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Abstract

In this paper, we address the explicit represen-
tation of arcs in syntactic dependency pars-
ing, diverging from conventional approaches
where parsing algorithms directly manipulate
dependency arc scores derived from input to-
ken representations. We propose augment-
ing the parser with an intermediate arc rep-
resentation, arguing for two main advantages.
Firstly, arc vectors encapsulate richer infor-
mation, enhancing the capabilities of subse-
quent scoring functions. Secondly, by intro-
ducing refinement layers, we enable interac-
tions among vector representations, facilitat-
ing the consideration of global long-range de-
pendencies. We demonstrate the efficacy of
this approach through empirical evaluations on
PTB and UD dependency treebanks.

1 Introduction

Recent graph-based dependency model with pow-
erful neural extractors pioneered in (Kiperwasser
and Goldberg, 2016; Dozat and Manning, 2017)
make the assumption that the plausibility of a lex-
ical arc or its labelling, as expressed by a score,
can be computed directly from the vector repre-
sentation of the two words linked by this arc. This
approach has led to tremendous improvements in
parsing accuracy, and consequently this assump-
tion has rarely been questioned with the exception
of (Ji et al., 2019) where the structure of the parse
forest is exploited to rescore arcs, similarly to for-
est rerankers for statistical parsers (Huang, 2008).
In this paper, we want to challenge this assump-
tion, but with a more pragmatic approach through
the lens of deep learning. We propose to learn
how to represent lexical arcs by vectors, and de-
rive scores from these vectors. This method allows
to manipulate these vectors through deep archic-
tectures building the parse forest, and to test this
hypothesis we use Transformers to refine arc rep-
resentations.

2 Model

Before we introduce the arc-centric biaffine archi-
tecture for dependency parsing, we first review the
standard biaffine parser. Then we highlight the
key differences of the proposed approach and their
consequences in both arc and label scoring.

Prior to parsing, in all systems, from an input
sentence xgrj . . . Ty, where xg is the dummy root
and V1 < ¢ < n, x; corresponds to the i token
of the sentence, models start by computing con-
textual representations of tokens eges . .. e,. This
can be implemented in various ways, for instance
with pretrained static word embeddings followed
by layers of Bi-LSTMs, or by averaging a sub-
sets of layers from pretrained dynamic word em-
beddings. These contextual embeddings are fur-
ther specialized for head and modifier roles. This
is implemented as two feed-forward transforma-
tions, resulting in two sets of word representa-
tions, hohi ... h, for heads and mgm; ... m,, for
modifiers. In the remainder, given a vector v of
size d we note v the vector of size d + 1 where
v[i] = v'[i],V1 < i < dand v'[d + 1] is set to 1.

2.1 Biaffine Model

We present the first-order model as introduced
in (Dozat and Manning, 2017) and refer readers
to (Zhang et al., 2020) for higher-order extensions.
The first-order scoring function decomposes the
score of a parse tree as the sum of the scores
of its arcs, if they form a valid tree (i.e. rooted
in xg, connected and acyclic) and can be imple-
mented as a CRF where arc variables are inde-
pendently scored but connected to a global fac-
tor asserting well-formedness constraints. This
CRF can be trained efficiently and finding the
most probable parse can be performed with well-
known algorithms. Still, learning imposes to com-
pute for each sentence its partition, the sum of
the scores of all parse candidates. While be-



ing tractable, this is an overhead compared to
computing arc scores independently without tree-
shape constraints. Hence, several recent parsers,
e.g. (Dozat and Manning, 2017), simplify learn-
ing by casting it as a head-selection task for each
token but the root, i.e. arc score predictors are
trained without tree constraints. In all cases, tree-
constrained CRF or head selection, evaluation is
performed by computing the highest-scoring parse
(Eisner, 1997; Tarjan, 1977), where arc scores may
be replaced by marginal log-probabilities for bet-
ter performance (Goel and Byrne, 2000).

Arc scores are computed by a biaffine! func-
tion: for arc x; — x,;, Dozat and Manning (2017)
define arc score as s;; = hZTM m;- with trainable
matrix M.? For embeddings of size d, M has di-
mensions d X (d + 1).

Arc Labelling is considered a distinct task: at
training time arc labelling has its own loss and at
prediction time most systems use a pipeline ap-
proach where first a tree is predicted, and second
each predicted arc is labelled.®> Scoring is also im-
plemented with a biaffine model: for arc x; — x;,
the label logit vector is [;; = hgTng, with train-
able L. For word vectors of size d and for a sys-
tem with &k possible arc labels, L has dimension
(d+ 1) x k x (d+ 1). While we used h and m
notations, these specialized word embeddings are
given by feed-forward networks different from the
ones used for arc scores.

This model relies on two biaffine functions, the
first for arc scores returning a scalar per arc, and a
second for arc labels scores returning for each arc a
vector of label scores. Parameter sharing between
arc score and arc labelling computations is limited
to contextual word embeddings e.

2.2 Arc Models

Our models differ architecturally in two ways: (i)
an intermediate vector representation is computed
for each arc and (ii) both arc and labelling scores
are derived from this single arc representation.
For arc w; — x; we compute vector represen-
tation v;;. Again, we use a biaffine function out-
putting a vector similarly to arc labelling in stan-

"We ignore bias terms for simplicity.

2This additional 1 on the modifier side intuitively makes
the expression for s;; mimic the conditional probability of
the presence of arc ¢ — j given ¢ is classified as a head word,
see (Dozat and Manning, 2017) for a detailed discussion.

3We remark that Zhang et al. (2021) learn the two sepa-
rately and merge them at prediction time.

dard models: v;; = hZTRm;- for a trainable ten-
sor R with dimensions d X r X d, where r is the
size of the arc vector representation v;;, and is a
hyperparameter to be fixed, as is the word em-
bedding size. We recover arc score s;; and arc
labelling /;; from v;; by feed-forward transforma-
tions: s;; = Fi(vi;) and l;; = Fj(v;;). Note that
there is only one biaffine transformation, and one
specialization for head and modifier roles. Finally,
remark that this change does not impact the learn-
ing objective: parsers are trained the same way.

2.3 Refining with Attention

Arc vectors obtained as above can read informa-
tion from sentence tokens via contextual embed-
dings. But we can go further and use Transform-
ers (Vaswani et al., 2017) to leverage attention in
order to make arc representations aware of other
arc candidates in the parse forest and adjust ac-
cordingly, effectively refining representations and
realizing a sort of forest reranking. We call v%
the vector computed by the biaffine function over
word embeddings described above. Then we suc-
cessively feed vectors of the form vfj_l to Trans-
former encoder layer 77 in order to obtain vlpj and

eventually get the final representation vi]; . This
representation is the one used to compute scores
with F and F;. Remark again that this change in
the vector representation is compatible with any
previously used learning objectives.

The main issue with this model is the space
complexity. The softmax operation in Transform-
ers requires multiplying all query/key pairs, the re-
sult being stored as a ¢ X ¢ matrix, where ¢ is the
number of elements to consider. In our context, the
number of arc candidates is quadratic in the num-
ber of tokens in the sentence, so we conclude that
memory complexity is O(n*) where n is the num-
ber of tokens. To tackle this issue, we could take
advantage of efficient architectures proposed re-
cently e.g. Linear Transformers (Qin et al., 2022).
Preliminary experiments showed training to be un-
stable so we resort to a simpler mechanism.

Filtered Attention One way to tackle the soft-
max memory consumption is to filter input ele-
ments. If the number of queries and keys fed to the
transformer is linear, we recover a quadratic space
complexity. To this end we implement a simple
filter I’y to retrieve the best £ head candidates per
word, reminiscent of some higher-order models
prior to deep learning, e.g. Koo and Collins (2010)



which used arc marginal probabilities to perform
filtering. We keep the k highest-scoring Ff(v%)
for each position j, where £ typically equals 10.
Kept vectors ’u?j are passed through the trans-
former as described above, while unkept vectors
are considered final. This means that the trans-
former only processes arcs whose filter scores are
among the highest-scoring ones, the intuition be-
ing that transformers are only used on ambiguous
cases where more context is required to further re-
fine arc or label scores. The filter is trained to
predict the arc presence with binary cross entropy,

along with arc and labelling losses.

3 Experiments

Data We conduct experiments on the English
Penn Treebank (PTB) with Stanford dependen-
cies (de Marneffe and Manning, 2008), as well as
the Universal Dependencies 2.2 Treebanks (UD;
Nivre et al. 2018), from which we select 12 lan-
guages, which we have pseudo-projectivized using
(Nivre and Nilsson, 2005). We follow the usual
train/dev/test split on all datasets. Contextual word
embeddings are obtained from fine-tuned pre-
trained LLMs. We use RoBERTay,g. (Liu et al.,
2019) for the PTB and XLM-RoBERTay,g. (Con-
neau et al., 2020) for UD.

Evaluation metrics We use unlabeled and la-
beled attachment scores (UAS/LAS respectively),
with the latter to select best models on develop-
ment sets. Results are averaged over 8 runs initial-
ized with random seeds. Following Zhang et al.
(2020) and others, we omit punctuations during
evaluation on PTB but keep them on UD. Finally,
we use gold POS tags on UD but omit them for
PTB.

Models Loc is the local model from (Zhang
et al.,, 2020), trained with arc cross-entropy
and evaluated with the Eisner algorithm (FEisner,
1997). ARCLOC is our model with arc vectors, fil-
tering and one transformer layer.

3.1 Main Results

We first evaluate our model on PTB and compare
it with other systems trained with RoOBERTa. Re-
sults in Table 1 show that our approach with arcs
represented by their own vector gives a slight per-
formance improvement on both evaluation metrics
over LOC a very strong baseline compared to other
state-of-the-art parsers.

UAS LAS
Wang and Tu (2020)x 96.94 95.37
Gan et al. (2022) Projx 97.24 95.49
Yang and Tu (2022)x* 974 958
Amini et al. (2023) w/o POS xx 974  95.8
Loc 97.32 95.86
ARCLOC (ours) 97.38 9591

Table 1: Results on PTB test with RoOBERTa, except for
*%. For Loc and ours, we average 8 runs with random
init. x: from (Gan et al., 2022). *x: from (Amini et al.,
2023), using XL Net.

The same observation can be carried out on 12
diverse languages from UD, as we can see in Ta-
ble 2 where we report results from our parsers
and others using XLM-RoBERTa for word em-
beddings. We see that on average, our model
with arc representations achieves state-of-the-art
results. On ten languages out of twelve our parser
gives the best results.

3.2 Ablation study and analysis

Arc representation As we see in Table 3, arc
representations can achieve better performance
than the base model, and we notice an increase in
the UAS/LAS correlated with an increase in arc
size up to a plateau.

Size of Arc Vector UAS LAS
N/A (Loc) 96.78 95.10

32 96.80 94.97

64 96.85 95.14

128 95.83 95.14

256 96.85 95.19

512 96.86 95.18

Table 3: PTB dev scores w.r.t. arc vector sizes from 32
to 512. (average of 8 runs, no transformer)

Role of Attention We run an ablation experi-
ment to measure the impact of the Transformer
module in our architecture. Table 4 shows that our
arc representation is the main factor of improve-
ment of the baseline Loc. Still, Transformers can
add a small but consistent improvement. In pre-
liminary experiment, we did not observe any per-
formance gains from adding Trasnformer layers,
henceforth all our testing with transformers use
one layer.



bg ca cs de en es fr it nl no o ru Avg
projective% 998 996 992 977 996 996 997 998 994 993 994 992 994
(Wang and Tu, 2020) 9142 9375 92.15 8220 9091 9260 89.51 9379 9145 9195 86.50 9281 90.75
(Gan et al., 2022) Proj 93.61 94.04 93.10 8497 9192 9232 91.69 94.86 9251 94.07 88.76 94.66 9221
(Ganetal., 2022) NProj  93.76 9438 93.72 8523 9195 9262 91.76 9479 9297 9450 88.67 95.00 9245
Loc 94.58 9449 9399 84.14 9216 9386 91.69 9496 9386 9531 90.10 9560 92.90
ArcLoc 94.65 94.60 94.23 8426 9231 9397 91.67 9521 9391 9552 90.25 9569 93.02

Table 2: Test LAS for 12 languages in UD2.2. We use ISO 639-1 codes to represent languages. The projectivity

percentage is taken from (Gan et al., 2022)

UAS LAS
Loc 96.79 95.11
ARCLOC no transformer 96.86 95.22
ARrcLOC 96.86 95.22

Table 4: Impact of arc vectors and Transformers on
PTB dev data.

Arc Filtering Table 5 compares parsing UAS
with the filter oracle UAS (percentage of correct
heads in the set returned by filter). The filter’s
easily learns which head candidates to keep, even
from a limited pool of candidates, we choose to
keep 10 potential heads per word to get the highest
oracle score.*

#Heads 1 2 3 5 10

73.6 989 995 99.7 999
744 968 96.8 96.8 96.8

Oracle
Parser

Table 5: PTB Dev UAS scores for ARCLOC and its fil-
ter’s Oracle with different filter sizes (number of kept
heads per word).

4 Related Work

In addition to the encoder, attention is widely
utilized in syntactic analysis (Mrini et al., 2020;
Tian et al., 2020). For instance, Kitaev and Klein
(2018) examine the correlation between attention
on lexical and positional contents, while Le Roux
et al. (2019) employ specialized cross-attention for
transition-based parsing. Representing spans has
been shown to be beneficial for NLP (Li et al.,
2021; Yan et al., 2023; Yang and Tu, 2022) as
well as using transformers to enhance them (Zara-
tiana et al., 2022). Our method is closely related
to the use of global attention in Edge Transform-
ers (Bergen et al., 2021). Besides the difference

“Note that there is no discrepancy in the first column, we
can have a UAS score higher than filter’s oracle, as an arc
can be filtered out and still end up in the parse, our filter only
chooses arcs to be processed by the transformer.

in formalisms of analysis, we do not use any par-
ticular attention mask while they use a triangular
attention. Our use of a learned filter to select arcs
that are allowed to interact, is more flexible. Other
novel forms of graph attention have been proposed
in NodeFormer (Wu et al., 2022). Our use of
transformers over arcs is a part of a growing lit-
erature on generalizing transformers to relational
graph-structured data, as called for by Battaglia
et al. (2018). This includes approaches that encode
graphs as sets and input them to standard trans-
formers similar to TokenGT (Kim et al., 2022) and
Graphormer (Ying et al., 2021). However, we re-
strict the transformer input to arc vectors excluding
node. We differ from approaches that modify stan-
dard self-attention either to model structural de-
pendencies (Kim et al., 2017) or implement rela-
tive positional encodings (Cai and Lam, 2019) and
(Hellendoorn et al., 2020). They do not maintain
arc vectors but instead use them to improve node
vectors. Lastly, we note that our model bears re-
semblances to earlier work on reranking for pars-
ing (Collins and Koo, 2005; Charniak and John-
son, 2005; Le and Zuidema, 2014; Hayashi et al.,
2013).

5 Conclusion

We presented a new model for graph-based depen-
dency parsing where lexical arcs have their own
representation in a high-dimensional vector space,
from which their lexical scores are computed. This
model demonstrates a clear improvement on pars-
ing metrics over a strong baseline and achieves
state-of-the-art performance on PTB and 12 UD
corpora. Moreover we show that this architec-
ture is amenable to further processing where arc
vectors are refined through transformer encoders.
This method could be extended to other tasks, such
as constituent parsing or relation extraction. Fu-
ture research will address this extension and study
different architectural choices besides Transform-
ers.



6 Limitations

Our system with Transformers relies on the atten-
tion mechanism which is quadratic in space and
time in the number of elements to consider. Since
the number of elements (arcs in our context) is it-
self quadratic in the number of word tokens, this
means that naively the proposed transformer ex-
tension is of quadratic complexity. In practice we
showed that adding a filtering mechanism is suffi-
cient to revert complexity back to O(n?), but we
leave using efficient transformers, with linear at-
tention mechanism, to future work

7 Ethical Considerations

We do not believe the work presented here further
amplifies biases already present in the datasets.
Therefore, we foresee no ethical concerns in this
work.
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A Hyperparameters

We mostly use the same hyperparameter settings
as Zhang et al. (2020) which are found in their re-
leased code. Specifically we adopt the approach
they use when training models using BERT, using
the average of the 4 last layers to compute our word
embeddings. The batch size is 5000, the dimen-
sion of the arc MLP is 500, the dropout rate for our
MLPs is 0.33, we train our model for 10 epochs
and save the one with the best LAS score on the
dev data. The learning rates are 1.1e-4, 7e-5 and
7.8e-5 for Loc, ArcLoc without a transformer and
ArcLoc respectively if not using stochastic weight
averaging (SWA). With SWA, they are 8.3e-5,
3.5e-5, 3.7e-5 before the weight averaging and Se-
6, 2.3e-6 and 3.7e-6 from the fifth epoch onward
when we use SWA. The transformer in ArcLoc
benefits from its own hyperparameters, while the
model warms up for one epoch, the transformer
does so for three and has a base learning rate of
3e-3, which becomes 6e-5 when using SWA.

A.1 Efficiency

We trained the bulk of our models on Nvidia v100
GPUs with 32GB of memory but conducted our
efficiency comparison on Nvidia a40 GPUs with
48GB of GPU memory. Our models’ memory
footprint and speed directly depend on the size
of the arcs, whether we use a transformer, and
whether we filter the arcs.

With the use of our filter, we reduce memory
consumption to manageable levels allowing us to
use a softmax transformer, however we do notice a
slower parsing speed due to the biaffine function’s
cost when computing the arc vectors.
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Figure 1: Parsing speed on PTB in sent/s.

Stochastic weight averaging We implement
stochastic weight averaging (SWA) introduced in
Izmailov et al. (2018) after 4 epochs, which we
found lead to consistent improvements in all mod-
els after finetuning.
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