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Abstract

We propose a visual storytelling framework with a distinc-
tion between what is present and observable in the visual
storyworld, and what story is ultimately told. We implement
a model that tells a story from an image using three affor-
dances: 1) a fixed set of visual properties in an image that
constitute a holistic representation its contents, 2) a variable
stage direction that establishes the story setting, and 3) incre-
mental questions about character goals. The generated narra-
tive plans are then realized as expressive texts using few-shot
learning. Following this approach, we generated 64 visual
stories and measured the preservation, loss, and gain of vi-
sual information throughout the pipeline, and the willingness
of a reader to take action to read more. We report different
proportions of visual information preserved and lost depend-
ing upon the phase of the pipeline and the stage direction’s
apparent relatedness to the image, and report 83% of stories
were found to be interesting.

Introduction
There are many different ways to tell a story. By changing
the narrating character or altering the tone, different tellings
of the same underlying sequence of events can be realized
in a variety of ways (Lönneker 2005). Key in these com-
putational approaches is the ability to distinguish between
the story contents, i.e., all the known characters, locations,
and possible events in the story world—the fabula (Propp
1968)—and the story telling, i.e., the selection and presen-
tation of information that reflect the desired state of the final
story—the sujet (Propp 1968). In this way, the same story
world can hold many different tales just waiting to be told.
We recognize that this same phenomena is present in im-
ages as well; not only are there many ways to tell a story,
but many possible stories that can be told from a single im-
age. We posit that this phenomena can be observed in vi-
sual storytelling if we re-imagine the fabula as a portfolio
of story knowledge from the visual affordances in imagery,
from which different events can be derived, selected, and
generated as an expressive textual telling of a story.
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Stage direction: People are lining the streets to see the parade.
Generated Narrative Plan: The goal of the people is to see the
parade. The people will achieve their goal by the people will
gather on the street and line up to see the parade. But the people
could not achieve their goal if the weather was bad and the
parade was cancelled. The weather must be good and the parade
must go on.
Generated Expressive Text: The big day had finally arrived!
The people gathered in front of the supermarket to see the
parade. They all stood in line, chatting and laughing as they
waited. If it rained or if there was a flood, they’d miss the
parade!
Stage direction: A thief is observing the scene prior to a
planned robbery.
Generated Narrative Plan: The goal of the thief is to rob the
group of people in the background. The thief will achieve their
goal by the thief will steal one of the umbrellas. But if the thief
does not have the patience to wait for the right moment. The
group of people in the background must move towards the thief.
Generated Expressive Text: The thief looked in from afar. It
was time for the thief to strike. The group was walking down
the street, ready for a fun night on the town. The thief had the
perfect mission: grab one of their umbrellas, and run away. A
fool-proof plan. However, this was a group of people who knew
each other well. They knew how to fend for themselves in dire
situations. If necessary, they could work together to save their
belongings from harm.

Table 1: Two different stage directions (manual input) for
a single image, showing different generated narrative plans
and expressive texts from our system.

We propose a framework called SEE&TELL that sep-
arates the act of ‘seeing,’ or observing the imagery, and
‘telling,’ or planning and explaining what is happening or



what might happen next. Our implementation used a suite of
computer vision and natural language generation algorithms
that construct a holistic and computational representation of
the contents of an image that were seen. From this and a sep-
arate input that guides the story’s direction (called a stage di-
rection; examples shown in Table 1), our system constructs
a narrative plan using incremental question-answering capa-
bilities driven by character goals and motivations (generated
narrative plans shown in Table 1). Finally, the plan is embel-
lished into an expressive text using few-shot learning (gen-
erated expressive texts in Table 1). The top story features a
crowd enjoying the parade, which is what the majority of
the people in the image appear to be doing on this rainy day,
while the bottom story imagines this as a potential venue for
a robbery, with an unknown thief targeting the umbrellas in
the crowd. Following prior definitions of creativity as a so-
lution or idea that has significant novelty and practical use-
fulness (Wallas 1926; Turner 1993), we measure the novelty
that the story presents with respect to the image contents, as
well as its impact to the reader. We develop new scales in
our evaluation instead of relying on existing methodologies
to remove the variability in interpreting Likert scales.

The paper contributions are as follows: 1) we propose
a narrative-inspired implementation-agnostic framework for
visual storytelling; 2) we present our selected implementa-
tion using computer vision, natural language generation, and
large language models; and 3) we conduct annotation and
analysis of 64 generated visual stories that elicit a variety of
different possible storylines drawn from the same image, as
measured by visual novelty and a reader willingness to read
more.

