
Expanding the Deployment Envelope of Behavior
Prediction via Adaptive Meta-Learning

Boris Ivanovic1 James Harrison2 Marco Pavone1,3
1NVIDIA Research 2Google Research, Brain Team 3Stanford University

{bivanovic, mpavone}@nvidia.com, jamesharrison@google.com, pavone@stanford.edu

Abstract

Learning-based behavior prediction methods are increasingly being deployed in
real-world autonomous systems, e.g., in fleets of self-driving vehicles, which
are beginning to commercially operate in major cities across the world. De-
spite their advancements, however, the vast majority of prediction systems are
specialized to a set of well-explored geographic regions or operational design
domains, complicating deployment to additional cities, countries, or continents.
Towards this end, we present a novel method for efficiently adapting behavior
prediction models to new environments. Our approach leverages recent advances
in meta-learning, specifically Bayesian regression, to augment existing behavior
prediction models with an adaptive layer that enables efficient domain transfer
via offline fine-tuning, online adaptation, or both. Experiments across multiple
real-world datasets demonstrate that our method can efficiently adapt to a vari-
ety of unseen environments. All of our code, models, and data are available at
https://github.com/NVlabs/adaptive-prediction.

1 Introduction

Learning-based behavior prediction methods are becoming a staple of the modern robotic autonomy
stack, with nearly every major autonomous vehicle organization incorporating state-of-the-art be-
havior prediction models in their software stacks [1–7]. In order to deploy such systems safely and
reliably alongside humans, organizations extensively train and test models in their specific operational
domains. While this improves system accuracy and safety within the targeted domain, it does so at
the cost of generalization. Specifically, deploying autonomous vehicles to different cities or countries
remains challenging due to their different social standards, laws, agent types, and road geometries.

Contributions. Our key contributions are threefold. First, we combine ALPaCA-based [8] last layer
adaptation with recurrent models, and show that they work synergistically to enable both broad gener-
alization and efficient transfer. Second, we present a novel trajectory forecasting algorithm based on
Trajectron++ [9] that naturally pairs with the ALPaCA adaptive last layer. In particular, we introduce
a within-episode aleatoric uncertainty prediction scheme that enables state-dependent multimodality
and modulates last layer adaptation. Finally, we show experimentally that this architecture broadly
extends the deployment envelope of trajectory forecasting algorithms, enabling efficient transfer to
problem settings substantially different from those on which they were trained.

2 Related Work

Adaptive Behavior Prediction. There have been a plethora of trajectory forecasting datasets released
in recent years, with thousands of hours of data now publicly available [10]. Accordingly, there have
been many methods tackling the problem of domain adaptation for trajectory forecasting. They can
broadly be categorized into the following three groups: (1) Memory-based approaches generally tackle

6th Workshop on Meta-Learning at NeurIPS 2022, New Orleans.

https://github.com/NVlabs/adaptive-prediction

domain shifts by first computing past and future trajectory embeddings (e.g., with recurrent neural
networks) and then leveraging an associative external memory to store and retrieve the embeddings at
test-time [11, 12]. One key drawback, however, is that constantly-growing extra memory may not be
feasible for platforms with fixed memory and compute limits. In contrast, our method does not require
any extra memory. (2) Architectural methods generally employ neural networks whose intermediate
representations or structures are generalizable and can transfer to different domains [13, 14]. A key
drawback of such approaches is that they either require labeled data from the target domain during
training [13] or are not inherently online-adaptive [14]. (3) Finally, least-squares-based methods
typically employ recursive least squares to adapt models to data observed online. Similar to our
approach, RLS-PAA [15, 16] updates the last layer of a trained neural network via iterative least
squares. However, since RLS-PAA is not performed during training, it is generally only useful for
adapting to local agent behaviors within the same dataset (rather than domain transfer).

Few-Shot Learning by Meta-Learning. Meta-learning exists as a particular approach to few-shot
learning, in which transfer to a new domain is enabled by “learning to learn" across a set of training
tasks [17–24]. By learning update rules on many tasks, an agent may learn to learn effectively, and
thus efficiently, in a new task. While there are several ways to design meta-learning algorithms, two
are of note for this work. First, black-box meta-learning exploits sequence-processing neural network
models such as recurrent networks [20, 24, 25]. While expressive, these models have no particular
inductive bias toward learning, and thus they are practically inefficient and require huge amounts of
training data. To address this issue, optimization-based meta-learners [17, 8, 26, 22], which directly
leverage optimization in the inner learning loop, have been a major research focus. Our work can
be viewed as a combined black-box and optimization meta-learner. In particular, it was previously
shown that recurrence alone is not sufficient for effective transfer. We address this by showing that
recurrence-based adaptation can be effectively paired with optimization-based meta-learning.

3 Generalizing Prediction Models Through Adaptive Meta-Learning

Problem Formulation. Our core problem formulation follows that of trajectory forecasting. Namely,
we wish to generate plausible distributions p(yt | xt, I

(t)) of a time-varying number N(t) of agents’
future trajectories yt = s

(t+1:t+T)
1,...,N(t) given their past state histories xt = s

(t−H:t)
1,...,N(t) and (optional)

scene context I(t). At train time, we assume access to a dataset DS = {xj ,yj} collected from a set
of source environments S, and aim to obtain a model p(y | x) that can be effectively deployed to a
target environment T . Since this work tackles methods for adaptation, we focus on the following
two problem settings: Online, where methods must adapt to streaming data (i.e., new inputs are
observed at every timestep t), and Offline, where prediction methods have access to a small amount
of already-collected data D ⊂ DT from the target environment T on which they can finetune.

