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Abstract

In this paper, we address the explicit represen-001
tation of arcs in syntactic dependency pars-002
ing, diverging from conventional approaches003
where parsing algorithms directly manipulate004
dependency arc scores derived from input to-005
ken representations. We propose augment-006
ing the parser with an intermediate arc rep-007
resentation, arguing for two main advantages.008
Firstly, arc vectors encapsulate richer infor-009
mation, enhancing the capabilities of subse-010
quent scoring functions. Secondly, by intro-011
ducing refinement layers, we enable interac-012
tions among vector representations, facilitat-013
ing the consideration of global long-range de-014
pendencies. We demonstrate the efficacy of015
this approach through empirical evaluations on016
PTB and UD dependency treebanks.017

1 Introduction018

Recent graph-based dependency model with pow-019

erful neural extractors pioneered in (Kiperwasser020

and Goldberg, 2016; Dozat and Manning, 2017)021

make the assumption that the plausibility of a lex-022

ical arc or its labelling, as expressed by a score,023

can be computed directly from the vector repre-024

sentation of the two words linked by this arc. This025

approach has led to tremendous improvements in026

parsing accuracy, and consequently this assump-027

tion has rarely been questioned with the exception028

of (Ji et al., 2019) where the structure of the parse029

forest is exploited to rescore arcs, similarly to for-030

est rerankers for statistical parsers (Huang, 2008).031

In this paper, we want to challenge this assump-032

tion, but with a more pragmatic approach through033

the lens of deep learning. We propose to learn034

how to represent lexical arcs by vectors, and de-035

rive scores from these vectors. This method allows036

to manipulate these vectors through deep archic-037

tectures building the parse forest, and to test this038

hypothesis we use Transformers to refine arc rep-039

resentations.040

2 Model 041

Before we introduce the arc-centric biaffine archi- 042

tecture for dependency parsing, we first review the 043

standard biaffine parser. Then we highlight the 044

key differences of the proposed approach and their 045

consequences in both arc and label scoring. 046

Prior to parsing, in all systems, from an input 047

sentence x0x1 . . . xn, where x0 is the dummy root 048

and ∀1 ≤ i ≤ n, xi corresponds to the ith token 049

of the sentence, models start by computing con- 050

textual representations of tokens e0e1 . . . en. This 051

can be implemented in various ways, for instance 052

with pretrained static word embeddings followed 053

by layers of Bi-LSTMs, or by averaging a sub- 054

sets of layers from pretrained dynamic word em- 055

beddings. These contextual embeddings are fur- 056

ther specialized for head and modifier roles. This 057

is implemented as two feed-forward transforma- 058

tions, resulting in two sets of word representa- 059

tions, h0h1 . . . hn for heads and m0m1 . . .mn for 060

modifiers. In the remainder, given a vector v of 061

size d we note v′ the vector of size d + 1 where 062

v[i] = v′[i],∀1 ≤ i ≤ d and v′[d+ 1] is set to 1. 063

2.1 Biaffine Model 064

We present the first-order model as introduced 065

in (Dozat and Manning, 2017) and refer readers 066

to (Zhang et al., 2020) for higher-order extensions. 067

The first-order scoring function decomposes the 068

score of a parse tree as the sum of the scores 069

of its arcs, if they form a valid tree (i.e. rooted 070

in x0, connected and acyclic) and can be imple- 071

mented as a CRF where arc variables are inde- 072

pendently scored but connected to a global fac- 073

tor asserting well-formedness constraints. This 074

CRF can be trained efficiently and finding the 075

most probable parse can be performed with well- 076

known algorithms. Still, learning imposes to com- 077

pute for each sentence its partition, the sum of 078

the scores of all parse candidates. While be- 079
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ing tractable, this is an overhead compared to080

