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Abstract

Importance Sampling (IS) is a widely used building block for a large variety of
off-policy estimation and learning algorithms. However, empirical and theoretical
studies have progressively shown that vanilla IS leads to poor estimations whenever
the behavioral and target policies are too dissimilar. In this paper, we analyze the
theoretical properties of the IS estimator by deriving a novel anticoncentration
bound that formalizes the intuition behind its undesired behavior. Then, we pro-
pose a new class of IS transformations, based on the notion of power mean. To
the best of our knowledge, the resulting estimator is the first to achieve, under
certain conditions, two key properties: (i) it displays a subgaussian concentration
rate; (ii) it preserves the differentiability in the target distribution. Finally, we
provide numerical simulations on both synthetic examples and contextual bandits,
in comparison with off-policy evaluation and learning baselines.

1 Introduction

The availability of historically collected data is a common scenario in many real-world decision-
making problems, including medical treatments [e.g., 17, 67], recommendation systems [e.g., 33, 16],
personalized advertising [e.g., 3, 60], finance [e.g., 43], and industrial robot control [e.g., 27, 26].
Historical data can be leveraged to address two classes of problems. First, given data collected with a
behavioral policy, we want to estimate the performance of a different target policy. This problem
is known as off-policy evaluation [Off-PE, 21]. Second, we want to employ the available data to
improve the performance of a baseline policy. This latter problem is named off-policy learning [Off-
PL 14]. Off-policy methods are studied by both the reinforcement learning [RL, 58] and contextual
multi-armed bandit [CMAB, 30] communities. Given its intrinsic simplicity compared to RL, off-
policy methods are nowadays well understood in the CMAB framework [e.g., 44, 1, 14, 64]. Among
them, the doubly robust estimator [DR, 14] is one of the most promising off-policy methods for
CMABs. DR combines a direct method (DM), in which the reward is estimated from historical data
via regression, with an importance sampling [IS, 46] control variate.

IS plays a crucial role in the off-policy methods and counterfactual reasoning. However, IS tends
to exhibit problematic behavior for general distributions. This is formalized by its heavy-tailed
properties [40], which prevent the application of exponential concentration bounds [4]. To cope with
this issue, typically, corrections are performed on the importance weight including truncation [23]
and self-normalization [SN, 46], among the most popular. Significant results have recently been
derived for both techniques [47, 29, 39]. Nevertheless, we believe that the widespread use of IS
calls for a better theoretical understanding of its properties and for the design of principled weight
corrections.
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Defining the desirable properties of an off-policy estimator is a non-trivial task. Some works employed
the mean squared error (MSE) as an index of the estimator quality [34, 64]. However, controlling
the MSE, while effectively capturing the bias-variance trade-off, does not provide any guarantee on
the concentration properties of the estimator, which might still display a heavy-tailed behavior [37].
For this reason, we believe that a more suitable approach is to require that the estimator deviations
concentrate at a subgaussian rate [12]. Subgaussianity implicitly controls the tail behavior and leads
to tight exponential concentration inequalities. Unlike MSE, the probabilistic requirements are non-
asymptotic (finite-sample), from which guarantees on the MSE can be derived. While subgaussianity
can be considered a satisfactory requirement for Off-PE, additional properties are advisable when
switching to Off-PL. In particular, the differentiability w.r.t. the target policy parameters is desirable
whenever Off-PL is carried out via gradient optimization. For instance, weight truncation, as presented
in [47], allows achieving subgaussianity but leads to a non-differentiable objective. Consequently,
the optimization phase requires additional care, which sometimes leads to computationally heavy
discretizations [47]. On the contrary, the SN estimator is differentiable in the target policy, but fails
to achieve subgaussian concentration for general distributions.

In this paper, we take a step towards a better understanding of IS. After having introduced the
necessary background (Section 2), we derive an anticoncentration bound for the mean estimation with
vanilla IS. We show that polynomial concentration (Chebychev’s inequality) is tight in this setting
(Section 3). This result formalizes the intuition behind the undesired behavior of these estimators for
general distributions. Hence, we propose a class of importance weight corrections, based on the notion
of power mean (Section 4). The rationale behind these corrections is to “smoothly shrink” the weights
towards the mean, with different intensities. In this way, we mitigate the heavy-tailed behavior and,
in the meantime, we exert control over the induced bias. Then, we derive bounds on the bias and
variance that allow obtaining an exponential concentration inequality and, under certain conditions,
subgaussian concentration (Section 5). Furthermore, the smooth transformation allows preserving
the differentiability in the target policy, unlike some existing transformations, like weight truncation.
To the best of our knowledge, this is the first IS correction that preserves the differentiablity and is
proved to be subgaussian. This correction, however, requires knowledge of a distributional divergence
between the target and behavioral policies, which may be unknown or difficult to compute. To
this end, we introduce an approach to empirically estimate the correction parameter, preserving the
desirable concentration properties (Section 6). After providing a comparative review of the literature
(Section 7), we present an experimental study comparing our approach with traditional and modern
off-policy baselines on synthetic domains and in the CMAB framework (Section 8). The proofs of
the results presented in the main paper can be found in Appendix A. A preliminary version of this
work was presented at the “Workshop on Reinforcement Learning Theory” of ICML 2021 [42].1

2 Preliminaries

We start introducing the background about probability, importance sampling and contextual bandits.