Architecture. At a high-level, our method leverages an adaptive formulation of meta-learning,
an overview of which can be found in Appendix A.1. Our architecture takes an encoder-decoder
structure, similar to Trajectron++ [9]. Inputs (e.g., agent histories and any encoded scene context) are
mapped to an overall scene encoding vector v via an attentional graph-structured recurrent network.
v is then fed to the recurrent decoder, which maps v, the current hidden state ht, and input states of
the observed agents in the environment s(t)1,...,N(t) to a distribution over actions taken by the predicted
agent. This action is then sampled and passed through the chosen dynamics model to generate the
next state, which can then be fed back into the decoder at the next timestep.

Whereas Trajectron++ models multimodality via discrete latent variables [9], our model accounts for
multimodality via controllable aleatoric uncertainty, sampling, and recurrent network dynamics. We
parameterize both output features Φt = Φ(ht) and the predictive noise covariance Σt = Σε(ht) as a
function of the decoder’s hidden state ht. This parameterization as a function of history is important:
it captures irreducible aleatoric uncertainty as a function of state (or state history).

Multi-step Prediction. For multi-step prediction, we begin by sampling from the last layer, via
wi

t+1|t ∼ N (w̄t+1|t, St+1|t) for samples i = 1, . . . , N . We then set τ = 0 and repeatedly sam-
ple ui

t+τ |t ∼ N (Φi
t+τ w̄

i
t+τ |t,Σ

i
t+τ), compute the next state sit+τ+1|t = f(sit+τ |t,u

i
t+τ |t), set

hi
t+τ+1 ← DecoderRNNCell(sit+τ+1|t, ht+τ), sample the next w̄i

t+τ+1|t ∼ N (w̄i
t+τ |t,Σν), and

set τ ← τ +1 for the next iteration. Looping this procedure for T steps gives N samples of T -length
forecasts. Gradients are computed through the sampling via the reparameterization trick [27].

2

Table 1: Average Displacement Error (m) obtained when training and evaluating methods across
scenes in the ETH/UCY pedestrian datasets. A, B, C, D, E denote ETH, Hotel, Univ, Zara1, Zara2.

A2B A2C A2D A2E B2A B2C B2D B2E C2A C2B C2D C2E D2A D2B D2C D2E E2A E2B E2C E2D AVG

S-STGCNN [28] 1.83 1.58 1.30 1.31 3.02 1.38 2.63 1.58 1.16 0.70 0.82 0.54 1.04 1.05 0.73 0.47 0.98 1.09 0.74 0.50 1.22
PECNet [29] 1.97 1.68 1.24 1.35 3.11 1.35 2.69 1.62 1.39 0.82 0.93 0.57 1.10 1.17 0.92 0.52 1.01 1.25 0.83 0.61 1.31
RSBG [30] 2.21 1.59 1.48 1.42 3.18 1.49 2.72 1.73 1.23 0.87 1.04 0.60 1.19 1.21 0.80 0.49 1.09 1.37 1.03 0.78 1.38
Tra2Tra [31] 1.72 1.58 1.27 1.37 3.32 1.36 2.67 1.58 1.16 0.70 0.85 0.60 1.09 1.07 0.81 0.52 1.03 1.10 0.75 0.52 1.25
SGCN [32] 1.68 1.54 1.26 1.28 3.22 1.38 2.62 1.58 1.14 0.70 0.82 0.52 1.05 0.97 0.80 0.48 0.97 1.08 0.75 0.51 1.22
T-GNN [13] 1.13 1.25 0.94 1.03 2.54 1.08 2.25 1.41 0.97 0.54 0.61 0.23 0.88 0.78 0.59 0.32 0.87 0.72 0.65 0.34 0.96

K0 0.35 0.69 0.60 0.43 0.83 0.58 0.49 0.33 1.01 0.39 0.40 0.36 1.05 0.57 0.59 0.57 1.01 0.35 0.50 0.51 0.58

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Updates

0.05

0.10

0.15

0.20

0.25

Ex
pe

ct
ed

 C
al

ib
ra

tio
n

Er
ro

r

Base
K0
Oracle
Finetune
K0+Finetune
Ours

0 100 200 300 400 500 600 700 800 900 1000
Number of Updates

0.15

0.20

0.25

0.30

Ex
pe

ct
ed

 C
al

ib
ra

tio
n

Er
ro

r

Base
K0
Oracle
Finetune
K0+Finetune
Ours
Ours+Finetune

Figure 1: Offline. Left: [Zara1→ Hotel] Our method learns a well-calibrated prior, and maintains its
calibration as it observes more data. Gradient-based finetuning improves calibration at first, but yields
overconfidence in later steps. Right: [nuScenes→ Lyft] While our method’s calibration already
improves faster than baselines, combining it with gradient-based finetuning significantly accelerates
improvement, immediately yielding a better calibrated model than the oracle. Lower is better.

Loss. We propose to approximate the predictive density via kernel density estimation [33], maxi-
mizing 1

T

∑T
τ=t log

1
N

∑N
i=1N (st+τ+1; s

i
t+τ+1|t, V

i
t+τ+1), where st+τ+1 is the true state at time t

and V i
t+τ+1 corresponds to the covariance matrix used at time t+ τ + 1 for particle i. Note that the

choice of V i
t+τ+1 is important; If V i

t+τ+1 is fixed across time, later samples may induce extremely
large variance in our gradient estimation. Accordingly, we propose to integrate the uncertainty via
V i
t+τ+1 =

∑t+τ+1
k=t Σi

k. In the case where the dynamics are a single integrator (a common choice in
Trajectron++ [9]), this captures the state uncertainty induced by aleatoric control uncertainty exactly.

Adaptation. In the online setting, we make a probabilistic prediction, the mean and variance of which
are used to update the last layer using the update equations described in Appendix A.1. Critically,
adaptation in this setting is done per agent (as each agent has only local information) and with
temporally-correlated data. In the offline setting, a small dataset from the target environment is
assumed to be provided. This dataset, which consists of several different agents’ state information, is
then used to adapt the last layer via the same adaptation mechanism.

Combining Last Layer Adaptation with Gradient-Based Finetuning. We can also combine our
approach with gradient-based finetuning for even more efficient and effective domain transfer in
the offline setting. In particular, we first perform M steps of last layer adaptation and then switch
to gradient-based finetuning for future updates. This sequential update scheme leverages the fast
initial adaptation of our last layer exact inference, while exploiting the high capacity and strong
performance of gradient-based fine-tuning [34].

4 Experiments

Datasets. We evaluate our method on the ETH [35] and UCY [36] pedestrian datasets, as well as the
nuScenes [37] and Lyft Level 5 [38] autonomous driving datasets. The ETH and UCY datasets are a
standard benchmark in the field, comprised of pedestrian trajectories captured at 2.5 Hz in Zurich and
Cyprus, respectively. As in prior work [13], up to 3.2s of history are observed and the next 4.8s are
predicted. nuScenes is a large-scale autonomous driving dataset comprised of 1000 scenes annotated
at 2 Hz collected in Boston and Singapore. Lyft Level 5 is comprised of 170K scenes annotated at 10
Hz collected in Palo Alto. As in the nuScenes prediction challenge, up to 2s of history are observed
and the next 6s are predicted. Details about our experimental protocol can be found in Appendix A.2.

Ablations, Oracle, and Baselines. We compare against the following five ablations: (1) Base
is the original Trajectron++ [9] model without any of our adaptive architecture; (2) Finetune is
Base combined with gradient-based finetuning for adaptation. (3) K0 is our method without any
adaptation, i.e., only using the prior model; (4) K0+Finetune is the K0 baseline combined with

3

0 10 20 30 40 50 60 70 80
Online-Observed Agent Timesteps

100%

80%

60%

40%

20%

0%

AD
E

Re
du

ct
io

n Base
Finetune
K0
K0+Finetune
Ours
Oracle

0 20 40 60 80 100 120 140 160 180
Online-Observed Agent Timesteps

100%

75%

50%

25%

0%

25%

NL
L

Re
du

ct
io

n Base
Finetune
K0
K0+Finetune
Ours
Oracle

Figure 2: Online. Left: [Zara1→ Hotel] Our method’s prediction accuracy improves rapidly as it
observes data online, significantly outperforming naïve transfer and other ablations, even matching
the oracle. Right: [nuScenes→ Lyft] Our method’s online NLL reduction tracks closely to that of
whole-model finetuning, while being much less computationally expensive. All error bars are 95%
CIs, lower is better. Results on additional metrics can be found in Appendices A.3 and A.4.

Agent History
Agent Future
Agent Current
Neighbor History
Neighbor Future
Neighbor Current
Most Likely

Agent History
Agent Future
Agent Current
Neighbor History
Neighbor Future
Neighbor Current
Most Likely

A
ge

nt
 H

is
to

ry
A

ge
nt

 F
ut

ur
e

A
ge

nt
 C

ur
re

nt
N

ei
gh

bo
r H

is
to

ry
N

ei
gh

bo
r F

ut
ur

e
N

ei
gh

bo
r C

ur
re

nt
M

os
t L

ik
el

y

Agent History
Agent Future
Agent Current
Neighbor History
Neighbor Future
Neighbor Current
Most Likely

Figure 3: [nuScenes→ Lyft] Left: Initially, before making any adaptive steps, our model’s prior
predictions are uncertain and spread out (due to the significant domain shift between nuScenes and
Lyft, i.e., 5× timestep frequency and different map annotations). Middle: After observing only 0.5s
of data, it has adapted to the environment and its predictions better match the GT future. Right: Our
multi-step sampling strategy yields multimodal predictions. Five samples are shown in all plots.

gradient-based finetuning. Note, only the last layer is finetuned (the rest of the model is frozen). In
essence, this ablation compares using gradient descent for adaptation instead of Bayesian updates;
and (5) Ours+Finetune is our full method combined with gradient-based finetuning, switching after
M = 100 Bayesian last layer updates. Finally, we also include an oracle, i.e., Trajectron++ [9]
trained on data from the target environment, representing ideal transfer performance.

Metrics. We evaluate prediction accuracy with a variety of deterministic and probabilistic metrics:
Average/Final Displacement Error (ADE/FDE): mean/final ℓ2 distance between the ground truth
(GT) and predicted trajectories; minADE5/10: ADE between the GT and best of 5 or 10 samples,
respectively; and Negative Log-Likelihood (NLL): mean NLL of the GT trajectory under the predicted
distribution. We also evaluate methods’ predictive calibration by computing their Expected Calibra-
tion Error (ECE) [39], comparing a model’s predictive uncertainty with its empirical uncertainty.

Direct Transfer. In Table 1, we train on a source scene X and directly transfer to a target scene
Y (denoting the pair as “X2Y"), without any online or offline adaptation to fairly compare with an
assortment of state-of-the-art methods [28–32, 13]. As can be seen, our non-adaptive ablation (K0)
significantly outperforms other methods on the vast majority of transfer settings, showing that our
prior and its analytical propagation of uncertainty already yield strong performance.

Offline Calibration. Fig. 1 shows that our method learns a well-calibrated prior for pedestrians,
and maintains its calibration with more updates. Results on Lyft further highlight our method’s
improvement, and show that switching to gradient-based finetuning after 100 last-layer adaptation
steps significantly accelerates improvement, even yielding a better calibrated model than the oracle.

Online Adaptation. Focusing on the transfer from UCY-Zara1 to ETH-Hotel (D2B), Fig. 2 (left)
shows that our method’s median ADE reduction rapidly approaches the oracle as more of an agent’s
trajectory is observed online. This performance is replicated in transferring from nuScenes to Lyft,
where our approach tracks closely to whole-model finetuning while still being real-time feasible.

Qualitative Results. Fig. 3 shows our model’s adaptation visually. After observing only 0.5s of data,
our model has adapted to the significant domain shift between nuScenes and Lyft (data frequency
mismatch and map format differences). Fig. 3 (right) shows that our proposed sampling scheme
yields diverse, multimodal predictions, even in an unusual intersection in Palo Alto.

4

5 Conclusion

In this work, we present a model that combines the strength of recurrent models with adaptive,
optimization-based meta-learning. Our approach has shown particularly strong results for the one-to-
one transfer setting. One strength of the approach presented in this paper—which we do not address
due to space constraints—is the ability to perform effective many-to-one transfer, in which many
training datasets are available. This setting is reflective of deploying in a new geographical location,
where the full training dataset of many other cities is available for pre-training. We anticipate that
further training data diversity will result in monotonic improvement to performance, yielding both
better calibrated priors and more expressive learned features.

Acknowledgments and Disclosure of Funding

We thank Nikolai Smolyanskiy and the rest of the NVIDIA AV Prediction team, John Willes, and
Brian Ichter for helpful feedback on this paper.

References
[1] General Motors, “Self-driving safety report,” 2018. Available at https://www.gm.com/content/dam/

company/docs/us/en/gmcom/gmsafetyreport.pdf.

[2] Uber Advanced Technologies Group, “A principled approach to safety,” 2020. Available at https:
//uber.app.box.com/v/UberATGSafetyReport.

[3] Lyft, “Self-driving safety report,” 2020. Available at https://
2eg1kz1onwfq1djllo2xh4bb-wpengine.netdna-ssl.com/wp-content/uploads/2020/06/
Safety_Report_2020.pdf.

[4] Argo AI, “Developing a self-driving system you can trust,” Apr. 2021. Available at https://www.argo.
ai/wp-content/uploads/2021/04/ArgoSafetyReport.pdf.

[5] Motional, “Voluntary safety self-assessment,” 2021. Available at https://drive.google.com/file/
d/1JjfQByU_hWvSfkWzQ8PK2ZOZfVCqQGDB/view.

[6] Zoox, “Safety report volume 2.0,” 2021. Available at https://zoox.com/safety/.

[7] NVIDIA, “Self-driving safety report,” 2021. Available at https:
//images.nvidia.com/content/self-driving-cars/safety-report/
auto-print-self-driving-safety-report-2021-update.pdf.

[8] J. Harrison, A. Sharma, and M. Pavone, “Meta-learning priors for efficient online bayesian regression,” in
Workshop on Algorithmic Foundations of Robotics, 2018.

[9] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++: Dynamically-feasible trajectory
forecasting with heterogeneous data,” in European Conf. on Computer Vision, 2020.

[10] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and K. O. Arras, “Human motion
trajectory prediction: A survey,” Int. Journal of Robotics Research, vol. 39, no. 8, pp. 895–935, 2020.

[11] F. Marchetti, F. Becattini, L. Seidenari, and A. Del Bimbo, “Multiple trajectory prediction of moving agents
with memory augmented networks,” IEEE Transactions on Pattern Analysis & Machine Intelligence, 2020.

[12] C. Xu, W. Mao, W. Zhang, and S. Chen, “Remember intentions: Retrospective-memory-based trajectory
prediction,” in IEEE Conf. on Computer Vision and Pattern Recognition, 2022.

[13] Y. Xu, L. Wang, Y. Wang, and Y. Fu, “Adaptive trajectory prediction via transferable GNN,” in IEEE Conf.
on Computer Vision and Pattern Recognition, 2022.

[14] L. Wang, Y. Hu, L. Sun, W. Zhan, M. Tomizuka, and C. Liu, “Transferable and adaptable driving behavior
prediction,” 2022. Available at https://arxiv.org/abs/2202.05140.

[15] Q. Song, X. Zhao, Z. Feng, and B. Song, “Recursive least squares algorithm with adaptive forgetting factor
based on echo state network,” in IEEE World Congress on Intelligent Control and Automation, 2011.

[16] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and Control. Dover Publications, 2014.

5

https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
https://uber.app.box.com/v/UberATGSafetyReport
https://uber.app.box.com/v/UberATGSafetyReport
https://2eg1kz1onwfq1djllo2xh4bb-wpengine.netdna-ssl.com/wp-content/uploads/2020/06/Safety_Report_2020.pdf
https://2eg1kz1onwfq1djllo2xh4bb-wpengine.netdna-ssl.com/wp-content/uploads/2020/06/Safety_Report_2020.pdf
https://2eg1kz1onwfq1djllo2xh4bb-wpengine.netdna-ssl.com/wp-content/uploads/2020/06/Safety_Report_2020.pdf
https://www.argo.ai/wp-content/uploads/2021/04/ArgoSafetyReport.pdf
https://www.argo.ai/wp-content/uploads/2021/04/ArgoSafetyReport.pdf
https://drive.google.com/file/d/1JjfQByU_hWvSfkWzQ8PK2ZOZfVCqQGDB/view
https://drive.google.com/file/d/1JjfQByU_hWvSfkWzQ8PK2ZOZfVCqQGDB/view
https://zoox.com/safety/
https://images.nvidia.com/content/self-driving-cars/safety-report/auto-print-self-driving-safety-report-2021-update.pdf
https://images.nvidia.com/content/self-driving-cars/safety-report/auto-print-self-driving-safety-report-2021-update.pdf
https://images.nvidia.com/content/self-driving-cars/safety-report/auto-print-self-driving-safety-report-2021-update.pdf
https://arxiv.org/abs/2202.05140

[17] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” in
Int. Conf. on Machine Learning, 2017.

[18] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,” Conf. on Neural
Information Processing Systems, vol. 30, 2017.

[19] T. M. Hospedales, A. Antoniou, P. Micaelli, and A. J. Storkey, “Meta-learning in neural networks: A
survey,” IEEE Transactions on Pattern Analysis & Machine Intelligence, 2021. Early access.

[20] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel, “Rl2: Fast reinforcement learning
via slow reinforcement learning,” arXiv:1611.02779, 2016.

[21] H. Edwards and A. Storkey, “Towards a neural statistician,” arXiv:1606.02185, 2016.

[22] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learning,” Int. Conf. on Learning
Representations, 2017.

[23] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, “Meta-learning with memory-
augmented neural networks,” in Int. Conf. on Machine Learning, pp. 1842–1850, 2016.

[24] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo, R. Munos, C. Blundell, D. Kumaran, and
M. Botvinick, “Learning to reinforcement learn,” arXiv:1611.05763, 2016.

[25] S. Hochreiter, A. S. Younger, and P. R. Conwell, “Learning to learn using gradient descent,” in International
conference on artificial neural networks, pp. 87–94, 2001.

[26] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning algorithms,” arXiv:1803.02999,
2018.

[27] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013. Available at https://arxiv.
org/abs/1312.6114.

[28] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, “Social-STGCNN: A social spatiotemporal graph
convolutional neural network for human trajectory prediction,” in IEEE Conf. on Computer Vision and
Pattern Recognition, 2020.

[29] K. Mangalam, H. Girase, S. Agarwal, K.-H. Lee, E. Adeli, J. Malik, and A. Gaidon, “It is not the journey
but the destinaton: Endpoint conditioned trajectory prediction,” in European Conf. on Computer Vision,
2020.

[30] J. Sun, Q. Jiang, and C. Lu, “Recursive social behavior graph for trajectory prediction,” in IEEE Conf. on
Computer Vision and Pattern Recognition, 2020.

[31] Y. Xu, D. Ren, M. Li, Y. Chen, M. Fan, and H. Xia, “Tra2Tra: Trajectory-to-trajectory prediction with a
global social spatial-temporal attentive neural network,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 1574–1581, 2021.

[32] L. Shi, L. Wang, C. Long, S. Zhou, M. Zhou, Z. Niu, and G. Hua, “SGCN: Sparse graph convolution
network for pedestrian trajectory prediction,” in IEEE Conf. on Computer Vision and Pattern Recognition,
2021.

[33] Y.-C. Chen, “A tutorial on kernel density estimation and recent advances,” Biostatistics & Epidemiology,
vol. 1, no. 1, pp. 161–187, 2017.

[34] J. Howard and S. Ruder, “Universal language model fine-tuning for text classification,” arXiv:1801.06146,
2018.

[35] S. Pellegrini, A. Ess, K. Schindler, and L. v. Gool, “You’ll never walk alone: Modeling social behavior for
multi-target tracking,” in IEEE Int. Conf. on Computer Vision, 2009.

[36] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,” Computer Graphics Forum, vol. 26,
no. 3, pp. 655–664, 2007.

[37] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and
O. Beijbom, “nuScenes: A multimodal dataset for autonomous driving,” in IEEE Conf. on Computer Vision
and Pattern Recognition, 2020.

[38] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, A. Jain, S. Omari, V. Iglovikov, and P. Ondruska, “One
thousand and one hours: Self-driving motion prediction dataset,” in Conf. on Robot Learning, 2020.

6

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114

[39] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon, B. Lakshminarayanan, and
J. Snoek, “Can you trust your model’s uncertainty? evaluating predictive uncertainty under dataset shift,”
Conf. on Neural Information Processing Systems, vol. 32, 2019.

[40] J. Harrison, A. Sharma, C. Finn, and M. Pavone, “Continuous meta-learning without tasks,” in Conf. on
Neural Information Processing Systems, 2020. Submitted.

[41] J. Harrison, Uncertainty and Efficiency in Adaptive Robot Learning and Control. PhD thesis, Stanford
University, Dept. of Mechanical Engineering, 2021.

[42] M. West and J. Harrison, Bayesian forecasting and dynamic models. Springer Science & Business Media,
2006.

[43] T. Lew, A. Sharma, J. Harrison, A. Bylard, and M. Pavone, “Safe active dynamics learning and control: A
sequential exploration-exploitation framework,” IEEE Transactions on Robotics, 2022. In Press.

[44] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer, “Automatic differentiation in PyTorch,” in Conf. on Neural Information Processing Systems -
Autodiff Workshop, 2017.

[45] B. Ivanovic and contributors, “trajdata: A unified interface to many trajectory forecasting datasets,” 2022.
Available at https://github.com/NVlabs/trajdata.

7

https://github.com/NVlabs/trajdata

A Appendix

A.1 Background: Adaptive Meta-Learning

Our framework leverages an adaptive formulation of meta-learning. In contrast to the more common
episodic meta-learning (e.g., MAML [17]), the adaptive formulation allows tasks to vary over time
within an episode, similar to meta-learning for continual learning [40]. In particular, our approach
builds on an extension to ALPaCA [8] developed in [41]. Instead of Bayesian linear regression (as in
ALPaCA), adaptation is done via Kalman filtering on the last layer of the network, allowing for task
drift over time [42].

Inputs at time t (e.g., a history of data) are written xt and outputs are written as yt. Our objective is
to infer the probability of yt conditional on xt. We write our predictive model as

yt = Φθ(xt)wt + εt, (1)

where Φθ(·) is a matrix of neural network features parameterized by θ, wt is a (time-varying)
vector last layer, and εt is a zero mean Gaussian noise instantiation at time t with covariance Σε

(assumed independent across time). This differs from standard neural network regression in several
ways. First, instead of a vector of features and a matrix last layer, we have a vector last layer and a
matrix of features; this yields simpler inference within the model. Second, the last layer is assumed
time-varying; we choose parameter dynamics

wt+1 = Aθ(xt)wt + bθ(xt) + νt (2)

to enable tractability of inference. We typically assume simple A, b in practice, such as the identity
matrix for A. The term νt is a noise term, with variance Σν . There are several alternate choices that
can be made in this framework while retaining inferential tractability, discussed in depth in [41].

Inference within this model is as follows. Similar to Kalman filtering for state estimation, filtering
consists of a prediction step—where the dynamics are applied to predict how the parameters change
forward in time—and correction, where a measurement is used to update the estimate.

The prediction step is
w̄t+1|t = Atw̄t|t + bt

St+1|t = AtSt|tAt +Σν ,
(3)

where the subscript t+ 1|t denotes the prediction for the value of the parameter at time t+ 1 made at
time t. In the above, At is shorthand for A(xt), which we will use for other quantities. The terms w̄
and S correspond to the mean and variance of the Gaussian prediction.

The correction step is
Pt+1 = Φt+1St+1|tΦ

⊤
t+1 +Σε

Kt+1 = St+1|tΦ
⊤
t+1P

−1
t+1

et+1 = yt+1 − Φt+1w̄t+1|t

w̄t+1|t+1 = w̄t+1|t +Kt+1et+1

St+1|t+1 = St+1|t −Kt+1Φt+1St+1|t.

(4)

From this framework, the predictive loss is the log likelihood of the prediction using mean and
variance w̄t+1|t, St+1|t. Critical to the meta-learning formulation, the parameters of the feature matrix,
(possibly) the parameter dynamics matrices, and the noise covariances are trained by backpropagating
through the iterated inference and prediction, using the log-likelihood over a segment of an episode
as a loss. The model thus learns features that are capable of adapting to novel environments.

Computational Complexity. There are several considerations that are important for achieving
efficient performance in the model. First, in practice, we fix a set of parameters for each output
dimension, which are adapted independently. This corresponds to choosing a diagonal noise and
parameter covariance, fixing parameter dynamics (A) diagonal (in practice we simply choose this to
be identity), and fixing independent priors for parameters of each output dimension. Parameterizing
each output dimension independently substantially reduces computational complexity, as discussed
in [43].

Furthermore, we may implement the model such that complexity is at most quadratic in the parameter
dimension. First, A must be chosen appropriately; identity is sufficient but other representations are

8

Table 2: Final Displacement Error (m) obtained when training and evaluating methods across scenes
in the ETH/UCY pedestrian datasets. A, B, C, D, and E denote ETH, Hotel, Univ, Zara1, and Zara2.