computing arc scores independently without tree-081

shape constraints. Hence, several recent parsers,082

e.g. (Dozat and Manning, 2017), simplify learn-083

ing by casting it as a head-selection task for each084

token but the root, i.e. arc score predictors are085

trained without tree constraints. In all cases, tree-086

constrained CRF or head selection, evaluation is087

performed by computing the highest-scoring parse088

(Eisner, 1997; Tarjan, 1977), where arc scores may089

be replaced by marginal log-probabilities for bet-090

ter performance (Goel and Byrne, 2000).091

Arc scores are computed by a biaffine1 func-092

tion: for arc xi → xj , Dozat and Manning (2017)093

define arc score as sij = h⊤i Mm′
j with trainable094

matrix M .2 For embeddings of size d, M has di-095

mensions d× (d+ 1).096

Arc Labelling is considered a distinct task: at097

training time arc labelling has its own loss and at098

prediction time most systems use a pipeline ap-099

proach where first a tree is predicted, and second100

each predicted arc is labelled.3 Scoring is also im-101

plemented with a biaffine model: for arc xi → xj ,102

the label logit vector is lij = h′i
⊤Lm′

j , with train-103

able L. For word vectors of size d and for a sys-104

tem with k possible arc labels, L has dimension105

(d + 1) × k × (d + 1). While we used h and m106

notations, these specialized word embeddings are107

given by feed-forward networks different from the108

ones used for arc scores.109

This model relies on two biaffine functions, the110

first for arc scores returning a scalar per arc, and a111

second for arc labels scores returning for each arc a112

vector of label scores. Parameter sharing between113

arc score and arc labelling computations is limited114

to contextual word embeddings e.115

2.2 Arc Models116

Our models differ architecturally in two ways: (i)117

an intermediate vector representation is computed118

for each arc and (ii) both arc and labelling scores119

are derived from this single arc representation.120

For arc xi → xj we compute vector represen-121

tation vij . Again, we use a biaffine function out-122

putting a vector similarly to arc labelling in stan-123

1We ignore bias terms for simplicity.
2This additional 1 on the modifier side intuitively makes

the expression for sij mimic the conditional probability of
the presence of arc i → j given i is classified as a head word,
see (Dozat and Manning, 2017) for a detailed discussion.

3We remark that Zhang et al. (2021) learn the two sepa-
rately and merge them at prediction time.

dard models: vij = h⊤i Rm′
j for a trainable ten- 124

sor R with dimensions d × r × d, where r is the 125

size of the arc vector representation vij , and is a 126

hyperparameter to be fixed, as is the word em- 127

bedding size. We recover arc score sij and arc 128

labelling lij from vij by feed-forward transforma- 129

tions: sij = Fs(vij) and lij = Fl(vij). Note that 130

there is only one biaffine transformation, and one 131

specialization for head and modifier roles. Finally, 132

remark that this change does not impact the learn- 133

ing objective: parsers are trained the same way. 134

2.3 Refining with Attention 135

Arc vectors obtained as above can read informa- 136

tion from sentence tokens via contextual embed- 137

dings. But we can go further and use Transform- 138

ers (Vaswani et al., 2017) to leverage attention in 139

order to make arc representations aware of other 140

arc candidates in the parse forest and adjust ac- 141

cordingly, effectively refining representations and 142

realizing a sort of forest reranking. We call v0ij 143

the vector computed by the biaffine function over 144

word embeddings described above. Then we suc- 145

cessively feed vectors of the form vp−1
ij to Trans- 146

former encoder layer T p in order to obtain vpij and 147

eventually get the final representation vPij . This 148

representation is the one used to compute scores 149

with Fs and Fl. Remark again that this change in 150

the vector representation is compatible with any 151

previously used learning objectives. 152

The main issue with this model is the space 153

complexity. The softmax operation in Transform- 154

ers requires multiplying all query/key pairs, the re- 155

sult being stored as a t × t matrix, where t is the 156

number of elements to consider. In our context, the 157

number of arc candidates is quadratic in the num- 158

ber of tokens in the sentence, so we conclude that 159

memory complexity is O(n4) where n is the num- 160

ber of tokens. To tackle this issue, we could take 161

advantage of efficient architectures proposed re- 162

cently e.g. Linear Transformers (Qin et al., 2022). 163

Preliminary experiments showed training to be un- 164

stable so we resort to a simpler mechanism. 165

Filtered Attention One way to tackle the soft- 166

max memory consumption is to filter input ele- 167

ments. If the number of queries and keys fed to the 168

transformer is linear, we recover a quadratic space 169

complexity. To this end we implement a simple 170

filter Ff to retrieve the best k head candidates per 171

word, reminiscent of some higher-order models 172

prior to deep learning, e.g. Koo and Collins (2010) 173
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which used arc marginal probabilities to perform174

filtering. We keep the k highest-scoring Ff (v
0
ij)175

for each position j, where k typically equals 10.176

Kept vectors v0ij are passed through the trans-177

former as described above, while unkept vectors178

are considered final. This means that the trans-179

former only processes arcs whose filter scores are180

among the highest-scoring ones, the intuition be-181

ing that transformers are only used on ambiguous182

cases where more context is required to further re-183

fine arc or label scores. The filter is trained to184

predict the arc presence with binary cross entropy,185

along with arc and labelling losses.186

3 Experiments187

Data We conduct experiments on the English188

Penn Treebank (PTB) with Stanford dependen-189

cies (de Marneffe and Manning, 2008), as well as190

the Universal Dependencies 2.2 Treebanks (UD;191

Nivre et al. 2018), from which we select 12 lan-192

guages, which we have pseudo-projectivized using193

(Nivre and Nilsson, 2005). We follow the usual194

train/dev/test split on all datasets. Contextual word195

embeddings are obtained from fine-tuned pre-196

trained LLMs. We use RoBERTalarge (Liu et al.,197

2019) for the PTB and XLM-RoBERTalarge (Con-198

neau et al., 2020) for UD.199

Evaluation metrics We use unlabeled and la-200

beled attachment scores (UAS/LAS respectively),201

with the latter to select best models on develop-202

ment sets. Results are averaged over 8 runs initial-203

ized with random seeds. Following Zhang et al.204

(2020) and others, we omit punctuations during205

evaluation on PTB but keep them on UD. Finally,206

we use gold POS tags on UD but omit them for207

PTB.208

Models LOC is the local model from (Zhang209

et al., 2020), trained with arc cross-entropy210

and evaluated with the Eisner algorithm (Eisner,211

1997). ARCLOC is our model with arc vectors, fil-212

tering and one transformer layer.213

3.1 Main Results214

We first evaluate our model on PTB and compare215

it with other systems trained with RoBERTa. Re-216

sults in Table 1 show that our approach with arcs217

represented by their own vector gives a slight per-218

formance improvement on both evaluation metrics219

over LOC a very strong baseline compared to other220

state-of-the-art parsers.221

UAS LAS

Wang and Tu (2020)⋆ 96.94 95.37
Gan et al. (2022) Proj⋆ 97.24 95.49

Yang and Tu (2022)⋆⋆ 97.4 95.8
Amini et al. (2023) w/o POS ⋆⋆ 97.4 95.8

LOC 97.32 95.86
ARCLOC (ours) 97.38 95.91

Table 1: Results on PTB test with RoBERTa, except for
⋆⋆. For Loc and ours, we average 8 runs with random
init. ⋆: from (Gan et al., 2022). ⋆⋆: from (Amini et al.,
2023), using XLNet.

The same observation can be carried out on 12 222

diverse languages from UD, as we can see in Ta- 223

ble 2 where we report results from our parsers 224

and others using XLM-RoBERTa for word em- 225

beddings. We see that on average, our model 226

with arc representations achieves state-of-the-art 227

results. On ten languages out of twelve our parser 228

gives the best results. 229

3.2 Ablation study and analysis 230

Arc representation As we see in Table 3, arc 231

representations can achieve better performance 232

than the base model, and we notice an increase in 233

the UAS/LAS correlated with an increase in arc 234

size up to a plateau. 235

Size of Arc Vector UAS LAS

N/A (LOC) 96.78 95.10
32 96.80 94.97
64 96.85 95.14

128 95.83 95.14
256 96.85 95.19
512 96.86 95.18

Table 3: PTB dev scores w.r.t. arc vector sizes from 32
to 512. (average of 8 runs, no transformer)

Role of Attention We run an ablation experi- 236

ment to measure the impact of the Transformer 237

module in our architecture. Table 4 shows that our 238

arc representation is the main factor of improve- 239

ment of the baseline LOC. Still, Transformers can 240

add a small but consistent improvement. In pre- 241

liminary experiment, we did not observe any per- 242

formance gains from adding Trasnformer layers, 243

henceforth all our testing with transformers use 244

one layer. 245
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bg ca cs de en es fr it nl no ro ru Avg

projective% 99.8 99.6 99.2 97.7 99.6 99.6 99.7 99.8 99.4 99.3 99.4 99.2 99.4

(Wang and Tu, 2020) 91.42 93.75 92.15 82.20 90.91 92.60 89.51 93.79 91.45 91.95 86.50 92.81 90.75
(Gan et al., 2022) Proj 93.61 94.04 93.10 84.97 91.92 92.32 91.69 94.86 92.51 94.07 88.76 94.66 92.21
(Gan et al., 2022) NProj 93.76 94.38 93.72 85.23 91.95 92.62 91.76 94.79 92.97 94.50 88.67 95.00 92.45
LOC 94.58 94.49 93.99 84.14 92.16 93.86 91.69 94.96 93.86 95.31 90.10 95.60 92.90
ARCLOC 94.65 94.60 94.23 84.26 92.31 93.97 91.67 95.21 93.91 95.52 90.25 95.69 93.02

Table 2: Test LAS for 12 languages in UD2.2. We use ISO 639-1 codes to represent languages. The projectivity
percentage is taken from (Gan et al., 2022)

UAS LAS

LOC 96.79 95.11
ARCLOC no transformer 96.86 95.22
ARCLOC 96.86 95.22

Table 4: Impact of arc vectors and Transformers on
PTB dev data.

Arc Filtering Table 5 compares parsing UAS246

with the filter oracle UAS (percentage of correct247

heads in the set returned by filter). The filter’s248

easily learns which head candidates to keep, even249

from a limited pool of candidates, we choose to250

keep 10 potential heads per word to get the highest251

oracle score.4252

#Heads 1 2 3 5 10

Oracle 73.6 98.9 99.5 99.7 99.9
Parser 74.4 96.8 96.8 96.8 96.8

Table 5: PTB Dev UAS scores for ARCLOC and its fil-
ter’s Oracle with different filter sizes (number of kept
heads per word).

4 Related Work253

In addition to the encoder, attention is widely254

utilized in syntactic analysis (Mrini et al., 2020;255

Tian et al., 2020). For instance, Kitaev and Klein256

(2018) examine the correlation between attention257

on lexical and positional contents, while Le Roux258

et al. (2019) employ specialized cross-attention for259

transition-based parsing. Representing spans has260

been shown to be beneficial for NLP (Li et al.,261

2021; Yan et al., 2023; Yang and Tu, 2022) as262

well as using transformers to enhance them (Zara-263

tiana et al., 2022). Our method is closely related264

to the use of global attention in Edge Transform-265

ers (Bergen et al., 2021). Besides the difference266

4Note that there is no discrepancy in the first column, we
can have a UAS score higher than filter’s oracle, as an arc
can be filtered out and still end up in the parse, our filter only
chooses arcs to be processed by the transformer.

in formalisms of analysis, we do not use any par- 267

ticular attention mask while they use a triangular 268

attention. Our use of a learned filter to select arcs 269

that are allowed to interact, is more flexible. Other 270

novel forms of graph attention have been proposed 271

in NodeFormer (Wu et al., 2022). Our use of 272

transformers over arcs is a part of a growing lit- 273

erature on generalizing transformers to relational 274

graph-structured data, as called for by Battaglia 275

et al. (2018). This includes approaches that encode 276

graphs as sets and input them to standard trans- 277

formers similar to TokenGT (Kim et al., 2022) and 278

Graphormer (Ying et al., 2021). However, we re- 279

strict the transformer input to arc vectors excluding 280

node. We differ from approaches that modify stan- 281

dard self-attention either to model structural de- 282

pendencies (Kim et al., 2017) or implement rela- 283

tive positional encodings (Cai and Lam, 2019) and 284

(Hellendoorn et al., 2020). They do not maintain 285

arc vectors but instead use them to improve node 286

vectors. Lastly, we note that our model bears re- 287

semblances to earlier work on reranking for pars- 288

ing (Collins and Koo, 2005; Charniak and John- 289

son, 2005; Le and Zuidema, 2014; Hayashi et al., 290

2013). 291

5 Conclusion 292

We presented a new model for graph-based depen- 293

dency parsing where lexical arcs have their own 294

representation in a high-dimensional vector space, 295

from which their lexical scores are computed. This 296

model demonstrates a clear improvement on pars- 297

ing metrics over a strong baseline and achieves 298

state-of-the-art performance on PTB and 12 UD 299

corpora. Moreover we show that this architec- 300

ture is amenable to further processing where arc 301

vectors are refined through transformer encoders. 302

This method could be extended to other tasks, such 303

as constituent parsing or relation extraction. Fu- 304

ture research will address this extension and study 305

different architectural choices besides Transform- 306

ers. 307
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6 Limitations308

Our system with Transformers relies on the atten-309

tion mechanism which is quadratic in space and310

time in the number of elements to consider. Since311

the number of elements (arcs in our context) is it-312

self quadratic in the number of word tokens, this313

means that naively the proposed transformer ex-314

tension is of quadratic complexity. In practice we315

showed that adding a filtering mechanism is suffi-316

cient to revert complexity back to O(n2), but we317

leave using efficient transformers, with linear at-318

tention mechanism, to future work319

7 Ethical Considerations320

We do not believe the work presented here further321

amplifies biases already present in the datasets.322

Therefore, we foresee no ethical concerns in this323

work.324
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Nainwani, Juan Ignacio Navarro Horñiacek, Anna546
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A Hyperparameters669

We mostly use the same hyperparameter settings670

as Zhang et al. (2020) which are found in their re-671

leased code. Specifically we adopt the approach672

they use when training models using BERT, using673

the average of the 4 last layers to compute our word674

embeddings. The batch size is 5000, the dimen-675

sion of the arc MLP is 500, the dropout rate for our676

MLPs is 0.33, we train our model for 10 epochs677

and save the one with the best LAS score on the678

dev data. The learning rates are 1.1e-4, 7e-5 and679

7.8e-5 for Loc, ArcLoc without a transformer and680

ArcLoc respectively if not using stochastic weight681

averaging (SWA). With SWA, they are 8.3e-5,682

3.5e-5, 3.7e-5 before the weight averaging and 5e-683

6, 2.3e-6 and 3.7e-6 from the fifth epoch onward684

when we use SWA. The transformer in ArcLoc685

benefits from its own hyperparameters, while the686

model warms up for one epoch, the transformer687

does so for three and has a base learning rate of688

3e-3, which becomes 6e-5 when using SWA.689

A.1 Efficiency690

We trained the bulk of our models on Nvidia v100691

GPUs with 32GB of memory but conducted our692

efficiency comparison on Nvidia a40 GPUs with693

48GB of GPU memory. Our models’ memory694

footprint and speed directly depend on the size695

of the arcs, whether we use a transformer, and696

whether we filter the arcs.697

With the use of our filter, we reduce memory698

consumption to manageable levels allowing us to699

use a softmax transformer, however we do notice a700

slower parsing speed due to the biaffine function’s701

cost when computing the arc vectors.702
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480 470
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Figure 1: Parsing speed on PTB in sent/s.

Stochastic weight averaging We implement 703

stochastic weight averaging (SWA) introduced in 704

Izmailov et al. (2018) after 4 epochs, which we 705

found lead to consistent improvements in all mod- 706

els after finetuning. 707
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