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Abstract

Multimodal sarcasm detection aims to identify001
sarcasm in the given image-text pairs and has002
wide applications in the multimodal domains.003
Previous works primarily design complex net-004
work structures to fuse the image-text modal-005
ity features for classification. However, such006
complicated structures may risk overfitting on007
in-domain data, reducing the performance in008
out-of-distribution (OOD) scenarios. Addition-009
ally, existing methods typically do not fully010
utilize cross-modal features, limiting their per-011
formance on in-domain datasets. Therefore, to012
build a more reliable multimedia sarcasm de-013
tection model, we propose a generative multi-014
media sarcasm model consisting of a designed015
instruction template and a demonstration re-016
trieval module based on the large language017
model. Moreover, to assess the generalization018
of current methods, we introduce an OOD test019
set, RedEval.1 Experimental results demon-020
strate that our method is effective and achieves021
state-of-the-art (SOTA) performance on the in-022
domain MMSD2.0 and OOD RedEval datasets.023

1 Introduction024

Sarcasm is a linguistic phenomenon of verbal irony025

where the literal meaning contradicts the real intent026

of the speaker. Sarcasm detection aims to identify027

the actual sentiment of the user and can be widely028

applied in various scenarios such as public opinion029

mining (Pang et al., 2008; Riloff et al., 2013) and030

social media analysis (Tsur et al., 2010). Recently,031

due to the rapid surge of multimodal data on social032

media, multimodal sarcasm detection has gained033

increasing attraction and significance. (Cai et al.,034

2019; Xu et al., 2020; Pan et al., 2020; Wang et al.,035

2020; Liang et al., 2021, 2022; Pramanick et al.,036

2022; Liu et al., 2022a; Tian et al., 2023; Qin et al.,037

2023). As shown in Figure 1, the given image-text038

pair is sarcastic because the image fails to show a039

1We will release our code and new test set RedEval.
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Figure 1: Illustration of multimodal sarcasm detection.
The left of the figure conveys a sarcastic meaning with
the contrast between “grass replacing” and “wonderful
job”. The right part displays an image of “beautiful
autumn”, which is semantically consistent and shows
no sarcasm. Previous works rely on complex model
structures for feature fusion followed by classification,
whereas our method generates answers based on LLMs.

good execution of “replacing grass” while the text 040

describes it as a “wonderful job”. 041

Previous studies on multimodal sarcasm detec- 042

tion capture the sarcasm cues of multimodal con- 043

tents from different perspectives, such as attention- 044

based methods (Wang et al., 2020; Pan et al., 2020), 045

graph-based methods (Liang et al., 2021, 2022), ex- 046

tra knowledge enhancement (Liu et al., 2022a), and 047

dynamic routing (Tian et al., 2023). Those methods 048

primarily rely on BERT (Kenton and Toutanova, 049

2019) or RoBERTa (Liu et al., 2019) models, con- 050

structing complex structured networks to model 051

features across two modalities. Despite their ef- 052

fectiveness, a notable concern arises about the ten- 053

dency to overfit specific in-domain data features, 054

which may hinder the generalization of models. 055

Furthermore, Qin et al. (2023) points out that ex- 056

isting models may rely too heavily on spurious 057

textual cues, which can decrease the utilization of 058

cross-modal features and limit the performance in 059

in-domain situations. However, effectively balanc- 060
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ing and integrating cross-modal feature interactions061