Probability We denote with PpYq the set of probability measures over a pY,FYq. Let P PPpYq,
f :YÑR be a function, and µn be an estimator for the mean µ“Ey„P rfpyqs obtained with n i.i.d.
samples. Suppose that with probability 1´δ it holds that |µn´µ|ď

a

gpn,δq. For βą0, we say that
µn admits: (i) polynomial concentration if gpn,δq“O

`

1{pnδqβ
˘

; (ii) exponential concentration if

gpδq“O
``

logp1{δq{n
˘β˘

; (iii) subgaussian concentration if (ii) holds with β“1 [37]. These cases
correspond to Chebyshev’s, Bernstein’s, and Höeffding’s inequalities respectively [4].

Importance Sampling Let P,QPPpYq admitting p and q as density functions, if P !Q, i.e.,
P is absolutely continuous w.r.t. Q, for any αPp1,2s, we introduce the integral: IαpP }Qq“
ş

Y ppyq
αqpyq1´αdy. If P “Q a.s. (almost surely) then IαpP }Qq“1. IαpP }Qq allows defining

several divergences, like Rényi [51]: pα´1q´1 logIαpP }Qq. Let f :YÑR be a function, (vanilla)
importance sampling [IS, 46] allows estimating the expectation of f under the target distribution P ,
i.e., µ“Ey„P rfpyqs, using i.i.d. samples tyiuiPrns collected with the behavioral distribution Q:

pµn“
1

n

ÿ

iPrns

ωpyiqfpyiq, where ωpyq“
ppyq

qpyq
, @yPY.

1https://lyang36.github.io/icml2021_rltheory/camera_ready/7.pdf.
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It is well-known that pµn is unbiased, i.e., Eyi„Qrpµns“µ [46]. If f is bounded, the variance of
the estimator can be upper-bounded as Varyi„Qrpµnsď

1
n}f}8I2pP }Qq [40]. More in general, the

integral IαpP }Qq represents the α-moment of the importance weight ωpyq under Q.

Contextual Bandits A contextual multi-armed bandit [CMAB, 30] is represented by the tuple
C“pX ,A,ρ,pq, where X is the set of contexts, A is the finite set of actions (or arms), ρPPpX q is
the context distribution, and p :X ˆAÑPpRq is the reward distribution. The agent’s behavior is
encoded by a policy π :XÑPpAq. At each round tPN, the agent observes a context xt„ρ, plays
an action at„πp¨|xtq, gets the reward rt„pp¨|xt,atq and the system moves on to the next round.
The value of a policy π is given by vpπq“

ş

X ρpxq
ř

aPAπpa|xq
ş

R ppr|x,aqrdrdx. We denote with
rpx,aq“

ş

R ppr|x,aqrdr the reward function. A policy π˚ is optimal if it maximizes the value
function, i.e., π˚ PargmaxπPΠ vpπq, where Π“tπ :XÑPpAqu is the set of all policies.

Let D“tpxt,at, rtqutPrns be a dataset of samples collected in a CMAB with a behavioral policy
πb PΠ. The off-policy evaluation [Off-PE, 21] problem consists in estimating the value function
vpπeq of a target policy πe PΠ using the samples in D. The off-policy learning [Off-PL, 14] problem
consists in estimating an optimal policy π˚ PΠ using the samples in D. The simplest approach to
address the Off-PE/Off-PL problem is to learn from D an estimate prpx,aq of the reward function
rpx,aq via regression. This approach is known as direct method (DM) and its properties heavily
depend on the quality of the estimate pr. Another approach is to simply apply IS to reweight the
samples of D, leading to the inverse propensity scoring [IS, 17] estimator. The two approaches are
combined in the doubly-robust [DR, 14] estimator, in which the DM estimate is corrected with an IS
control variate to reduce the variance using the estimated reward pr (see also Table 12 in Appendix D).

3 Anticoncentration of Vanilla Importance Sampling

In this section, we analyze the intrinsic limitations of the vanilla IS. It is well-known that under the
assumption that for some αPp1,2s the divergence IαpP }Qq is finite and f is bounded, the vanilla IS
estimator pµn admits polynomial concentration, i.e., with probability at least 1´δ:2

|pµn´µ|ď}f}8

ˆ

22´αIαpP }Qq

δnα´1

˙

1
α

. (1)

We now show that the concentration in Equation (1) is tight, by deriving an anticoncentration bound
for |pµn´µ|; then, we discuss its implications and compare it with previous works.
Theorem 3.1. There exist two distributions P,QPPpYq with P !Q and a bounded measurable func-
tion f :YÑR such that for every αPp1,2s and δPp0,e´1q if něδemax

 

1,pIαpP }Qq´1q
1

α´1
(

,
with probability at least δ it holds that:

|pµn´µ|ě}f}8

ˆ

IαpP }Qq´1

δnα´1

˙
1
α
ˆ

1´
eδ

n

˙

n´1
α

.

First of all, we note the polynomial dependence on the confidence level δ. The bound is vacuous when
IαpP }Qq“1, i.e., when P “Q a.s., since in an on-policy setting and, being the function f bounded,
subgaussian concentration bounds (like Höeffding’s inequality) hold. In particular, for α“2, n and
I2pP }Qq sufficiently large, the bound has order O

`
a

I2pP }Qq{pδnq
˘

, matching Chebyshev’s and
the existing concentration inequalities for vanilla importance sampling [40, 41].

