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Abstract

We devise a coreset selection method based on the idea of gradient matching: the
gradients induced by the coreset should match, as closely as possible, those induced
by the original training dataset. We evaluate the method in the context of continual
learning, where it can be used to curate a rehearsal memory. Our method performs
strong competitors such as reservoir sampling across a range of memory sizes.

1 Introduction

Continual learning refers to the training of a machine learning model on a sequence of data batches—
referred to as tasks in some scenarios—which are sampled in a non-iid fashion. Naive incremental
training will lead to so-called catastrophic forgetting, where performance on previously observed
data deteriorates while training on new data. Among the most successful strategies to counteract
forgetting is the use of a rehearsal memory of data points to be replayed while training on new data.
In fact, Prabhu et al. [2020] demonstrated that retraining the model from scratch on an appropriately
curated memory outperforms several more complex methods. Hence, maintaining an informative
subset of a sequence of non-iid data batches is a crucial task to enable continual learning.

This paper presents a coreset selection method based on the idea of gradient matching. Consider a
supervised learning task of predicting target y ∈ Y from inputs x ∈ X . Assume we have a model
parametrized by θ. A datapoint (x, y) incurs a loss `(θ;x, y) and the mean loss induced by a training
dataset T ⊂ X ×Y is LT (θ) = 1

|T |
∑

(x,y)∈T `(θ;x, y). The model interacts with the dataset through
a series of evaluations of the gradient ∇LT (θ). Thus, if we can select a subset C ⊂ T such that
∇LC(θ) ≈ ∇LT (θ) for all θ, we can expect to preserve most of the information that is relevant
for training the chosen model. Given a distribution p(θ) over the model parameters, we define the
gradient matching error of C as follows:

Ep(θ)
[
‖∇LC(θ)−∇LT (θ)‖2

]
. (1)

This paper proposes an efficient method that uses this criterion to select a weighted subset of the
original dataset. First, by constructing a finite-dimensional embedding of the gradient functions, we
reduce the problem to a cardinality-constrained quadratic optimization problem. While NP-hard,
it can be solved approximately using greedy methods. Second, we show empirically that choosing
p(θ) to be the initialization distribution of the chosen (neural network) model is already informative
enough to extract good coresets. Finally, we explain how the algorithm can be applied to the continual
setting and evaluate it experimentally.

2 Related work

A number of methods for efficientily managing memory in continual learning have been proposed
over time (e.g., see Borsos et al. [2020], Aljundi et al. [2019a,b]). Due to space constraints we will
discuss only the ones which are closely related to our work.
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Zhao et al. [2020] use a similar criterion as Eq. (1) to construct a synthetic dataset using gradient-based
optimization w.r.t. the (randomly initialized) data C. Instead of using a distribution p(θ), they use
points along training trajectories. Their method achieves good results, but experiments are restricted
to small coresets since the complexity of optimizing C grows with the allocated number of synthetic
data points. The method also exposes a number of sensitive optimization-related hyperparameters.

Campbell and Broderick [2018] use a a similar technique to select coresets for efficient Bayesian
inference with Monte-Carlo methods. The goal is to select a subset that yields a good approximation
of the posterior. They choose p(θ) to be a Laplace approximation to the posterior, which requires
minimizing the loss on the full dataset and is, thus, inapplicable to settings like continual learning.

Recent independent work by Killamsetty et al. [2021] proposes a similar technique but considers
a different setting. Their goal is to reduce the computational cost of an offline (non-continual)
learning problem. Instead of a distribution p(θ), they perform gradient matching locally at the current
iterate. After training on the resulting coreset for a small number of epochs, they repeat the coreset
construction from scratch, using the latest iterate. Since the whole dataset has to be retained for the
repeated coreset construction their method is inapplicable to the continual learning setting.

3 Gradient-matching coresets

Sections 3.1–3.2 introduce the algorithm, agnostic to the choice of p(θ). Section 3.3 justifies the use
of the model’s initialization distribution. Section 3.4 describes the application to continual learning.

3.1 Optimal coreset and greedy selection

Assume T contains N datapoints and define gi(θ) = ∇`(θ;xi, yi), i ∈ [N ], and g(θ) =
∑N
i=1 gi(θ).