remains a critical challenge in enhancing the gen-062

eralization and robustness of multimodal sarcasm063

detection models.064

Fortunately, significant progress has been made065

in various NLP generation tasks with the develop-066

ment of Large Language Models (LLMs) (Ouyang067

et al., 2022). Further leveraging LLMs and ex-068

tending them to multimodal domains, the Multi-069

modal Large Language Models (MLLMs) (Zhu070

et al., 2023; Chen et al., 2023; Liu et al., 2023a,b)071

have also significantly improved various multi-072

modal tasks and show great generalization.073

Therefore, to build a more reliable multimodal074

sarcasm detection model, we redefine multimodal075

sarcasm detection as a generative task to take ad-076

vantage of the powerful MLLMs. To further lever-077

age and enhance the performance of MLLMs, we078

design a detailed instruction template and propose079

a simple yet effective demonstration retrieval mod-080

ule. Furthermore, considering the lack of research081

assessing the generalization of current multimodal082

sarcasm detection models, we collect multimodal083

data from other social media platforms and propose084

a new test set named RedEval for OOD evaluation.085

In summary, our contributions are as follows:086

• To the best of our knowledge, we are the first087

to attempt to explore the generalization of mul-088

timodal sarcasm models and the first to rede-089

fine multimodal sarcasm detection as a gener-090

ation task utilizing MLLMs for better balance091

and integration of cross-modal interactions.092

• We propose a new test dataset, RedEval, com-093

prising image-text pairs collected from other094

social media, to assess the generalization of095

existing models, aiming to construct more re-096

liable multimodal sarcasm models.097

• We design an instruction template and a re-098

trieval module to further enhance our genera-099

tive multimodal sarcasm model. Experimental100

results on MMSD2.0 and RedEval demon-101

strate that our method is effective in both102

in-domain and OOD situations and achieves103

SOTA performance.104

2 Related Work105

2.1 Multimodal Sarcasm Detection106

Traditional sarcasm detection task aims to identify107

the sentiments of users and detect the presence of108

sarcasm from textual modality (Zhang et al., 2016; 109

Tay et al., 2018; Babanejad et al., 2020). Due to 110

the surge of multimodal data in social media, mul- 111

timodal sarcasm detection has gradually attracted 112

much attention. 113

Schifanella et al. (2016) firstly explores the mul- 114

timodal sarcasm detection task by concatenating 115

the textual and visual embeddings. Cai et al. (2019) 116

proposes a hierarchical fusion network and releases 117

a multimodal public dataset, i.e., MMSD. Sub- 118

sequent studies further model the commonalities 119

and incongruity between visual and textual modali- 120

ties by a decomposition and relation network (Xu 121

et al., 2020), BERT-based (Kenton and Toutanova, 122

2019) models through modified attention mecha- 123

nisms (Pan et al., 2020; Wang et al., 2020), graph 124

neural networks (Liang et al., 2021, 2022) and 125

optimal transport (Pramanick et al., 2022). And 126

Liu et al. (2022a) proposes a hierarchical frame- 127

work with external knowledge enhancement for 128

multimodal sarcasm detection. Recently, Tian et al. 129

(2023) applies a dynamic routing network to model 130

the cross-modal incongruity. Furthermore, Qin 131

et al. (2023) discovers that existing models may 132

overly rely on spurious textual cues rather than 133

cross-modal features. This leads to the introduction 134

of a new benchmark, MMSD2.0, and the proposal 135

of a novel framework based on the vision-language 136

pre-trained model CLIP (Radford et al., 2021) to 137

capture sarcasm cues from diverse perspectives. 138

Compared with prior works, our method redefines 139

multimodal sarcasm detection as a generative task. 140

2.2 Multimodal Large Language Models 141

Large Language Models (LLMs) have achieved 142

widespread success in the field of NLP. From early- 143

stage models like BERT (Kenton and Toutanova, 144

2019) and GPT-2 (Radford et al., 2019) to more 145

recent GPT-3 (Brown et al., 2020), instruct- 146

GPT (Ouyang et al., 2022), and various other 147

open-source large-scale language models, such as 148

LLaMA (Touvron et al., 2023a) and LLaMA2 (Tou- 149

vron et al., 2023b), there has been substantial devel- 150

opment in the field of NLP, particularly in the area 151

of natural language understanding and generation. 152

In the research of multi-modality, how to ap- 153

ply those powerful LLMs to multimodal tasks 154

has also gradually gained significant attraction. 155

Early research like Frozen (Tsimpoukelli et al., 156

2021), achieves impressive performance by train- 157

ing a visual encoder to encode the image input as 158

a prefix in a frozen pre-trained language model. 159
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Figure 2: The overview of our model, which includes the retrieval module, instruction template, and generative
multimodal large language model. The demonstration and sample images and texts are processed through a visual
encoder with an adapter and the instruction template before being input together into the large language model.