Our result is of independent interest and applies for general distributions. Previous works considered
the MAB [34] and CMAB [64] settings proving minimax lower bounds in mean squared error (MSE)
Ey„Qrppµn´µq2s. These results differ from ours in several respects. First, we focus on a specific
estimator, the vanilla one, while those result are minimax. Second, they provide lower bounds to the
MSE, while we focus on the deviations in probability.3 From our probabilistic result, it is immediate
to derive an MSE guarantee (Corollary A.1 of Appendix A.1). Finally, they assume that the second
moment of the importance weight I2pP }Qq is finite, whereas our result allows considering scenarios
in which only moments of order αă2 are finite.

2The original result [41, Theorem 2] was limited to α“2 and based on Cantelli’s inequality which approaches
Chebyshev’s when δÑ0. See Theorem A.1 in Appendix A.1, for a proof of Equation (1).

3As noted in [36], when the estimator is not well-concentrated around its mean (e.g., in presence of heavy
tails), the MSE is not adequate to capture the error and high-probability bounds are more advisable.
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s ωs,λpyq

´8 (minimum) mintωpyq,1u

´1 (harmonic)
ωpyq

1´λ`λωpyq
0 (geometric) ωpyq1´λ

1 (arithmetic) p1´λqωpyq`λ

Table 1: Choices of s for the pλ,sq-corrected
importance weight of Definition 4.1.
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Figure 1: Examples of importance weight corrections
of Definition 4.1 for fixed λ (left) and fixed s (right).

4 Power-Mean Correction of Importance Sampling

In this section, motivated by the negative result of Theorem 3.1, we look for a weight correction able
to achieve subgaussian concentration. Specifically, we introduce a class of corrections based on the
notion of power mean [6] and we study its properties. Let us start with the following definition.
Definition 4.1. Let P,QPPpYq be two probability distributions such that P !Q, for every sP
r´8,8s and λPr0,1s, let ωpyq“ppyq{qpyq, the pλ,sq-corrected importance weight is defined as:

ωλ,spyq“
´

p1´λqωpyqs`λ
¯

1
s

, @yPY.

The correction can be seen as the weighted power mean with exponent s between the vanilla
importance weight ωpyq and 1 with weights 1´λ and λ respectively.4 We immediately notice that,
regardless of the value of s, for λ“0, we reduce to the vanilla importance weight ω0,spyq“ωpyq
and for λ“1, we have identically ω1,spyq“1. Furthermore, the correction is unbiased when P “Q
a.s. regardless s and λ. Thus, the correction “smoothly interpolates” between the vanilla weight
ωpyq and its mean under Q, i.e., 1. s and λ govern the “intensity” of the correction in a continuous
way. Differently from the truncation [23], this transformation leads to a differentiable weight. Some
specific choices of s and λ are reported in Table 1 and in Figure 1. The following result provides a
preliminary characterization of the correction, independent of the properties of the two distributions.
Lemma 4.1. Let P,QPPpYq be two probability distributions with P !Q, then for every λPr0,1s
and yPY it holds that:

(i) if sďs1 then ωλ,spyqďωλ,s1pyq;
(ii) if să0 then ωλ,spyqďλ

1
s , otherwise if są0 then ωλ,spyqěλ

1
s ;

(iii) if să1 then Ey„Qrωλ,spyqsď1, otherwise if są1 then Ey„Qrωλ,spyqsě1.

From point (ii) we observe that the corrected weight is bounded from below when są0 and bounded
from above when să0. It is well-known that the inconvenient behavior of IS derives from the heavy-
tailed properties [40]. Thus, the arithmetic correction (s“1) performs just a convex combination
between the vanilla weight and 1, having no effect on the tail properties. Any correction with są1
increases the weight value, making the tail even heavier. So, if we are looking for subgaussianity, we
should restrict our attention to să0, which leads to lighter tails or even bounded weights.

5 Subgaussian and Differentiable Importance Sampling

In this section, we focus on the harmonic correction (s“´1), which leads to a weight of the form:5

ωλ,´1pyq“
ωpyq

1´λ`λωpyq . We start analyzing the bias and variance of this class of estimators. Then,
we provide an exponential concentration inequality that, under certain circumstances, results to be
subgaussian. Finally, we show that the resulting estimator is differentiable in the target distribution.
To lighten the notation we neglect the ´1 subscript, abbreviating pµλ“pµλ,´1.

Bias and Variance We now derive bounds for the bias and the variance induced by the pλ,´1q-
corrected importance weight.

4For sPt´8,0,8u the power mean is defined as a limit.
5The choice of s“´1 is mainly for analytical convenience and, as we shall see, it already allows enforcing

the desired properties. We leave investigating the other values of s for future work.

4



Lemma 5.1. Let P,QPPpYq be two probability distributions with P !Q. For every λPr0,1s, the
bias and variance of the pλ,´1q-corrected importance weight can be bounded for every αPp1,2s as:

ˇ

ˇ

ˇ
E
y„Q

rpµn,λs´µ
ˇ

ˇ

ˇ
ď}f}8λ

α´1IαpP }Qq, Var
yi„Q

rpµn,λsď
}f}28
nλ2´α

IαpP }Qq.