A2B A2C A2D A2E B2A B2C B2D B2E C2A C2B C2D C2E D2A D2B D2C D2E E2A E2B E2C E2D AVG

S-STGCNN [28] 3.24 2.86 2.53 2.43 5.16 2.51 4.86 2.88 2.30 1.34 1.74 1.10 2.21 1.99 1.41 0.88 2.10 2.05 1.47 1.01 2.30
PECNet [29] 3.33 2.83 2.53 2.45 5.23 2.48 4.90 2.86 2.22 1.32 1.68 1.12 2.20 2.05 1.52 0.88 2.10 1.84 1.45 0.98 2.29
RSBG [30] 3.42 2.96 2.75 2.50 5.28 2.59 5.19 3.10 2.36 1.55 1.99 1.37 2.28 2.22 1.77 0.97 2.19 2.29 1.81 1.34 2.50
Tra2Tra [31] 3.29 2.88 2.66 2.45 5.22 2.50 4.89 2.90 2.29 1.33 1.78 1.09 2.26 2.12 1.63 0.92 2.18 2.06 1.52 1.17 2.34
SGCN [32] 3.22 2.81 2.52 2.40 5.18 2.47 4.83 2.85 2.24 1.32 1.71 1.03 2.23 1.90 1.48 0.97 2.10 1.95 1.52 0.99 2.29
T-GNN [13] 2.18 2.25 1.78 1.84 4.15 1.82 4.04 2.53 1.91 1.12 1.30 0.87 1.92 1.46 1.25 0.65 1.86 1.45 1.28 0.72 1.82

K0 0.67 1.42 1.28 0.88 1.69 1.19 1.02 0.70 1.97 0.75 0.89 0.79 2.06 1.04 1.18 1.11 1.87 0.65 1.05 1.08 1.16

0 10 20 30 40 50 60 70 80
Online-Observed Agent Timesteps

100%

80%

60%

40%

20%

0%

FD
E

Re
du

ct
io

n Base
Finetune
K0
K0+Finetune
Ours
Oracle

0 10 20 30 40 50 60 70 80
Online-Observed Agent Timesteps

200%

150%

100%

50%

0%

NL
L

Re
du

ct
io

n Base
Finetune
K0
K0+Finetune
Ours
Oracle

Figure 4: [Zara1→ Hotel] Our method’s median FDE and NLL reductions replicate the ADE results
from Fig. 2, significantly outperforming naïve transfer and other ablations, even matching the oracle
on FDE. Error bars are 95% CIs, lower is better.

possible. In addition, the multiplication of Kt+1Φt+1St+1|t should be done with the last two terms
first, before multiplying by the gain matrix Kt+1. This enables better representational capacity for
adaptation by enabling choice of a larger number of features.

Finally, we note that prediction in the model is sequential in time due to the unrolling of the recurrent
model. Thus, at run time, parallelizing over a large number of predictions is straightforward. Indeed,
for hardware such as GPUs or other specialized cores for neural networks, parallelized matrix
multiplications are extremely efficient, and thus many samples can be parallelized across.

A.2 Experimental Setup

Our approach was implemented in PyTorch [44] and all datasets were interfaced through
trajdata [45], a recently-released unified interface to trajectory forecasting datasets.

ETH/UCY Evaluation Protocol. As in recent prior work [13], we treat each of the 5 scenes in
the ETH and UCY datasets as individual source domains S ∈ {ETH, Hotel, Univ, Zara1, and
Zara2}, and use the other 4 scenes as our target domains T ̸= S , yielding 20 cross-domain pairings.
To ensure that we are purely evaluating adaptation, we restrict models’ training sets to only be
their source domain’s training split DS,train (leaving the source domain’s validation set DS,val for
hyperparameter tuning) and evaluate their performance on the entire target dataset DT . This is a
notable difference from the evaluation protocol proposed in [13], where prediction methods train on
the source domain’s training split DS,train as well as the target domain’s validation split DT ,val. This
complicates measuring a model’s capability for domain adaptation, as it has already seen data from
the target environment during training.

nuScenes→ Lyft Evaluation Protocol. We treat nuScenes as the source domain and Lyft Level
5 as the target domain. In particular, we train models on the nuScenes prediction challenge train
split, tune hyperparameters on the train_val split, and evaluate methods’ capability to adapt to the
entire Lyft Level 5 sample split. This is a much more challenging domain transfer problem than
in the ETH/UCY datasets, since the nuScenes and Lyft datasets feature different underlying map
annotations (e.g., nuScenes does not annotate lanes through intersections whereas Lyft does) and
data frequencies (2 Hz vs 10 Hz), in addition to being collected in diverse cities with unique road
geometries.

9

0.0 0.2 0.4 0.6 0.8 1.0
Probability Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 G

T
Po

in
ts

0.0 0.2 0.4 0.6 0.8 1.0
Probability Threshold

0.0 0.2 0.4 0.6 0.8 1.0
Probability Threshold

Base
Finetune
K0
K0+Finetune
Ours
Oracle
Ideal

Figure 5: [Zara1→ Hotel] Detailed calibration plots showing the fraction of GT future positions lying
within specified probability thresholds after observing 0, 1000, and 2000 data samples in the offline
setting. Our method is closest to the ideal line, and stays close as more data points are observed.
The area below the ideal line signifies underconfidence (e.g., naïve transfer with the Base model).
Accordingly, the area above the ideal line signifies overconfidence (especially visible for the oracle).
Computing the area between each line to the ideal line yields the ECE values after 0, 1000, and 2000
updates in Fig. 1.

0 100 200 300 400 500 600 700 800 900 1000
Number of Updates

100%

80%

60%

40%

20%

0%

AD
E

Re
du

ct
io

n

Base
K0
Oracle
Finetune
K0+Finetune
Ours
Ours+Finetune

0 100 200 300 400 500 600 700 800 900 1000
Number of Updates

100%

80%

60%

40%

20%

0%

FD
E

Re
du

ct
io

n

Base
K0
Oracle
Finetune
K0+Finetune
Ours
Ours+Finetune

0 100 200 300 400 500 600 700 800 900 1000
Number of Updates

80%

60%

40%

20%

0%

20%

40%

NL
L

Re
du

ct
io

n

Base
K0
Oracle
Finetune
K0+Finetune
Ours
Ours+Finetune

0 100 200 300 400 500 600 700 800 900 1000
Number of Updates

100%

80%

60%

40%

20%

0%

M
in

AD
E 5

 R
ed

uc
tio

n Base
K0
Oracle
Finetune
K0+Finetune
Ours
Ours+Finetune

0 100 200 300 400 500 600 700 800 900 1000
Number of Updates

100%

80%

60%

40%

20%

0%

M
in

AD
E 1

0
Re

du
ct

io
n Base

K0
Oracle
Finetune
K0+Finetune
Ours
Ours+Finetune

Figure 6: [nuScenes→ Lyft] Even in the face of significant domain shift (i.e., 5× timestep frequency
and different map annotations), our method’s predictions improve smoothly with more data, outper-
forming whole-model fine-tuning after only 200 data samples (if not immediately). Lower is better.

A.3 Additional Pedestrian Evaluations

Table 2 shows the same analyses as in Table 1, but with the FDE evaluation metric. Fig. 4 shows
the same analyses as Fig. 2, but with the FDE and NLL evaluation metrics. Lastly, Fig. 5 shows
detailed calibration plots which underlie the ECE computations in Fig. 1. Broadly, the results of these
additional evaluations confirm and reinforce the performance of our approach over other baselines
and ablations.

A.4 Additional Autonomous Driving Evaluations

As can be seen in Fig. 6, our method rapidly reduces NLL, outperforming Finetune after receiving
only 200 updates. Ours+Finetune further improves upon our method, showing that gradient-based
finetuning is a complementary and performant addition to our last layer adaptation scheme for offline
transfer.

10

0.0 0.2 0.4 0.6 0.8 1.0
Probability Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 G

T
Po

in
ts

0.0 0.2 0.4 0.6 0.8 1.0
Probability Threshold

0.0 0.2 0.4 0.6 0.8 1.0
Probability Threshold

Base
Finetune
K0
K0+Finetune
Ours
Ours+Finetune
Oracle
Ideal

Figure 7: [nuScenes→ Lyft] Detailed calibration plots showing the fraction of GT future positions
lying within specified probability thresholds after observing 0, 500, and 1000 data samples in the
offline setting. Our method fast approaches the ideal line (with Ours+Finetune doing so even faster),
and stays better calibrated than only performing whole-model finetuning (Finetune). The area below
the ideal line signifies underconfidence (e.g., naïve transfer with the Base model). Accordingly, the
area above the ideal line signifies overconfidence. Computing the area between each line to the ideal
line yields the ECE values after 0, 500, and 1000 updates in Fig. 1.

0 20 40 60 80 100 120 140 160 180
Agent Timestep

100%

80%

60%

40%

20%

0%

AD
E

Re
du

ct
io

n Base
Finetune
K0
K0+Finetune
Ours
Oracle

0 20 40 60 80 100 120 140 160 180
Agent Timestep

100%

80%

60%

40%

20%

0%

FD
E

Re
du

ct
io

n Base
Finetune
K0
K0+Finetune
Ours
Oracle

0 20 40 60 80 100 120 140 160 180
Agent Timestep

100%

80%

60%

40%

20%

0%

M
in

AD
E 5

 R
ed

uc
tio

n Base
Finetune
K0
K0+Finetune
Ours
Oracle

0 20 40 60 80 100 120 140 160 180
Agent Timestep

100%
80%
60%
40%
20%
0%

20%
40%

M
in

AD
E 1

0
Re

du
ct

io
n

Base
Finetune
K0
K0+Finetune
Ours
Oracle

Figure 8: [nuScenes→ Lyft] Evaluating our approach on additional metrics matches the result in
Fig. 2; our approach rapidly improves online as it observes more data. Error bars are 95% CIs, lower
is better.

Fig. 7 shows detailed calibration plots which underlie the ECE computations in Fig. 1. Finally, Fig. 8
shows the same analyses as in Fig. 2, but on the other four evaluation metrics. Overall, the results
of these additional evaluations confirm and reinforce the performance of our approach over other
baselines and ablations.

11

	Introduction
	Related Work
	Generalizing Prediction Models Through Adaptive Meta-Learning
	Experiments
	Conclusion
	Appendix
	Background: Adaptive Meta-Learning
	Experimental Setup
	Additional Pedestrian Evaluations
	Additional Autonomous Driving Evaluations