BLIP (Li et al., 2022) pre-trains a multimodal mix-160

ture of encoder-decoder model to further boost161

vision-language tasks. BLIP2 (Li et al., 2023) pro-162

poses a Q-former to efficiently align visual fea-163

tures to LLMs. Additionally, other studies such as164

MiniGPT4 (Zhu et al., 2023; Chen et al., 2023),165

LLaVA (Liu et al., 2023a,b) and Qwen-VL (Bai166

et al., 2023) employ an adapter like a linear layer167

or multi-layer perceptron to further align the im-168

age features extracted from visual encoders like169

ViT (Dosovitskiy et al., 2020). We apply the mul-170

timodal sarcasm detection task to the generative171

framework of multimodal large language models to172

address the problems of insufficient generalization173

and inadequate reliance on multimodal features.174

3 Methodology175

In this section, we present the overview of our176

method. We first present the brief task formulation177

and describe the MLLM-based generative frame-178

work. Then we detail our retrieval module and179

introduce the training and generation process.180

3.1 Task Formulation181

Given image-text pairs ⟨vi, ti⟩, where vi is the i-th182

image input and ti is the i-th text input. MLLM183

needs to generate the sarcasm label from the label184

set S = {ϵ1, ϵ2} based on vi and ti, where ϵ1 and185

ϵ2 are the positive and negative labels.186

3.2 Model Framework 187

For the generative MLLMs, we leverage LLaVA- 188

1.5 (Liu et al., 2023a) as our backbone. LLaVA-1.5 189

adopts a multi-layer perceptron as the cross-modal 190

projection to connect the vision encoder and large 191

language model. LLaVA-1.5 further pre-trains 192

the vision-language connector on the 600K pub- 193

lic image-text pairs instructions data, which shows 194

the strong power of various multimodal tasks. As 195

shown in Figure 2, given the image-text pair, we 196

first retrieve the best demonstration from the train- 197

ing set. Then we obtain the visual features of both 198

the demonstration and sample images using the 199

visual encoder and adapter. For the demonstra- 200

tion text and sample text, we input them into LLM 201

along with the visual features in the format of an 202

instruction template. 203

3.3 Retrieval Module 204

To better prompt MLLMs to generate the right an- 205

swers, we introduce a retrieval module for MLLMs 206

to search for demonstrations, aiming at further 207

bridging the gap between MLLMs and the specific 208

multimodal sarcasm detection task. 209

As shown in Figure 2, for the given image-text 210

pairs ⟨vi, ti⟩, we first obtain their corresponding 211

embeddings by CLIP (Radford et al., 2021): 212

Embv(i) = CLIPvis(vi) (1) 213
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214

Embt(i) = CLIPtext(ti) (2)215

where CLIPvis and CLIPtext are the visual and tex-216

tual encoder of CLIP.217

For each sample ⟨Embv(i),Embt(i)⟩, we calcu-218

late the cosine similarity of image and text modali-219

ties separately with the samples in the training set220

Dtrain:221

Simv(i) =
Embv(i) · V
|Embv(i)||V|

(3)222

223

Simt(i) =
Embt(i) · T
|Embt(i)||T|

(4)224

where V and T are the image and text embeddings225

from the training set Dtrain.226

Finally, we select the sample with the highest av-227

erage similarity score as the corresponding demon-228

stration:229

Demon(i) = argmax
Simv(i) + Simt(i)

2
(5)230

where Demon(i) is the similarity score of demon-231

stration of i-th image-text sample. Then the re-232

trieved demonstration and the sample, after being233

processed through the instruction template, are in-234

put into LLM together, as shown in Figure 2.235

3.4 Optimization Objective236

Consistent with the loss calculation in auto-237

regressive LLMs, we only compute the cross-238

entropy loss for the response of MLLM, i.e., the239

label of the image-text pair:240

L =
n∑

i=1

− log pθ(ϵi|instructioni) (6)241

where instructioni is the i-th instruction contain-242

ing the information of image-text pair, ϵi is the243

corresponding predicted label and θ represents the244

parameters of the MLLM.245

3.5 Constrained Decoding246

For the generative MLLMs, the results may not247

fully comply with the requirements even when the248

output format is specified in the input instruction.249

This poses a challenge for the classification results250

of the multimodal sarcasm detection task. To ad-251

dress this issue, we implement constrained decod-252

ing (De Cao et al., 2020), ensuring that the model253

can only generate outputs based on the label set.254

M/M2 Training Validation Test

Positive 8, 642/9, 576 959/1, 042 959/1, 037
Negative 11, 174/10, 240 1, 451/1, 368 1, 450/1, 372
Total 19, 816/19, 816 2, 410/2, 410 2, 409/2, 409
Max Len 70/66 55/55 64/52
Min Len 1/1 1/4 1/4
Avg Len 15.71/13.42 15.72/13.64 15.89/13.52

Table 1: The statistics of MMSD and MMSD2.0
datasets. M/M2 means MMSD/MMSD2.0 and Len de-
notes the number of words in the corresponding dataset.

Pos. Neg. Total Max Min Avg

RedEval 395 609 1, 004 54 1 7.35

Table 2: The statistics of RedEval. Pos. and Neg. are
the positive and negative samples. Max, Min, and Avg
are the number of words as mentioned in Table 1.

4 Experiments 255

4.1 Dataset 256

In-Domain Dataset We evaluate our method on 257

MMSD (Cai et al., 2019) and MMSD2.0 (Qin et al., 258

2023) datasets. The MMSD dataset originates from 259

the image-text pairs collected by Cai et al. (2019) 260

on Twitter2 and is randomly divided into training, 261

validation, and test sets in the ratio of 80%, 10%, 262

and 10% respectively. The MMSD2.0 (Qin et al., 263

2023) dataset is built upon MMSD, involving the re- 264

moval of spurious cues and re-annotating unreason- 265

able samples on the textual content. The statistics 266

of the MMSD and MMSD2.0 datasets are shown 267

in Table 1. For a fair comparison, we conduct the 268

same data preprocessing on the MMSD dataset fol- 269

lowing previous works. 270

Out-of-Domain Dataset To assess the general- 271

ization of current multimodal sarcasm models, we 272

propose a new test dataset called RedEval. Con- 273

sidering that the existing image-text pairs in the 274

MMSD and MMSD2.0 datasets are all from the 275

same social media Twitter, we select image-text 276

pairs from another social media platform Reddit3 277

as the out-of-distribution data. Specifically, we se- 278

lect image-text data from the “sarcasm” subreddit 279

as positive sarcasm samples, and a certain number 280

of samples from other subreddits such as “aww”, 281

“funny”, “pics”, and “popular” as the non-sarcastic 282

samples. Following Qin et al. (2023), we remove 283

the emotions from the data. We also employ 3 grad- 284

2https://twitter.com/
3https://www.reddit.com/
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uate students to ensure the quality of the image-text285