As expected, the bias is zero for λ“0; it increases with λ and with the divergence term IαpP }Qq.
Indeed, we already observed that the bias is null when P “Q a.s.. In particular, for α“2, the
bound becomes }f}8λI2pP }Qq. Instead, the variance bound decreases in λ and increases with the
divergence IαpP }Qq. For α“2, we obtain the bound 1

n}f}
2
8I2pP }Qq. Note that when P “Q a.s.,

we recover 1
n}f}

2
8, which is the Popoviciu’s inequality for the variance [50]. Thus, our weight

correction allows controlling bias and variance even when I2pP }Qq“8, i.e., when the vanilla IS
estimator might have infinite variance. Indeed, our transformed estimator has finite variance provided
that there exists αPp1,2q so that IαpP }Qqă8. Tighter (but less intelligible) bounds on bias and
variance are reported in Appendix A.3.

Concentration Inequality We are now ready to derive the core theoretical result. We prove an
exponential concentration inequality for the pλ,´1q-corrected IS estimator and we show that, if
I2pP }Qq is finite, we are able to achieve subgaussian concentration.6

Theorem 5.1. Let P,QPPpYq be two probability distributions such that P !Q. For every αPp1,2s
and δPp0,1q, if we select λ“λ˚α then, with probability at least 1´δ it holds that:

pµn,λ˚α ´µď}f}8p2`
?

3q

˜

2IαpP }Qq
1

α´1 log 1
δ

3pα´1q2n

¸1´ 1
α

, with λ˚α“

ˆ

2log 1
δ

3pα´1q2IαpP }Qqn

˙

1
α

.

We immediately notice that the dependence on the confidence level δ is the one typical of exponential
concentration for every αPp1,2s. In particular, we observe that the bound is subgaussian when
α“2, requiring that I2pP }Qqă8. Recalling that I2pP }Qq governs the variance of the estimator,
this result is in line with the general theory of estimators for which the existence of the variance is
an unavoidable requirement to achieve subgaussian concentration [12]. Specifically, for α“2 the
optimal value of the parameter is λ˚2 “

a

p2logp1{δqq{p3I2pP }Qqnq, leading to the bound:

pµn,λ˚2
´µď}f}8p2`

?
3q

d

2I2pP }Qq log 1
δ

3n
. (2)

A tighter bound, based on a different choice of the correction parameter λ˚˚α is derived in Ap-
pendix A.3 and it is omitted here for clarity of presentation.

Differentiability As we have already observed, our weight correction, differently from truncation, is
smooth and, thus, differentiable in the target policy. We now focus on the properties of the gradient of
the pλ,´1q-corrected estimator and, to this purpose, we constrain the target distribution to belong to a
parametric space differentiable distributions PΘ“tPθ PPpYq :θPΘu, where ΘĎRd. The gradient
of the corrected weight ωλ w.r.t. the target policy parameters θ is given by:

∇θωλpyq“∇θ
pθpyq

qpyq
“

p1´λqωpyq

p1´λ`λωpyqq
2∇θ logpθpyq, @yPY.

In particular, it can be proved that }∇θωλpyq}8ď
1

4λ }∇θ logpθpyq}8 (Proposition A.1 of Ap-
pendix A.3). Thus, if the score ∇θ logpθ is bounded, the gradient will be bounded whenever λą0.
This property is advisable for gradient optimization and it is not guaranteed, for example, for vanilla
IS (λ“0). Thus, we can also interpret λ as a regularization parameter for the gradient magnitude.

6 Data-driven Tuning of λ

The computation of the parameter λ˚2 requires the knowledge of the divergence I2pP }Qq. Even
when P and Q are known, computing the I2pP }Qq can be challenging, especially for continuous

6We introduce our concentration inequalities as a one-sided bounds just for simplicity but they actually hold
in both directions. Indeed, by replacing function f with function ´f , we obtain the reversed one-sided bound.
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distributions, since it involves the evaluation of a complex integral.7 In principle, we could estimate
the divergence I2pP }Qq from samples as the empirical second moment of the vanilla importance
weights 1

n

ř

iPrnsωpyiq
2. However, although possibly well-performing in practice [40], this approach

would prevent any subgaussian concentration, as the behavior of the non-corrected ωpyq2 will be
surely heavy-tailed whenever ωpyq is. A general-purpose approach to avoid the divergence estimation
is the Lepski’s adaptation method [32], which only requires knowing an upper and a lower bound on
I2pP }Qq. Unfortunately, this method is known to be computationally intensive.

In this section, we follow a different path inspired by the recent work [66]. If a choice of the parameter
λ corrects the weight ωλ leading to an ideal estimator pµn,λ, for the mean µ, we may expect that
the empirical second moment of the corrected weights ωλ will provide a reasonable estimation of
I2pP }Qq. Based on this observation, we propose to choose λ by solving the following equation:

λ2 1

n

ÿ

iPrns

ωλn1{4pyiq
2

loooooooooomoooooooooon

empirical second moment

“
2log 1

δ

3n
. (3)

The intuition behind this approach can be stated as follows. If the empirical second moment is close
to the divergence, i.e., 1

n

ř

iPrnsωλn1{4pyiq
2»I2pP }Qq, the solution pλ of Equation (3) approaches

the optimal parameter, i.e., pλ»
a

p2logp1{δqq{p3I2pP }Qqnq“λ
˚
2 . We formalize this reasoning in

Appendix A.4, proving that Equation (3) admits a unique root pλPr0,1s (Lemma A.4) and that when
the number of samples n grows to infinity, pλ converges indeed to λ˚2 (Lemma A.8). The following
result provides the concentration properties of the estimator pµn,λ when using pλ instead of λ˚2 , under
slightly more demanding requirements on the moments of the importance weights.

Theorem 6.1. Let P,QPPpYq be two probability distributions such that P !Q. Let pλ be the
solution of Equation (3), then, if I3pP }Qq is finite, for sufficiently large n, for every δPp0,1q, with
probability at least 1´2δ it holds that:

pµn,pλ´µď}f}8
5`2

?
3

2

d

2I2pP }Qq log 1
δ

3n
.

Compared to Theorem 5.1, this result is weakened in two aspects. First, the inequality holds with
a smaller probability 1´2δ since two estimation processes with the same samples are needed, i.e.,
the computation of pλ and the corrected estimator pµn,pλ. Second, and most important, the result holds
for large n, whose minimum value is reported in the proof and depends on I3pP }Qq, which must be
finite. We think this is a not too strong requirement considering that even the variance of an empirical
estimate of I2pP }Qq would depend on the fourth moment of the importance weight, i.e., I4pP }Qq.8

7 Related Works

Importance Sampling has a long history in Monte Carlo simulation as an effective technique for
variance reduction in presence of rare events and for what-if analysis [25, 55, 20, 9, 52]. Apart from
sparse exceptions [e.g., 8, 18], in the machine learning community, IS is primarily employed for
off-policy estimation and learning [e.g., 11, 38, 61]. In this setting, it is well-known that IS might
display an inconvenient behavior, depending on the behavioral Q and target P distributions [65, 40].
In particular, IS tends to enlarge the range of the estimator up to esssupy„Q ppyq{qpyq. Although
this term is finite for discrete distributions (if P !Q), it is likely unbounded for continuous ones [11].
Furthermore, in the latter case, the vanilla IS estimator might have infinite variance and tends to
exhibit a heavy-tailed behavior [40, 41]. These properties suggest that a way of addressing this
phenomenon is to resort to robust statistics, typically employed for mean estimation under heavy-
tailed distributions [37]. Methods in this class include the trimmed mean [62, 22], the median
of means [45, 24], and the Catoni’s estimator [7]. For all of them, subgaussian guarantees were

7For some common distributions, including Gaussians, the integral can be computed in closed form [15].
8It is possible to circumvent the computation of I2pP }Qq by choosing λ independently from I2pP }Qq at the

price of downgrading the concentration from subgaussian to exponential (Corollary A.2 of Appendix A.4).
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Estimator Maximum Variance Bias Correction
(order O)

Concentration
(order O)

Is
subgaussian?

Is unbiased
when P “Q?

Is
differentiable?

IS
[46, 40] esssup

p

q
I2pP }Qq

n 0 -
b

I2pP }Qq
δn 7 (poly) 3 3

SN-IS
[46, 29] 1 V SN BSN - BSN`

b

V ES log 1
δ 7 (exp) 3 3

IS-TR(M )
[23, 47] M I2pP }Qq

n
I2pP }Qq
M

b

nI2pP }Qq

log 1
δ

b

I2pP }Qq log 1
δ

n 3 7 7

IS-OS(τ )
[56]

?
τ

2
I2pP }Qq

n
I3pP }Qq

τ
3

c

´

nI3pP }Qq

log 1
δ

¯2

max
βPt2,3u

β

c

IβpP }Qqplog 1
δ q
β´1

nβ´1 7 (exp) 7 3

IS-λ
(ours)

1
λ

I2pP }Qq
n λI2pP }Qq

b

log 1
δ

I2pP }Qqn

b

I2pP }Qq log 1
δ

n 3 3 3

Table 2: Comparison between several IS estimators assuming }f}8“1 and for α“2 w.r.t. several
indexes. For the SN-IS estimator V SN is the Efron-Stein estimate of the variance and BSN is the bias.
V SN and BSN converge to 0 as nÑ8, but no convergence rate is provided in [29].

provided [37]. These techniques have been also successfully employed for regret minimization in
finite [5] and continuous arm spaces [36]. In principle, these methods could be employed as-is in
combination with IS, but, being general-purpose, they might disregard the peculiarities of the setting.

Several ad-hoc methods to cope with the problematic IS behavior have been progressively de-
veloped. An example, devised by the statistical community, is self-normalization [SN-IS, 46]:
rωpyiq“ωpyiq{

ř

jPrnsωpyjq. This approach has the advantage of controlling the range of the es-
timator at the price of making all samples interdependent and generating a bias. Although the
asymptotic consistency is guaranteed [19, 59], its finite-sample analysis is more challenging. In [40],
a polynomial concentration inequality was provided and, more recently, exponential bounds based on
Efron-Stein inequalities have been proposed [28, 29]. Nevertheless, the resulting inequality is not
guaranteed to decrease with Op1{

?
nq for general distributions and it is difficult to formally relate its

concentration rate to the tail properties of the involved distributions [29]. Another popular technique
is the weight truncation (or clipping) [IS-TR, 23, 3]: ωTR

M pyq“mintωpyq,Mu, where Mą0 is the
threshold. Some works rely on empirical selections of the truncation threshold [31, 10], while others
focus on more theoretically principled approaches [2, 64, 47]. In particular, in [47] a subgaussian
deviation bound is derived by suitably adapting the truncation threshold as a function of the number
of samples n and the confidence parameter δ. Another interesting approach, designed for CMABs is
the switch estimator [DR-SW, 64] that selects between DM and IS (or DR), based on the importance
weight value, with also guarantees in MSE. Finally, a not so large part of the literature focuses on
less crude transformations than truncation, called smoothing [63]. They typically take into explicit
consideration the estimator tails [48], also providing asymptotic guarantees. Very recently, shrinkage
transformations of the weight were proposed, based on the minimization of different bounds on
the MSE, in the CMABs [56] setting. Specifically, the optimistic shrinkage [IS-OS, 56] leads to a
transformation similar to ours ωOS

τ pyq“τωpyq{pωpyq
2`τq. Unfortunately, even when knowing P

and Q and setting τ adaptively, IS-OS is unable to achieve subgaussian concentration and requires
I3pP }Qq to be finite (Appendix E for details). Refer to Table 2 for a comparison of the estimators.

8 Numerical Simulations

In this section, we provide numerical simulations for off-policy evaluation (Section 8.1) and learning
(Section 8.2), with the goal of showing that our estimators, while enjoying desirable theoretical
properties, are competitive with traditional (e.g., vanilla IS and self-normalization) and modern
baselines (e.g., truncation, optimistic shrinkage). The complete results can be found in Appendix B.9

8.1 Off-Policy Evaluation

We present two off-policy evaluation experiments. We start with a synthetic example with Gaussian
distributions and, then, we move to the CMAB setting.

9The code is provided at https://github.com/albertometelli/subgaussian-is.
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Estimator / n 10 20 50 100 200 500 1000

IS 27.43˘13.33 15.70˘4.83 10.89˘1.81 9.26˘0.92 12.41˘1.88 9.42˘0.68 5.84˘0.27
SN-IS 23.89˘5.77 15.62˘2.62 10.96˘1.18 9.53˘0.74 8.82˘0.62 7.48˘0.37 5.14˘0.20
IS-TR 23.47˘7.52 14.03˘2.75 10.32˘1.47 8.89˘0.79 7.68˘0.46 6.21˘0.28 4.22˘0.15
IS-OS 19.25˘8.68 10.93˘3.29 8.37˘1.35 7.06˘0.61 8.69˘1.44 6.65˘0.47 3.97˘0.16
IS-λ˚ 21.75˘6.36 13.17˘2.45 9.26˘1.19 7.76˘0.62 6.53˘0.38 5.29˘0.23 3.52˘0.12
IS-λ˚˚ 20.66˘4.08 12.62˘2.19 8.86˘1.08 7.39˘0.57 5.94˘0.32 4.74˘0.20 3.19˘0.10

IS-pλ 18.19˘3.93 10.27˘1.64 7.03˘0.75 5.79˘0.38 3.85˘0.21 2.90˘0.10 2.06˘0.05

Table 3: Absolute error in the illustrative example varying the number of samples n for the different
estimators (mean ˘ std, 60 runs). For each column, the estimator with smallest absolute error and the
ones not statistically significantly different from that one (Welch’s t-test with pă0.02) are in bold.

s / λ 0 0.1 0.2 0.5

´8 3.12˘0.29 3.12˘0.29 3.12˘0.29 3.12˘0.29
´5 6.73˘1.21 2.70˘0.30 2.77˘0.30 2.57˘0.31
´2 6.73˘1.21 2.45˘0.34 2.42˘0.32 2.28˘0.32
´1 6.73˘1.21 2.72˘0.47 2.47˘0.37 2.18˘0,32
´0.5 6.73˘1.21 3.44˘0.64 2.71˘0.47 2.20˘0.34
0 6.73˘1.21 4.83˘0.89 3.66˘0.68 2.38˘0.38
0.5 6.73˘1.21 5.69˘1.05 4.85˘0.89 3.03˘0.52

Table 4: Absolute error in the illustrative ex-
ample varying the parameter s of the cor-
rected weight when n“500 (mean ˘ std, 60
runs). The estimator with smallest absolute er-
ror and the ones not statistically significantly
different from that one (Welch’s t-test with
pă0.02) are in bold.
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Figure 2: CDF of the absolute error normalized by IS
error for stochastic rewards with noise 0.25, across
110 conditions.

8.1.1 Synthetic Experiment

In this experiment, we compare our corrected estimators with IS baselines in a continuous-
distribution off-policy estimation problem. Specifically, we consider a Gaussian behavioral policy
Q“N pµQ,σ2

Qq and a Gaussian target policy P “N pµP ,σ2
P q. We generate n i.i.d. samples from

Q and we estimate the expectation of function fpyq“100cosp2πyq under P . We select µQ“0,
µP “0.5, σ2

Q“1 and σ2
P “1.9, leading to a divergence I2pP }Qq»27.9. The results with different

choices of the σ2
P are reported in Appendix B.1.1.

Estimators Comparison In Table 3, we report the absolute error between the estimated and the
true mean for the different importance sampling estimators. For our correction, we report the results
obtained with optimal value of λ according to Theorem 5.1 with α“2 (IS-λ˚), a value of λ that
optimizes a tighter bound reported in Appendix A.3 (IS-λ˚˚), and the value estimated from samples
as in Section 6 (IS-pλ). We compare these estimators with vanilla IS (IS), self-normalized IS (SN-IS),
weight truncation (IS-TR) with optimal threshold selected as in [47], and IS with optimistic shrinkage
(IS-OS), where τ is computed by minimizing an MSE bound as in [56]. We notice that our estimators
consistently outperform the traditional ones (IS and SN-IS) and overall suffer smaller errors than
IS-TR and IS-OS. Interestingly, the minimum error is often obtained by IS-pλ, which uses an estimated
value pλ that tends to get a higher value than both λ˚ and λ˚˚. In this way, the correction is more
intense, which, in this specific example, turns out to be beneficial.

Comparison of Different Values of s We empirically test different values of the parameter s
employed in Definition 4.1, in the same setting of Table 3 with n“500 for the estimator IS-λ. Since
for general value of s, we do not have a principled way to select the correction parameter λ, we
consider different values of λ. The results are reported in Table 4. We can see that the best results are
obtained with sPt´1,´2u.

8.1.2 Contextual Bandits

In this section, we report the experiments about off-policy evaluation in CMABs.
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Estimator / n 100 200 500 1000 2000 5000 10000 20000

IS 17.38˘1.27 22.26˘2.00 15.98˘0.82 8.36˘0.21 4.67˘0.07 2.68˘0.03 2.15˘0.02 1.10˘0.00
SN-IS 23.95˘1.68 19.39˘1.30 17.94˘0.50 11.43˘0.22 7.10˘0.13 2.54˘0.03 1.61˘0.01 1.10˘0.00
IS-TR 17.38˘1.27 18.92˘1.36 15.88˘0.82 8.36˘0.21 4.67˘0.07 2.68˘0.03 2.15˘0.02 1.10˘0.00
IS-OS 24.91˘1.45 31.93˘1.15 15.38˘0.56 17.25˘0.45 16.41˘0.37 30.63˘0.15 33.95˘0.02 33.61˘0.01
IS-λ˚ 17.22˘1.35 17.10˘1.03 11.57˘0.45 5.66˘0.17 4.86˘0.06 2.73˘0.02 2.47˘0.02 1.27˘0.01
IS-λ˚˚ 17.21˘1.39 16.20˘0.93 10.93˘0.37 5.55˘0.15 5.05˘0.06 2.82˘0.02 2.68˘0.02 1.43˘0.01

IS-pλ 18.16˘1.49 16.52˘0.85 11.23˘0.29 6.48˘0.15 5.85˘0.07 3.01˘0.03 2.89˘0.02 1.50˘0.01

DM 20.52˘1.18 25.28˘0.97 36.19˘0.31 36.04˘0.08 36.95˘0.06 41.99˘0.01 42.70˘0.01 42.71˘0.00
DR 23.00˘1.88 25.79˘2.38 20.02˘0.92 8.30˘0.17 4.37˘0.08 2.16˘0.02 1.38˘0.01 0.64˘0.00
SN-DR 20.89˘1.45 23.38˘1.91 20.79˘0.74 10.99˘0.17 6.48˘0.11 2.54˘0.02 1.52˘0.01 0.99˘0.00
DR-TR 18.48˘1.13 15.96˘0.72 18.58˘0.23 15.52˘0.09 15.45˘0.07 20.33˘0.01 21.05˘0.01 20.78˘0.00
DR-OS 18.47˘1.17 18.84˘0.60 17.10˘0.39 12.19˘0.22 8.86˘0.11 17.52˘0.06 18.40˘0.02 19.04˘0.02
DR-SW 22.83˘1.25 16.81˘1.14 4.59˘0.18 4.70˘0.09 4.86˘0.06 0.77˘0.01 1.38˘0.01 0.78˘0.00
DR-λ˚ 20.03˘1.25 18.70˘1.33 13.04˘0.61 6.22˘0.13 3.82˘0.07 1.79˘0.02 1.37˘0.01 0.61˘0.00
DR-λ˚˚ 19.40˘1.22 17.29˘1.17 11.39˘0.53 5.60˘0.12 3.65˘0.06 1.67˘0.02 1.38˘0.01 0.63˘0.00

DR-pλ 18.53˘1.21 14.92˘0.98 9.18˘0.44 4.91˘0.10 3.39˘0.06 1.61˘0.02 1.40˘0.01 0.65˘0.00

Table 5: Absolute error (multiplied by 100) in the letter dataset varying the number of samples n for
the different estimators, when αb“0.5 and αe“0.9 (mean ˘ std, 10 runs). For each column, the
estimator with smallest absolute error and the ones not statistically significantly different from that
one (Welch’s t-test with pă0.05) are in bold.
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Figure 3: Evaluation reward for four different
datasets after 1000 iterations (4000 iterations
for letter) of gradient ascent with a Boltzmann
policy for the model-free estimators (mean ˘
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Setting We follow the well-established setting of [14, 64, 57, 56]. We consider 11 UCI [13] multi-
class classification datasets (see Table 9 in Appendix B.1.2). Each dataset D˚“tpxi,a˚i quiPrn˚s is
mapped to a CMAB problem with action set A“rKs. Every sample pxi,aq leads to a reward given
by 1ta“a˚i u. To model noise, the reward is switched with probability ν Pr0,1s. Each dataset is
split into a training set Dtrain and an evaluation Deval with proportions 30% and 70%. A multi-class
classifier C is trained on Dtrain. The behavioral policy is obtained as: πbpa|xq“αb` 1´αb

K if a“Cpxq

and πbpa|xq“ 1´αb
K otherwise, where αb Pr0,1s. The target policy πe is obtained as the behavioral

one by training another classifier on Dtrain and using αe Pr0,1s. We employ πb to generate a dataset
D“tpxi,ai, riquiPrns sampling xi from Deval where ai„πbp¨|xiq and ri is computed as described
before. The ground truth value function is computed as vpπeq“ 1

n

ř

xPDeval

ř

aPAπepa|xqrpx,aq. For
DM and DR, we employ a regressor to learn the reward with a cross-fitting procedure on the full D.

Estimators Comparison We consider several settings that vary the values of αb and αe across all
the 11 datasets, generating 110 combinations and a reward noise of ν“0.25. Details and results
for the noiseless case are reported in Appendix B.1.2. To summarize the results, following the
approach of [64], we plot in Figure 2 the cumulative distribution function (CDF) of the absolute
error normalized by the error of IS. A lower error corresponds to a CDF curve towards the upper-
left corner. We distinguish between the approaches that do not make use of the reward estimate pr
(model-free, left) and the ones that do (model-based, right). As for the model-free ones, we note that
the performance of our estimator IS-λ˚ is very close to that of SN-IS. This is likely because we are
dealing with discrete distributions (actions are finite), which implicitly mitigate the degeneracy of
the importance weight. Differently, the advantage w.r.t. the optimistic shrinkage (IS-OS) is quite
significant. Instead, for the model-based estimators, we observe that our weight correction combined
with the DR estimator (DR-λ˚ and DR-pλ) outperforms the standard DR and its combinations with
SN (SN-DR), truncation (DR-TR), and optimistic shrinkage (DR-OS). Instead, the switch estimator
(DR-SW) displays a performance comparable to ours.
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Estimator / ξ 10 20 50 100 200 500 1000

IS 0.6742 0.5414 0.1754 0.0326 0.0326 0.0198 0.0014
IS-λ˚ 0.686 0.5416 0.176 0.0228 0.056 0 0

DR 0.6522 0.4094 0.117 0.0484 0.0378 0.0218 0.0022
DR-λ˚ 0.65 0.4046 0.1088 0.03262 0.009 0 0

Table 6: Complementary cumulative distribution of the absolute error (multiplied by 100) PpEąξq
in the glass dataset varying the number of samples n for the different estimators, when αb“0.9 and
αe“0.9999 (5000 runs).

For the specific case of the letter dataset, we report in Table 5 the results obtained by setting αb“0.5
and αe“0.9 for different number of samples n. We notice essentially two behaviors. When the
number of samples is very low (e.g., 100, 200) all estimators perform similarly, with poor performance.
As n increases, the benefits of the DR-like estimators becomes more visible. In particular, the DR-SW
and our corrected estimators (DR-λ˚, DR-λ˚˚, and DR-pλ) overall dominate the other baselines.

Tail Behavior Experiment We run 5000 estimation processes using the glass dataset, n“30,
αe“0.9999, and αb“0.9. To compare the tail behavior between vanilla weights and our correction
(for both model-free and model-based estimators), we consider the absolute error random (multiplied
by 100) variable E (as in Table 5) and we estimate the complementary cumulative distribution
PpEąξq. Thus, for large values of ξ, the larger PpEąξq, the heavier the tail, since a larger amount
of probability mass accumulates on the right of ξ. Table 6 reports the results for both model-based and
model-free estimators. We observe that our corrected estimators consistently display a significantly
lighter tail compared to the vanilla ones.

8.2 Off-Policy Learning

Finally, we provide an experiment in which we employ the off-policy methods to improve a baseline
policy in the CMAB framework. We refer to the same setting of Section 8.1 with a uniform behavioral
policy (αb“0). For the target policy, we consider a Boltzmann policy in some featurization of the
context πθpa|xq9exp

`

θTa φpxq
˘

. We optimize the estimated value function in the parameters θ
via gradient ascent. Further details and experiments with regularized objectives are reported in
Appendix B.2. We perform Off-PL on four datasets and the results for the model-free estimators
are reported in Figure 3. We observe that our weight corrections (DR-λ˚ and DR-pλ) outperform the
considered baselines (IS, SN-IS, and IS-OS) on ecoli and letter datasets, whereas SN-IS emerges
in the glass and kropt datasets. For the letter dataset, we report in Figure 4 the learning curve,
distinguishing between model-free (left) and model-based (right) estimators.10 For the model-free
ones, we observe the dominance of our estimators over SN estimator (SN-IS), while the optimistic
shrinkage estimator (IS-OS) behaving similarly to ours. Interestingly, for the model-based estimators,
plain DR beats the other estimators, including self-normalization that performs almost identically
with our DR-λ˚, and IS-OS that fails completely to learn the task.

9 Discussion and Conclusions

In this paper, we have deepened the study of the importance sampling technique for off-policy
evaluation and learning. We derived an anticoncentration bound for the vanilla IS estimator, proving
polynomial concentration is tight for this setting. Then, we introduced and analyzed a class of
importance weight corrections based on the intuition of smoothly shrinking the weight towards
one. Assuming that the second moment of the importance weight exists, we have introduced the
first transformation that achieves subgaussian concentration and maintains the differentiability of
the estimator in the target policy parameters. The experimental evaluation has shown that our
theoretically-grounded transformation is competitive with the traditional and modern IS baselines
(including self-normalization, truncation, and optimistic shrinkage) in the CMAB framework for both
evaluation and learning. The advantages of our correction are more visible in the case of continuous
distributions, where the degeneracy of importance sampling is amplified. Future works include the
extension of these corrections to the more challenging RL setting with continuous actions.

10Clearly, the truncated (IS-TR) and the switch (DR-SW) estimators cannot be directly employed in this
setting, being non-differentiable.
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