Related Work
Visual Storytelling
Visual storytelling has been widely studied, from co-
constructing stories by brainstorming and drawing with an
agent (Zhang et al. 2022), to selecting or generating a se-
quence of images that tell a story (Cardona-Rivera and Li
2016; Martens, Cardona-Rivera, and Cohn 2020). In this
work, our treatment of visual storytelling involves the gen-
eration of a textual story from an image or image sequence.
Visual storytelling systems of this sort are commonly com-
posed of neural models trained from large, crowdsourced
datasets. These systems often require an input in the form
of a title, genre, or single sentence that strives to situate the
story in terms of characters, conflict, or style (e.g., in visual
storytelling (Yao et al. 2019; Jana 2019; Ji et al. 2022) as
well as non-visual neural storytelling systems (Fan, Lewis,
and Dauphin 2018; Wang, Durrett, and Erk 2020)). While
many of these systems can generate stories similar to the
data they were trained on, such as the VIST dataset (Huang
et al. 2016), some elements of control are afforded to the
neural generation component, rather than a separate plan-
ning component, as has been done in traditional non-neural
models of non-visual storytelling. Systems such as Mexica
(Pérez y Pérez and Sharples 2001), Minstrel (Turner 1993),
TaleSpin (Meehan 1977), IPOCL (Riedl and Young 2004),
the Virtual Storyteller (Theune et al. 2003), and others can

initiate and complete a story arc comprised of the motiva-
tion, fulfillment, and failure of character or author goals.
Recent non-visual storytelling work by Castricato et al. at-
tempts to keep a neural generator ‘on track’ by issuing a
series of questions that together form a coherent plot (Cas-
tricato et al. 2021). In our approach to follow, we require a
sentence to set the direction of the story in order to test a
variety of different stories that can be drawn from the same
image, and further formulate and shape the story through in-
cremental question-answering.

Researchers have approached visual storytelling by recog-
nizing there are conceptually different mental and algorith-
mic processes that take place in this multi-modal exercise:
perception and explanation. Perception involves observing
the image(s) to understand what is being pictured, and expla-
nation is the pulling together of relevant information for any
such story (Lukin, Bonial, and Voss 2019). Drawing a hard
distinction, however, may only serve to isolate one branch of
the process from the other, where the generated plot diverges
‘too far’ from the image. In an example from Microsoft’s
Pix2Story system (Jana 2019), we see an example of how the
perception component is able to understand the setting as in-
volving one related to food and meals (from the fork, apple,
orange, and onion pictured), yet the story diverges from what
might have been the expected trajectory: “Over the last bit
of meat, I began to eat... On the surface of the water was an
emerald green with gold and silver, gold and silver liquid.” 1

Recognizing this, practitioners have attempted to establish a
relationship between the two sides of perception and gener-
ation through fine-tuning (Yu et al. 2021) or using external
knowledge to bring together what is pictured with relevant
terms or concepts to the story (Hsu et al. 2020; Yang et al.
2019).

Our work seeks to strengthen the motivation behind this
distinction and overlap. We posit that all visual storytelling
systems must navigate between determining what is pictured
and the story to tell, as exemplified by Propp’s conceptu-
alization of a fabula and sujet. We present this framework
as a way to unify how practitioners talk about visual story-
telling with respect to the storytelling element, formulated
upon successful theories that have yet to be applied to visual
storytelling in this way.

Evaluating Visual Stories
To reflect the subjective nature of stories and language at
large, practitioners of visual storytelling systems are increas-
ingly turning to Likert scales instead of metrics such as
BLEU and ROUGE, which are known to discourage diver-
sity and often do not correspond well with human judgment
(Sai, Mohankumar, and Khapra 2020). More suitable met-
rics include those targeted to the problem space, e.g., cre-
ativity, relevancy, and interest, as measured by Likert scales
(Huang et al. 2016; Wang et al. 2018). Likert scales are not
without their own shortcomings, however. Howcroft et al.
state that “...the difference between ‘very disfluent’ & ‘dis-

1URL to image described http://www.cs.toronto.edu/∼rkiros/
coco dev/COCO val2014 000000472246.jpg. Story excerpt from
#14 http://www.cs.toronto.edu/∼rkiros/adv L.html.



Figure 1: SEE&TELL visual storytelling framework.

fluent’ is [not] the same as the distance between ‘slightly dis-
fluent’ & ‘slightly fluent’ on a 6-point scale” (Howcroft and
Rieser 2021) (pg. 1), and thus, scores vary between raters.
Likert scales can instead be reinterpreted as a forced-choice
or recommendation such that raters do not have different
interpretations of the numbers or labels on the scale. Or,
instead of using these scales, an objective scoring mecha-
nism can be adapted. For instance, Hu et al. propagate fine-
grained concepts forward in their visual storytelling pipeline
by rewarding concepts more similar to the image (Hu et al.
2020). Their approach, however, focuses only on the preser-
vation of visual information; in our study to follow, we
model the introduction of new information and subsequent
loss of existing information to study the complete interplay
between the image and generated text.

SEE&TELL Visual Storytelling Framework
Based on the differentiation of fabula and sujet, we sim-
ilarly outline our visual storytelling framework. Called
SEE&TELL, we separate the act of ‘seeing,’ or observing
the environment, from ‘telling,’ or explaining what is hap-
pening or what might happen next (depicted in Figure 1).
First, to ‘see’, and to produce the visual fabula, or set of ev-
erything that is happening within the image, we propose that
a holistic, computational representation of a SCENE can be
formulated by enumerating over the entities and attributes,
i.e., visual information, that appear in an image. Entities, or
THINGS, can include identification of physical objects, their
relative spatial locations, and traits such as color or material.
These are elements of the image that can be easily labeled or
marked. We additionally identify intangible attributes, what
we call the MOOD, to assess elements that contribute to the
setting, such as the lighting, the weather, and activities tak-
ing place. These unbounded elements are more challenging
to capture, and prior works have focused primarily on tangi-
ble ones and their spatio-relationships (Cardona-Rivera and
Li 2016; Yang et al. 2019).

The process for ‘telling’ is twofold and involves planning
and generating. To plan, we require a particular story focus.
For this, we introduce a stage direction to establish the start-
ing point and main characters. Our usage of the term ‘stage
direction’ is from theater, referring to an “instruction writ-
ten into the script of a play, indicating stage actions, move-
ments of performers, or production requirements” (Stage Di-

rection. 2018)2. Our framework then plans by asking and
answering questions that interrogate the information ‘seen’
and provided in the stage direction. These questions probe at
the characters’ motivations and challenges in accomplishing
them, and in sequence, can follow different dramatic struc-
tures, e.g., Aristotelian structure (Aristotle (330 BC) 1997).
The answers to these questions form a narrative plan: all the
information regarding the plot with respect to the image. The
final stage of ‘telling’ transforms the outline of the narra-
tive plan into an expressive text, the realization of a story
telling. This ‘tell’ module is reminiscent of modular natural
language generation systems (Reiter and Dale 2000).

Implementing SEE&TELL
We implemented our proposed framework using a suite of
algorithms, manual stage directions, and questions, which
all have the ability to be interchanged. Our selected compo-
nents are described below, and examples shown in Figure 2.

THINGS. We defined THINGS as entity masks, labels,
center of mass, depth, and color.

• Entity detector: Detectron2 provided masks, labels, and
center of mass (Wu et al. 2019). We used the Large Vo-
cabulary Instance Segmentation (LVIS) model, trained
on more than 1,200 instances representative of the ‘long
tail’ of entities (Gupta, Dollar, and Girshick 2019).

• Depth Estimator: K-means clustering was performed
over the masks’ depths as estimated by DiverseDepth
to cluster the entities into the foreground and the back-
ground (Yin et al. 2020).

• Color Estimator: Color Thief averaged the pixels within
a mask (Dhakar 2020), following Eum et al.’s process
(Eum, Han, and Briggs 2020). The resulting HEX value
was mapped to a language description from webcolors
CSS3 HEX TO NAMES.3

MOOD. We defined the MOOD as the location, scene at-
tributes, and a single sentence summary.

• Location Predictor: Places365 predicted the location pic-
tured in an image (Zhou et al. 2017).

• Non-Tangible Attribute Predictor: The Scene Under-
standing (SUN) predictor identified non-tangible at-
tributes, such as function, action, and ambient lighting
(Patterson and Hays 2012; Patterson et al. 2014; Xiao
et al. 2016, 2010).

• Summarizer: MMF generated a one-sentence caption de-
scribing the image (Singh et al. 2020).

SCENE. We generated a SCENE by compiling the ex-
tracted visual information from the THINGS and MOOD into
natural language. We used PySimpleNLG4, a python port of
SimpleNLG (Gatt and Reiter 2009) to create the following:

2Many prior visual and non-visual storytelling works use the
term ‘prompt,’ which serves to prompt the system in its generation.
However, with ‘prompt’ now used as a standard in large language
models, we introduce a term more closely tied to storytelling.

3https://pypi.org/project/webcolors/1.3/
4https://github.com/bjascob/pySimpleNLG



Figure 2: SEE&TELL implementation with examples. System output from the THINGS and the MOOD components are fed
into the SCENE description generator. The compositional SCENE is paired with a stage direction and question to generate one
part of the narrative plan. This process is repeated for each question. The final narrative plan is assembled, and a few-shot
learning paradigm generates an expressive text of that plan.

This is [LOCATION] with [LIGHTING]. It is an
[SPATIAL ATTRIBUTES] where [ACTIVITIES] can
take place here. Here we see [LIST ENTITIES IN
THE FOREGROUND AND THEIR COLOR]. In the
background is/are [LIST ENTITIES IN THE BACK-
GROUND AND THEIR COLOR]. [SUMMARY].
STAGE DIRECTION. We designed and tested eight dif-

ferent stage directions. One type we call ‘spontaneous,’ in
that it is image-dependent and drawn from impromptu hu-
man description of the image from crowdsourced visual sto-
rytelling data (Halperin and Lukin 2023). The other seven
were fixed, and inspired by visual and non-visual story gen-
eration works that utilize a stage direction of sorts. The fixed
are listed below, as well as an example of a spontaneous
type. In parentheses is a key phrase which is later used to
refer each type.
• A secret agent must take down a terrorist mastermind.

(Riedl and Young 2005) (agent)

• A Lady of the Court named Jennifer is in love with a
knight named Grunfeld. (Turner 1993) (lady)

• The Mage, the Warrior, and the Priest go on an adventure.
(Fan, Lewis, and Dauphin 2018) (mage)

• A princess is in love with a man whose values clash with
her own. (Pérez y Pérez and Sharples 2001) (princess)

• A robot is looking for an evacuation route after a natural
disaster. (Lukin, Hobbs, and Voss 2018) (robot)

• A search and rescue team is looking for a missing person.
(Lukin, Hobbs, and Voss 2018) (search)

• A thief is observing the scene prior to a planned robbery.
(thief)

• People are lining the streets to see the parade. (Halperin
and Lukin 2023) (spontaneous)

QUESTIONS. We designed and tested four questions to
serve as the minimum number of points that would conform



to Aristotelian 3-act structure: exposition, rising action, cli-
max, falling action, denouement (the final two elements are
combined into a single question). Each question explicitly
included the subject(s) mentioned from the stage direction.
The questions progressively build upon the results of the
prior.

1. What is the goal of [THE SUBJECT]?

2. What will [THE SUBJECT] do to achieve their goal?

3. What could prevent [THE SUBJECT] from achieving
their goal?

4. What must happen next in order for [THE SUBJECT] to
achieve their goal?

These questions differ from prior visual question-
answering (VQA) tasks where questions can be answered
directly from the image, e.g., counting objects or identi-
fying object co-locations (Antol et al. 2015); instead, our
questions require commonsense and external knowledge not
found in the images. Our framework can inherently control
the narrative’s complexity and length by adding more ques-
tions without compromising the computational load.

NARRATIVE PLAN. We generated narrative plans by
sequentially answering the questions, building upon the
prior answers. Following recent works that have shown how
large language models can both answer questions about
direct facts of a news article, as well as imagine the possibil-
ities if something went differently (Summers-Stay, Bonial,
and Voss 2021), we utilize GPT-3 to answer our questions.
We chain prompts for GPT-35, where each prompt contains
the SCENE, stage direction, question, and prior answers.
The complete narrative plan is the concatenation of each
answer, resulting in a four-sentence text. Below is the GPT-3
template with variables in square brackets, and a “Q/A”
prompt, following the prefix prompt approach described in
Liu et al. (2021):

Read the description below and answer the question
based on what you read.
[SCENE]. [STAGE DIRECTION]. [PRIOR NARRA-
TIVE PLANS]
Q. [QUESTION].
A.

By chaining prompts, GPT-3 answers only one question at a
time, allowing it to better focus on the requested generation
and mitigate deviations. Below is the GPT-3 prompt filled in
with the SCENE, the stage direction (underlined), the chained
narrative plan (i.e., the answers to the previous questions, in
italics), and the GPT-3 answer to this question (in bold):

Read the description below and answer the question
based on what you read.

5We used the davinci model, temperature of 0.5, and top p of 1.

This is a stage/outdoor with natural light. It is an
open area where congregating and socializing can take
place. Here we see an indian red umbrella, a light sky
blue plastic bag, a light slate gray umbrella and a light
pink umbrella in the foreground. In the background is
a dark gray boot. A group of people walking down
a street. People are lining the streets to see the parade.
The goal of the people is to see the parade. The people
will gather on the street and line up to see the parade.
Q. What could prevent the people from achieving their
goal?
A. The people could not achieve their goal if the
weather was bad and the parade was canceled.

The final narrative plan was the concatenation of all four
answers, as shown in Table 1.

EXPRESSIVE TEXTS. We generated expressive texts
that realized a particular narrative plan using GPT-3 and a
few-shot learning paradigm6. Two sets of demonstrations
were given to GPT-3, where each demonstration consisted
of a narrative plan generated from SEE&TELL, and a
story written by an author of this paper to show the type
of translation of material from narrative plan to expressive
text. We chose a few-shot approach because of the diversity
in the narrative plans, and selected one narrative plan with
a spontaneous stage direction and another with the ‘robot’.
We crafted a new GPT-3 prompt following the example
below (narrative plan to be converted into expressive text in
italics):

Narrative Plan: The goal of the robot is to find an evac-
uation route for the people. The robot will achieve their
goal by the robot will find the evacuation route for
the people. But the robot could not find the evacuation
route for the people. The robot must find the evacua-
tion route for the people.
Expressive Text: The robot was programmed with only
one goal in mind: the safety of people. In dire situa-
tions, the robot was responsible for scouting out po-
tential evacuation routes. If the robot couldn’t secure a
route, it would have utterly failed. It makes it its duty
to always be on guard.
###
Narrative Plan: The goal of the people is to have fun
and enjoy themselves. The people will achieve their
goal by they will walk down the street and have fun.
But the people are walking down the street. The people
must walk down the street and have fun.
Expressive Text: Finally, it was time for fun. The group
met up on the street, ready to walk and have fun. The
worst thing would be if someone didn’t join them, so
they made sure everyone came along. They absolutely
wanted to celebrate together.
###

6We used the davinci model, temperature of 0.8, and top p of 1.



Narrative Plan: The goal of the princess is to get mar-
ried to the man she loves. The princess will achieve
their goal by use a light pink umbrella. But the princess
could not achieve their goal because she did not use a
dark red umbrella. The princess must use a dark red
umbrella.
Expressive Text:

GPT-3 followed the provided pattern and generated the final
expressive text section left blank in the template, based on
the final narrative plan of the prompt. The expressive text
for the template above is shown in Table 1.

Creativity Metrics for Visual Storytelling
We designed evaluation metrics for visual storytelling that
eliminated variability in interpreting the scores. To map to
the novelty aspect of creativity, we modeled the relationship
of new vs. grounded information with respect to the image.
Instead of using a 5-point Likert scale, we crafted quantifi-
able measures that could be scored by trained annotators,
and in the future, learned by automated scoring systems. To
map to the usefulness aspect of creativity, we selected an
‘engagement’ application, and designed a scale to measure
how effective the stories are at engaging a reader, rather than
a generic interest Likert scale.

Visual Novelty
We measured novelty as the consecutive, step-wise preser-
vation, loss, and gain of visual information throughout the
visual storytelling pipeline. Figure 3 shows examples of how
visual information is passed, lost, and gained through each
stage of generation.

Figure 3: Preservation, loss and gain of visual informa-
tion. Explicit and implicit preservation are annotated in red
and green, respectively. Losses are crossed out, and gains are
highlighted in yellow.

Preservation is the forward propagation of visual informa-
tion in the SEE&TELL framework. In Figure 3, outlined in
a red box, we see that street was present in the SCENE and
appeared again in the narrative plan, and that parade in the
stage direction appeared in the narrative plan, and again in
the expressive text. Loss is the dropping of visual informa-
tion such that is does not propagate forward in the frame-
work. A number of visual information present in the SCENE
in Figure 3 did not appear in the narrative plan, including a
light sky blue plastic bag and dark gray boot (crossed out
in the figure). Finally, gain is the introduction of new vi-
sual information not present in the immediate prior text in
the framework. We note that no new information was intro-
duced in the narrative plan in this example, but that super-
market and chatting and laughing7 were introduced in the
expressive text (highlighted in yellow in the figure).

We further observed that while some pairs were word-for-
word overlaps, e.g., street, others used similar terms implied
to be related, for example, umbrella, weather, and flood.
Both explicit and implicit matches (represented as red and
green boxes in the figure respectively) were considered.

We model preservation, loss, and gain by first defin-
ing SC, SD, NP , and ET as the sets of visual informa-
tion contained in the SCENE, stage direction, narrative plan,
and expressive text respectively. The preservation-ratio from
SCENE to narrative plan (SC→NP ) is defined as the over-
lap of visual information in SC and NP , divided by the total
visual information in SC:

preserveSC→NP =
|SC ∪NP |

|SC| (1)

The loss ratio from SC→NP is defined as the visual in-
formation in SC that do not appear in NP , divided by the
total visual information in SC:

lossSC→NP =
|SC −NP |

|SC| (2)

The gain-ratio from SCENE and stage direction to narra-
tive plan (SC, SD→NP ) is defined as the visual informa-
tion that appear in NP yet do not appear in SC or SD,
divided by the total visual information in NP :

gainSC,SD→NP =
|(NP − SC)|+ |(NP − SD)|

|NP | (3)

Using the same formula for preservation and loss, we
compute preserveSD→NP and lossSD→NP for stage di-
rections and narrative plans, and preserveNP→ET and
lossNP→ET for narrative plans and expressive text. We ad-
ditionally compute gainNP→ET for gains in the expressive
text from the narrative plan.

Reader Engagement
To measure reader engagement, we create a forced categori-
cal choice to better align responses by raters across a number

7While congregating and socializing did appear in the SCENE,
because these concepts were not carried over into the narrative
plan, they then counted as novel concepts in the expressive text.



of stories. The following definition is provided to situate the
rater prior to giving their score: “A story world is comprised
of characters, actions, and plot progression. Please give your
rating based on the content of the narrative you read, rather
than the delivery (i.e., grammar, spelling, word choice).” The
rater is then shown an expressive text with matching image
on a computer screen, and is given three options from which
they must select one:

• “The storyworld is interesting. I would take action to read
more, e.g., click or scroll to the next page.”

• “The storyworld is somewhat interesting, but I wouldn’t
go out of my way to read more.”

• “The storyworld is NOT interesting at all.”

Annotation and Experimentation
To develop a high reliability for annotating the visual nov-
elty metrics, six images from the VIST dataset (Huang et al.
2016) were used to generate six stories from SEE&TELL,
and were doubly annotated by authors of this paper for ex-
plicit and implicit pairs between the SC and NP sets as de-
scribed above. Four rounds of adjudication were conducted
until a high consensus was reached. Interannotator agree-
ment was computed using Krippendorff’s α (Krippendorff
1980), and were α = 0.92 and α = 0.82 for explicit and
implicit pairs respectively, representing high agreement.

After the final revision of the annotation guidelines, a new
set of eight images from the VIST dataset were run through
SEE&TELL for each of the eight stage directions, result-
ing in 64 unique stories. The visual novelty annotation was
conducted by one of the same annotators involved in the de-
velopment of the schema, and the reader engagement was
conducted by a single volunteer with a degree in linguistics.

Analysis and Discussion
Preservation, Loss, and Gain of Visual Information
We report the total visual information per set and averaged
across all 64 stories as follows: |SC| = 10.3, |SD| = 1.8,
|NP | = 3.0, |ET | = 4.5. Using Equations 1- 3, we com-
pute the preservation, loss, and gain-ratios and report them
as percentages in Table 2. We observe that across all stories,
90% of the visual information in the SCENE was lost and did
not appear in the subsequent narrative plan (lossSC→NP ).
While this number might seem high for a system designed
for visual storytelling, we acknowledge that no such baseline
exists for the average or ‘ideal’ percentage of preservation
or loss from an image to a narrative plan. Having it now, we
can begin to understand the range of values observed, and
unpack the interpretations.

To understand what these scores mean, we recall what
is happening in SEE&TELL at this stage in the frame-
work: GPT-3 has generated a narrative plan that answered
the supplied questions. GPT-3 was also given a description
of the SCENE and the stage direction to use as background
knowledge for determining the answer. In doing so, it was
picking the visual information from what it was given that
best help it answer the question. Therefore we can claim
that on average, 10% of visual information in the SCENE

(preserveSC→NP ) correspond more highly to answering
the questions than the other 90%.

A range of preserveSC→NP scores across stage direc-
tion is observed, ranging from a low of 2% in the ‘lady’
stage direction, to the ‘spontaneous’ stories having the high-
est percent of 23% This makes intuitive sense, as the ‘spon-
taneous’ stage direction is directly tied to the image itself,
and is more likely to contain SCENE references that better
help GPT-3 answer the question about that stage direction.
For other scenarios, such as the ‘lady,’ neither a ‘Lady of the
Court’ nor ‘knight’ nor their immediate mental associations
(e.g., a castle, a horse, etc.) are apparent in the images, and
thus the SCENES are less likely to contain visual information
for GPT-3 to answer the question.

The opposite trend is exhibited for lossSD→NP . Here, on
average, there was only a 15% loss from stage direction to
narrative plan. We recall that the characters from the stage
direction GPT-3 was given also appear in the questions.
Therefore, to answer the question, GPT-3 is more likely to
include visual information from the stage direction in its an-
swer, including the characters, and a preserveSD→NP of
85% suggests that GPT-3 is generating answers as we ex-
pect. Most of the stories have a 100% preservation-ratio,
with the ‘robot’ stories scoring the lowest at 65%. We may
interpret here that the visual information included in stage
directions is not unilaterally incorporated by GPT-3 in an-
swering questions; some visual information may be more
challenging to incorporate than others. We take from these
analyses that the stage direction is a stronger influence on
GPT-3 for answering the questions than the SCENE, yet there
is still a range preserved from the scene.

When looking at lossNP→ET , we observe an average of
11%. At this point in the pipeline, GPT-3 is being told to
transform a narrative plan into an expressive text, where the
examples matched a number of visual information. An aver-
age preserveNP→ET of 89% suggests that GPT-3 is again
doing as it is instructed.

To unpack the gain-ratios, we understand that when mov-
ing from SCENE and stage direction to narrative plan, GPT-3
is still answering the question, and deciding that some ele-
ments of the story world were unknown but necessary, and
novelly introduced to fit the answer. We observe a gain of
16% in gainSC,SD→NP , representing a subset of visual in-
formation GPT-3 decided was important in answering the
question but was not given in the SCENE or stage direction.
When moving from narrative plan to expressive text, GPT-
3 is learning from few-shot demonstrations to embellish the
narrative plan. A gainNP→ET of 63% suggests that it is in-
deed following those instructions to add more detail to the
expression of the story.

Willingness to Read More
The three right-most columns in Table 2 show the rater en-
gagement scores. Of the 64 stories, 31% were scored as be-
ing interesting where the rater was willing to take action to
read more (IntTakeAct), 52% were scored as being some-
what interesting but not willing to take action to read more
(IntNoAct), and the remaining 17% were scored as being
uninteresting and unwilling to reading more (NoInt). While



SC→NP SD→NP NP→ET SC,SD→NP NP→ET Engagement with ET

Preserve Loss Preserve Loss Preserve Loss Gain Gain IntTakeAct IntNoAct NoInt

all 10% 90% 85% 15% 89% 11% 16% 63% 31% 52% 17%

agent 5% 95% 100% 0 91% 9% 0 59% 50% 38% 13%
lady 2% 98% 100% 0 74% 26% 40% 33% 13% 75% 13%
mage 9% 91% 100% 0 100% 0 18% 80% 38% 50% 13%
princ. 9% 91% 71% 29% 83% 17% 8% 67% 0 38% 63%
robot 5% 95% 65% 35% 90% 10% 5% 57% 38% 38% 25%
spont. 23% 77% 77% 23% 100% 0 6% 81% 13% 88% 0
search 10% 90% 100% 0 91% 9% 6% 59% 25% 63% 13%
thief 16% 84% 100% 0 86% 14% 28% 69% 75% 25% 0

Table 2: Average preservation, loss, and gain-ratios, and usefulness statistics across 64 SEE&TELL stories. The first
column represents which stage direction was used to generate the story.

the majority of responses fall in the middle of the scale, we
recall that this scale is not a 1–3 Likert scale where the in-
terpretation of the middle score can be interpreted by raters
and experimenters differently. The middle score on our scale
states that the stories were somewhat interesting. Therefore,
83% of our generated expressive texts were deemed to be of
some interest to the reader, while for the top 31%, the reader
would have gone out of their way to read more.

Engagement greatly varied by stage direction, with the
‘thief’ stories having 75% of stories score IntTakeAct, yet
the ‘princess,’ having 63% score NoInt. The rater provided
free-text responses with their scores, and commented on
whether or not the story “fit” the picture, revealing that that
may have been tied to their scoring. For example, for the
top story in Table 1, the rater scored it as IntNoAction and
wrote The story fit the picture, but was not enthralling. For
the bottom story in the same table, the rater scored it Int-
TakeAct and wrote Ominous as to who the thief could be in
the picture.

Conclusions and Future Work
This paper presented SEE&TELL as a visual storytelling
framework that separated ‘seeing’ from ‘telling’ and imple-
mented a question-answering and few-shot approach to gen-
erate stories. Our evaluation revealed that our system pre-
serves 10% of visual information from SCENE to narrative
plan, and that 16% and 63% of the visual information in the
narrative plan and expressive text respectively are novelly
generated and embellished by GPT-3. Eighty three percent
of the expressive texts were deemed interesting, with 31%
being engaging.

Our visual novelty scores provided a baseline for the next
step in this research to explore if preservation, loss, and gain-
ratios can be methodologically altered and subsequently
compared in order to examine what stories with different
ratios look like. Of particular interest, is the correlation of
these stories with rater scores to examine the interplay be-
tween visual novelty and usefulness, especially when deter-
mining if the 10% preservation-ratio we achieved in narra-
tive plan and 89% in expressive text are the ‘right’ amount of
preservation or not. Furthermore, we can explore if there is
a ‘breaking point’ at which too much or little new visual in-

formation is deemed as boring or irrelevant, and what ques-
tions and how many may contribute to changes in scores. A
comparison across a number of visual storytelling systems
is planned for uncovering effective strategies for generating
both engaging and relevant stories.
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Pérez y Pérez, R.; and Sharples, M. 2001. MEXICA: A com-
puter model of a cognitive account of creative writing. JE-
TAI, 13(2): 119–139.
Propp, V. I. 1968. Morphology of the folktale. University of
Texas Press.
Reiter, E.; and Dale, R. 2000. Building natural language
generation systems. Cambridge University Press.
Riedl, M. O.; and Young, R. M. 2004. An intent-driven plan-
ner for multi-agent story generation. In Autonomous Agents
and Multiagent Systems, International Joint Conference on,
volume 2, 186–193. IEEE Computer Society.
Riedl, M. O.; and Young, R. M. 2005. Open-World Planning
for Story Generation. In IJCAI, 1719–1720. Citeseer.

Sai, A. B.; Mohankumar, A. K.; and Khapra, M. M. 2020.
A survey of evaluation metrics used for NLG systems.
arXiv:2008.12009.
Singh, A.; Goswami, V.; Natarajan, V.; Jiang, Y.; Chen, X.;
Shah, M.; Rohrbach, M.; Batra, D.; and Parikh, D. 2020.
MMF: A multimodal framework for vision and language re-
search. https://github.com/facebookresearch/mmf.
Stage Direction. 2018. Collins Dictionary. Accessed Novem-
ber 14, 2022 [Online]. HarperCollins.
Summers-Stay, D.; Bonial, C.; and Voss, C. 2021. What Can
a Generative Language Model Answer About a Passage? In
Workshop on Machine Reading for Question Answering.
Theune, M.; Faas, S.; Nijholt, A.; and Heylen, D. 2003. The
virtual storyteller: Story creation by intelligent agents. In
TIDSE, volume 204215, 116.
Turner, S. R. 1993. Minstrel: a computer model of creativity
and storytelling. University of California, Los Angeles.
Wallas, G. 1926. The Art of Thought, volume 10. Harcourt,
Brace.
Wang, S.; Durrett, G.; and Erk, K. 2020. Narrative
interpolation for generating and understanding stories.
arXiv:2008.07466.
Wang, X.; Chen, W.; Wang, Y.-F.; and Wang, W. Y. 2018. No
metrics are perfect: Adversarial reward learning for visual
storytelling. ACL.
Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.-Y.; and Girshick,
R. 2019. Detectron2. https://github.com/facebookresearch/
detectron2.
Xiao, J.; Ehinger, K. A.; Hays, J.; Torralba, A.; and Oliva,
A. 2016. Sun database: Exploring a large collection of scene
categories. IJCV, 119(1): 3–22.
Xiao, J.; Hays, J.; Ehinger, K. A.; Oliva, A.; and Torralba,
A. 2010. Sun database: Large-scale scene recognition from
abbey to zoo. In CVPR, 3485–3492. IEEE.
Yang, P.; Luo, F.; Chen, P.; Li, L.; Yin, Z.; He, X.; and
Sun, X. 2019. Knowledgeable Storyteller: A Commonsense-
Driven Generative Model for Visual Storytelling. In IJCAI,
volume 3, 7.
Yao, L.; Peng, N.; Weischedel, R.; Knight, K.; Zhao, D.; and
Yan, R. 2019. Plan-and-write: Towards better automatic sto-
rytelling. In AAAI, volume 33, 7378–7385.
Yin, W.; Wang, X.; Shen, C.; Liu, Y.; Tian, Z.; Xu, S.; Sun,
C.; and Renyin, D. 2020. DiverseDepth: Affine-invariant
Depth Prediction Using Diverse Data. arXiv:2002.00569.
Yu, Y.; Chung, J.; Yun, H.; Kim, J.; and Kim, G. 2021.
Transitional adaptation of pretrained models for visual sto-
rytelling. In CVPR, 12658–12668.
Zhang, C.; Yao, C.; Wu, J.; Lin, W.; Liu, L.; Yan, G.; and
Ying, F. 2022. StoryDrawer: A Child–AI Collaborative
Drawing System to Support Children’s Creative Visual Sto-
rytelling. In CHI. ACM.
Zhou, B.; Lapedriza, A.; Khosla, A.; Oliva, A.; and Torralba,
A. 2017. Places: A 10 million Image Database for Scene
Recognition. TPAMI.