pairs in RedEval aligns with the intended mean-286

ing of sarcastic labels. The statistics of RedEval287

are shown in Table 2, the maximum and average288

lengths are different from MMSD and MMSD2.0.289

4.2 Experimental Settings290

Based on LLaVA-1.5-7B (Liu et al., 2023a), we use291

“ CLIP-ViT-L-336px” as the vision encoder and292

“Vicuna-v1.5-7B” as the LLM. We use the same293

vision encoder to obtain image and text embed-294

dings in the retrieval module. We utilize “BLIP2-295

FlanT5-XL” to obtain image captions. Given296

the limitations of task-specific data and compu-297

tational resources, we choose Parameter-Efficient-298

Fine-Tuning (PEFT) for the training stage. Specifi-299

cally, we adopt LoRA (Hu et al., 2021) and inject300

the low-rank matrices as adapters into MLLM. The301

rank of the update matrices is 128 and the scaling302

factor of LoRA is 256. We freeze the vision en-303

coder and fine-tune the vision-language connector304

and LLM following Liu et al. (2023a). The learn-305

ing rate for the vision-language connector is 2e-5306

and the learning rate for LLM is 2e-4. The batch307

size is 12 and the training epoch is 5. We adopt308

constraint beam search and set the beam size as 1.309

All models are trained on 2 NVIDIA 3090Ti GPUs310

and tested on a single NVIDIA 3090Ti GPU.311

4.3 Baselines312

Following prior works, we compare our method313

with unimodal and multimodal baselines for multi-314

modal sarcasm detection on MMSD and MMSD2.315

Text-Modality Methods (1) TextCNN (Kim,316

2014) is a text classification network based on the317

convolutional neural network. (2) BiLSTM (Zhou318

et al., 2016) is a bi-directional long short-term319

memory network for text classification. (3)320

SMSD (Xiong et al., 2019) is a self-matching net-321

work with low-rank bilinear pooling for sarcasm322

detection. (4) RoBERTa (Liu et al., 2019) is a ro-323

bustly optimized BERT (Kenton and Toutanova,324

2019) pre-trained language model. (5) ChatGLM2-325

6B (Du et al., 2022) is an open bilingual language326

model based on the general language model frame-327

work, with 6.2 billion parameters. (6) LLaMA2-328

7B (Touvron et al., 2023b) is a foundation LLM pre-329

trained on 2 trillion tokens, with 7 billion parame-330

ters. We refer to ChatGLM2-6B and LLaMA2-7B331

as the LLM-based methods.332

Image-Modality Methods. (1) ResNet (He333

et al., 2016) utilizes the image embedding that is334

produced by the pooling layer to detect sarcasm. 335

(2) ViT (Dosovitskiy et al., 2020) is a pre-trained 336

vision transformer model. 337

Multi-Modality Methods. (1) HFM (Cai et al., 338

2019) is a hierarchical network with multimodal 339

fusion. (2) D&R Net (Xu et al., 2020) propose 340

a decomposition and relation network to model 341

the relationship between image and text. (3) 342

Att-BERT (Pan et al., 2020) adopts self-attention 343

and co-attention mechanisms to model the intra- 344

modality and inter-modality incongruity respec- 345

tively. (4) InCrossMGs (Liang et al., 2021) uti- 346

lizes in-modal and cross-modal graphs to capture 347

sarcastic relations between two modalities. (5) 348

CMGCN (Liang et al., 2022) proposes a fine- 349

grained cross-modal graph architecture to capture 350

sarcastic clues. (6) HKE (Liu et al., 2022a) uses 351

a hierarchical graph-based framework and incor- 352

porates external knowledge like image captions 353

for multimodal sarcasm detection. (7) DynRT- 354

Net (Tian et al., 2023) proposes a dynamic rout- 355

ing transformer network to capture the sarcas- 356

tic clues from images and texts. (8) Multi-view 357

CLIP (Qin et al., 2023) utilizes a framework based 358

on CLIP (Radford et al., 2021) from image view, 359

text view, and image-text interactions view for mul- 360

timodal sarcasm detection, which is current State- 361

Of-The-Art (SOTA) multimodal sarcasm model. 362

(9) LLaVA1.5-7B (Liu et al., 2023a) adopts a multi- 363

layer perceptron as an adapter to connect the vision 364

encoder and LLM, which has 7 billion parameters. 365

It is given the image-text pairs and required to pre- 366

dict the labels. LLaVA1.5-7B is our base model. 367

For the out-of-domain situation, we compare 368

our method with ChatGLM2-6B, LLaMA2-7B, 369

DynRT-Net, Multi-view CLIP, and LLaVA1.5-7B. 370

These models are all trained on the training set of 371

MMSD and MMSD2.0 and tested on RedEval. 372

4.4 Main Results 373

Following Qin et al. (2023), we adopt accu- 374

racy (Acc.), macro-average precision (P), macro- 375

average recall (R), and macro-average F1 score (F1) 376

as metrics to assess the performance of our model. 377

Datasets Discussion. As shown in Table 3, for 378

the MMSD dataset, the performance of LLMs like 379

ChatGLM2-6B and LLaMA2-7B in the text modal- 380

ity methods reaches a relatively high level, even 381

outperforming the multimodal methods. It is con- 382

sistent with the experimental result of RoBERTa 383

reported in Qin et al. (2023). This suggests that 384

there indeed exists a problem with the text modal- 385
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Model MMSD MMSD2.0
Acc. (%) P (%) R (%) F1 (%) Acc. (%) P (%) R (%) F1 (%)

Text-Modality Methods

TextCNN (Kim, 2014)∗ 80.03 74.29 76.39 75.32 71.61 64.62 75.22 69.52
BiLSTM (Zhou et al., 2016)∗ 81.90 76.66 78.42 77.53 72.48 68.02 68.08 68.05
SMSD (Xiong et al., 2019)∗ 80.90 76.46 75.18 75.82 73.56 68.45 71.55 69.97
RoBERTa (Liu et al., 2019)∗ 93.97 90.39 94.59 92.45 79.66 76.74 75.70 76.21

ChatGLM2-6B (Du et al., 2022) 94.02 93.46 94.14 93.76 78.41 78.15 78.65 78.23
ChatGLM2-6B (Du et al., 2022)ν 94.02 93.46 94.14 93.76 80.08 80.52 81.04 80.04
LLaMA2-7B (Touvron et al., 2023b) 93.97 93.42 94.09 93.72 82.52 82.15 82.46 82.27
LLaMA2-7B (Touvron et al., 2023b)ν 94.02 93.46 94.14 93.76 84.68 84.40 84.94 84.53

Image-Modality Methods

ResNet (He et al., 2016)∗ 64.76 54.41 70.80 61.53 65.50 61.17 54.39 57.58
ViT (Dosovitskiy et al., 2020)∗ 67.83 57.93 70.07 63.40 72.02 65.26 74.83 69.72

Multi-Modality Methods

HFM (Cai et al., 2019)∗ 83.44 76.57 84.15 80.18 70.57 64.84 69.05 66.88
D&R Net (Xu et al., 2020)∗ 84.02 77.97 83.42 80.60 − − − −
Att-BERT (Pan et al., 2020)∗ 86.05 80.87 85.08 82.92 80.03 76.28 77.82 77.04
InCrossMGs (Liang et al., 2021)∗ 86.10 81.38 84.36 82.84 − − − −
CMGCN (Liang et al., 2022)∗ 86.54 − − 82.73 79.83 75.82 78.01 76.90
HKE (Liu et al., 2022a)∗ 87.36 81.84 86.48 84.09 76.50 73.48 71.07 72.25
DynRT-Net (Tian et al., 2023) 93.59 93.06 93.60 93.31 71.40 71.80 72.17 71.34
Multi-view CLIP (Qin et al., 2023)∗ 88.33 82.66 88.65 85.55 85.64 80.33 88.24 84.10

LLaVA1.5-7B (Liu et al., 2023a) 93.67 93.70 93.14 93.40 85.18 85.89 85.20 85.11

Ours 89.97 89.26 89.58 89.42 86.43† 87.00† 86.30 86.34†

Table 3: Experimental results on MMSD and MMSD2.0. ∗ denotes the experimental results from Qin et al.
(2023). ν denotes that the text-modality method takes the image captions as visual information inputs. † means our
method outperforms Multi-view CLIP significantly with p < 0.001. Compared with MMSD2.0, the performance
of text-modality methods reaches the highest on MMSD, indicating that MMSD is not sufficient to measure the
effectiveness of multimodal methods.

ity data in MMSD, which undermines the depen-386

dency of multimodal methods on image-text modal-387

ity features. Furthermore, we observe that the388

performance of ChatGLM2-6B, LLaMA2-7B, and389

LLaVA1.5-7B on MMSD is very similar. This sug-390

gests that the performance of models on MMSD391

may have already reached the upper limit, mak-392

ing further improvements challenging. As for the393

MMSD2.0 dataset, multimodal model approaches394

generally outperform unimodal methods. Also,395

LLM-based methods utilizing image captions as vi-396

sual information inputs could achieve better perfor-397

mance. This indicates that MMSD2.0 strengthens398

the dependency on cross-modal features, prevent-399

ing models from relying solely on textual infor-400

mation to predict the correct labels. In summary,401

MMSD falls short in evaluating current mul-402

timodal methods, whereas MMSD2.0 offers a403

more effective assessment.404

Additionally, we observe that the performance 405

of LLMs on MMSD2.0 can reach a relatively high 406

standard compared to current multimodal methods. 407

Yet the choice of base models is important and influ- 408

ences the final performance. For example, the base 409

performance of LLaMA2-7B is higher than that of 410

ChatGLM2-6B. We also observe that MLLM like 411

LLaVA outperforms LLM-based methods. This in- 412

dicates that connecting a visual encoder and LLM 413

through an adapter could process a more diverse 414

range of image information, leading to better per- 415

formance in detecting multimodal sarcasm. In con- 416

trast, using LLMs alone or converting images into 417

captions for inputs to LLMs may not be as effec- 418

tive in handling this multimodal task. Furthermore, 419

compared to the baseline methods, our proposed 420

instruction template and retrieval module could 421

further enhance the performance of MLLMs, sur- 422

passing previous methods and achieving the SOTA 423
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Model MMSD for OOD MMSD2.0 for OOD
Acc. (%) P (%) R (%) F1 (%) Acc. (%) P (%) R (%) F1 (%)

Text-Modality Methods

ChatGLM2-6B (Du et al., 2022) 58.47 46.51 49.13 41.12 77.19 76.74 74.57 75.22
ChatGLM2-6B (Du et al., 2022)ν 58.57 46.79 49.21 41.17 79.28 78.92 80.25 78.95
LLaMA2-7B (Touvron et al., 2023b) 58.57 46.79 49.21 41.17 79.48 78.66 79.66 78.93
LLaMA2-7B (Touvron et al., 2023b)ν 58.67 47.35 49.34 41.40 81.38 80.47 80.60 80.53

Multi-Modality Methods

DynRT-Net (Tian et al., 2023) 58.57 47.06 49.25 41.35 74.80 75.58 76.69 74.66
Multi-view CLIP (Qin et al., 2023) 76.29 75.67 73.70 74.30 80.98 80.85 82.62 80.73
LLaVA-1.5-7B 61.25 52.63 57.68 47.13 82.77 83.66 82.25 82.44

Ours 59.16 49.70 48.67 41.47 83.47† 83.12 82.60 82.83†

Table 4: Experimental results on RedEval. The models are trained on the training set of MMSD and MMSD2.0 and
tested on RedEval. ν and † denotes as the same in Table 3.

performance on MMSD2.0. This demonstrates424

the effectiveness of our method. Compared to the425

previous SOTA method on MMSD2.0, Multi-view426

CLIP (Qin et al., 2023), which exhibits a perfor-427

mance of P of 80.33, R of 88.24, and F1 of 84.10,428

our method demonstrates a more balanced perfor-429

mance across P, R, F1, approximately achieving a430

uniform score of 86.3 in each category.431

4.5 Out-of-Domain Results432

As shown in Table 4, models trained on the MMSD433

dataset perform poorly on the OOD dataset. Only434

Multi-view CLIP (Qin et al., 2023) shows rela-435

tively better performance, yet still experiences a436

decline of over 12 points of accuracy compared to437

the in-domain situation. This also indicates that438

MMSD indeed causes models to focus more on439

domain-specific data features, or even solely on440

textual modality features, significantly damaging441

the generalization of models.442

Compared to MMSD, models trained on the443

MMSD2.0 dataset exhibit better cross-modality444

dependence and generalization, as shown in Ta-445

ble 4, which is consistent with Section 4.4. But446

compared to the in-domain situations, there is still447

a noticeable performance decline. It has been448

observed that the models that perform well on449

MMSD2.0 also tend to show decent performance450

on RedEval. However, models that perform well451

on MMSD but poorly on MMSD2.0 like DynRT-452

Net (Tian et al., 2023) exhibit poor performance in453

the OOD situation. Compared to previous meth-454

ods, both LLM-based methods like LLaMA2-7B455

and MLLM-based method LLaVA show excellent456

performance, even surpassing the previous SOTA457

Model MMSD2.0
Acc. (%) P (%) R (%) F1 (%)

Demon Quality 79.20 79.36 78.90 78.90

ChatGLM2-6Bν 80.08 80.52 81.04 80.04
ChatGLM2-6Bνw/RM 82.94 82.62 83.12 82.76

LLaMA2-7Bν 84.68 84.40 84.94 84.53
LLaMA2-7Bνw/RM 85.97 85.64 85.85 85.74

Table 5: The performance of retrieved demonstration
quality and LLM-based methods on the MMSD2.0
dataset. ν denotes as the same in Table 3. RM de-
notes the retrieval module.

methods like Multi-view CLIP. This suggests that 458

LLMs and MLLMs indeed have better generaliza- 459

tion capabilities compared to other models. More- 460

over, our method still achieves the best accuracy 461

and F1 scores on the OOD dataset, which further 462

demonstrates the effectiveness of our approach un- 463

der the OOD condition. 464

5 Analysis 465

5.1 The Effectiveness of Retrieval Module 466

In this section, we further analyze the effective- 467

ness of our proposed retrieval module. Despite the 468

results of the MLLM-based method in the main 469

results Table 3, we further analyze the demonstra- 470

tion quality and the effectiveness of the retrieval 471

module on LLM-based methods. Given that the per- 472

formance of LLM-based methods on the MMSD 473

dataset may reach the performance ceiling, we con- 474

duct experiments only on the MMSD2.0 dataset. 475

We retrieve demonstrations for the given image-text 476

pairs, requiring the LLMs to predict the correspond- 477
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Figure 3: Low-Resource Performance on MMSD2.0.

ing label of the current sample based on the given478

demonstration. We keep adopting the format of479

image captions for the image information inputs.480

We first evaluate the quality of our retrieved481

demonstrations. Generally, when the given image-482

text pair and its corresponding demonstration be-483

long to the same category, the performance of mod-484

els is better (Liu et al., 2022b). Therefore, we485

calculate the evaluation metrics by comparing the486

labels of the demonstrations with the correspond-487

ing image-text pairs. As shown in Table 5, with488

only the retrieval module, the performance of the489

retrieved demonstrations MMSD2.0 even surpasses490

most of the current multimodal methods, which are491

fine-tuned on the full training set. This indicates492

that our proposed retrieval module is highly effec-493

tive in retrieving candidate demonstrations.494

For the LLM-based methods, after incorporat-495

ing our proposed retrieval module, the LLM-based496

methods both achieve a further improvement, as497

shown in Table 5. Moreover, the performance of498

the LLaMA2-7B model even surpasses the previ-499

ous SOTA method Multi-view CLIP (Qin et al.,500

2023). This indicates that even a purely textual501

LLM can achieve excellent performance in mul-502

timodal sarcasm detection by converting images503

into captions and applying proper prompting and504

instructions. This also reveals that LLMs not only505

have immense applicability in the field of natural506

language processing but also possess significant507

potential in the realm of multimodal tasks.508

5.2 Low-Resource Scenario509

Following Qin et al. (2023), we explore the effec-510

tiveness of our method and LLM-based methods in511

low-resource scenarios of MMSD2.0. Specifically,512

we compare the performance of our method, LLM-513

based methods with the retrieval module, and the 514

previous SOTA method on MMSD2.0, Multi-view 515

CLIP (Qin et al., 2023) in low-resource scenarios. 516

As shown in Figure 3, our MLLM-based method 517

does not outperform Multi-view CLIP until the data 518

proportion is above 40%. This may be because our 519

method is based on a large scale of parameters of 520

LLM and could not be trained sufficiently with the 521

very limited data, leading to relatively poor perfor- 522

mance. With the continuous increase in data pro- 523

portion in low-resource scenarios, we can observe 524

that our method significantly outperforms Multi- 525

view CLIP (Qin et al., 2023) by a large margin 526

after 40%. This indicates that with the continuous 527

improvement in data scale, the performance based 528

on the large language models can also be greatly 529

enhanced. 530

For the LLM-based methods, we observe that 531

LLaMA2-7B does not outperform Multi-view 532

CLIP with a very limited amount of low-resource 533

data like 50%. Beyond 50%, the performance of 534

LLaMA2-7B gradually approaches and surpasses 535

Multi-view CLIP. In contrast, ChatGLM2-6B con- 536

sistently performs at a lower performance level, 537

highlighting the importance of the choice of base 538

models. The performance trends of LLM meth- 539

ods, as shown in Figure 3, are consistent with our 540

method. This indicates that these LLM-based meth- 541

ods all have limitations with very low resources but 542

their performance increases to a higher level once 543

the data scale reaches a certain scale. This reveals 544

that for LLMs, choosing an appropriate data scale 545

is crucially important for performance. 546

6 Conclusion 547

In this paper, we focus on the problems of insuffi- 548

cient OOD generalization and inadequate utiliza- 549

tion of cross-modal features in current multimodal 550

sarcasm detection models. To build a more reli- 551

able model, we propose a generative multimodal 552

sarcasm detection model consisting of an instruc- 553

tion template and a demonstration retrieval module 554

based on the powerful multimodal large language 555

model. Moreover, to assess the generalization of 556

current multimodal sarcasm detection models, we 557

also propose a new OOD test set, RedEval. Ex- 558

perimental results demonstrate that our method is 559

effective and outperforms previous baselines by 560

a large margin, achieving the SOTA performance 561

on both in-domain MMSD2.0 and out-of-domain 562

RedEval datasets. 563
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Limitations564

Our method is constrained by the foundational per-565

formance of LLM, the visual encoder, and the566

adapter themselves. Additionally, for the pure567

LLM-based methods, the quality of the image cap-568

tions used as visual information input also limits569

the final performance of the model.570

Ethics Statement571

We affirm that our work here does not exacerbate572

the biases already inherent in the large language573

models. The dataset we crawled is sourced from574

the official public interfaces of Reddit, which met575

the requirements. The dataset is only for academic576

research. The quality of our dataset was confirmed577

by graduate students at Chinese universities who578

were paid properly.579
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A Instruction Template for LLMs817

• Pure LLM: “Please select the sarcasm label818

of ‘<sample text>’ from {0,1}.”819

• LLM with Image Captions: “Please select820

the sarcasm label of ‘<sample text ### sam-821

ple image caption>’ from {0,1}.”822

• LLM with Demonstrations: “Here is823

a demonstration: ‘<demonstration text824

### demonstration image caption>’, label:825

‘<demonstration label>’. Based on the above826

demonstration, please select the sarcasm la-827

bel of ‘<sample text ### sample image cap-828

tion>’ from {0,1}.”829
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