The weighted subset of cardinality n < N with minimal gradient matching error can be represented
by a sparse vector λ ∈ RN and may be found by solving the following optimization problem:

minλ∈RN Ep(θ)

[∥∥∥∑N
i=1 λigi(θ)− g(θ)

∥∥∥2] s.t. ‖λ‖0 ≤ n, (2)

where ‖λ‖0 = |{i | λi 6= 0}| is the `0 pseudo-norm which counts non-zero elements. We can rewrite
the objective as minλ∈RN ‖Gλ− g‖2G , where G is the Hilbert space on which the gradient functions
live, equipped with the inner product 〈g, g̃〉 = Ep(θ)[g(θ)

T g̃(θ)], and G : RN → G is the linear
operator which maps λ 7→

∑
i λigi. This is a cardinality-constrained quadratic program, which is

known to be NP-hard. Approximate solutions may be obtained with greedy algorithms, as we will
discuss shortly. Working with the infinite-dimensional objects gi and taking expecatations over θ
is intractable in practice. Hence, we work with a finite-dimensional representation of the gradient
functions and solve a problem of the form

minλ∈RN ‖Gλ− g‖22 s.t. ‖λ‖0 ≤ n, G = [g1, . . . , gN ] ∈ RD×N , g ∈ RD. (3)

We defer the discussion of the finite-dimensional embedding to Section 3.2 and first discuss how to
solve Eq. (3) given such an embedding.

To approximate solutions to problem (3) we use greedy selection with matching pursuit [Mallat and
Zhang, 1993]. Assume we currently have a coreset I ⊂ [N ] with corresponding weights γ ∈ R|I|.
This gives us an approximation g ≈ GIγ, whereGI is the restriction ofG to the index set I . Matching
pursuit greedily adds the element which best matches the residual r = g −GIγ. We use the popular
orthogonal matching pursuit (OMP) variant; after each greedy iteration, OMP optimally readjusts the
weights of all coreset elements, minγ ‖GIγ − g‖2, resulting in γ = (GTI GI)

−1GTI g. We stop the
coreset construction when the desired size is reached. Algorithm 1 provides pseudo-code.

3.2 Finite-dimensional gradient embeddings

We obtain finite-dimensional embeddings of the gradient functions by sampling s draws from p(θ),
for each of which we evaluate gi(θ). Since storing these gradients would quickly exceed the memory
for large models, we perform dimensionality reduction to a d-dimensional representation. The final
embedding is the concatenation of the s draws with total dimension D = sd. We pursued two
different dimensionality reduction strategies: (i) projection onto d random {±1}-valued vectors;
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(ii) following recent related work [Ash et al., 2020, Killamsetty et al., 2021], we use the gradients
w.r.t. the model’s final layer, which can be computed efficiently without performing a full backward
pass and is therefore more suitable for large models. This will be referred to as the “last layer” variant
in experiments below.

3.3 Gradient matching at initialization

We choose p(θ) to be the model’s initialization distribution and our experiments show that this
yields an informative selection criterion. While this might seem surprising, research on the neural
tangent kernel [Jacot et al., 2018] has argued that the behavior of overparametrized neural networks
is characterized by its gradients at initialization. This is also reflected in recent related work [Paul
et al., 2021] using the gradient norm, averaged over the initialization distribution, as an importance
score for data points. From a practical standpoint, using the initialization distribution allows us to
select a coreset before training.

It is also worth noting that OMP tends to choose data points k? with small 〈gk? , gi〉 for all i ∈ I
already in the coreset. Therefore, we might also interpret the method as simply choosing diverse
subsets with respect to a similarty function given by the inner product of gradients at initialization.

3.4 Application to continual learning

For continual learning, we would like to employ gradient matching corsets (GMC) to a non-iid
data batches which need to be processed sequentially. For each incoming batch, we compute the
corresponding gradient embedding matrix G(t) = [g

(t)
1 , . . . , g

(t)
Nt

] ∈ RD×Nt . The goal is to maintain
a coreset which, after each new batch, matches the aggregate gradient of all data points seen so far,
which we define as follows:

g(1:t) :=
∑t
s=1

∑Nt

i=1 g
(s)
i . (4)

Let C(t−1) denote the gradient embedding matrix of the coreset after processing tasks 1 through
t − 1. Upon receiving G(t), we first update the “target vector” according to Eq. (4). We then run
OMP with target g(1:t) and dictionary G = [C(t−1), G(t)] and store the gradient embedding matrix
of the resulting coreset. Algorithm 2 provides pseudo-code.

Compared to an “offline” setting where G(1), . . . , G(t) are accessible simultaneously, we use the
exact same target vector g(1:t) but a limited dictionary [C(t−1), G(t)]. Since C(t−1) is a coreset
representative of G(1), . . . , G(t−1), we can expect the loss in performance to be small. We emphasize
that the algorithm is free to remove and/or reweight elements form C(t−1).

Algorithm 1 Orthogonal Matching Pursuit
OMP(G = [g1, . . . , gN ], g, n)
I ← () . Coreset indices
γ ← () . Coreset weights
while |I| < n do

k∗ = argmaxk
〈gk,r〉
‖gk‖ , r = g −GIγ

I ← I ