d demonstrates an instance where 594

the BART-DPO variant, receiving feedback for two 595

iterations instead of one, exhibits superior perfor- 596

mance compared to its counterpart trained with 597

only one iteration of feedback. 598

7 Conclusions 599

We present a novel framework for knowledge distil- 600

lation in the context of humor generation, with the 601

teacher LLM providing references and feedback 602

on a smaller student model’s performance. Our 603

approach involves leveraging a critic to guide the 604

student model toward generating more humorous 605

outputs. The effectiveness of our method is demon- 606

strated through evaluations conducted by both the 607

LLM and humans. Additionally, we analyze the ef- 608

fect of various design choices on the performance, 609

such as the frequency of feedback and training set 610

size. Our analysis sheds light on the limitations of 611

LLM-based critics, and serves as motivation for fu- 612

ture research in mitigation of biases in LLM-based 613

evaluation and AI feedback. 614
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8 Limitations615

Quantifying Humor Measuring humor, espe-616

cially in computational contexts, is inherently sub-617

jective and may not be accurately captured using618

simple metrics.619

Cultural references We observed that some of620

the generated humorous outputs were referring to621

celebrities and events in North America. As humor622

varies widely across individuals and cultures, the623

proposed models may not generalize well across624

diverse demographic and cultural groups.625

Bias propagation Training on feedback data626

from the LLM may lead to the propagation of any627

existing biases in the LLM’s training data. If the628

LLM’s data lacks diversity, these biases could be629

intensified in the smaller model. Similarly, the bi-630

ases in model evaluation can also be propagated to631

the student.632

9 Ethical Considerations633

Data. The datasets used to gather the literal in-634

puts outlined in Sec 4 are publicly accessible. Some635

of these datasets include crowdsourced annotations636

about emotional events, which may contain offen-637

sive, biased or hateful content. We use the chat638

variant of the llama2 that is aligned on generating639

safe warnings and responses when offensive con-640

tent may be present. Further, the Llama2 model641

generates such warnings for about 3-4% of our in-642

puts, and we discared these inputs from the data643

distilled into the student.644

Celebrity references. As shown in Figure 1, the645

teacher LLM makes references and analogies to646

celebrities primarily from North America. When647

used as analogies for negative connotations, the648

humor generated may be considered offensive to649

specific people.650
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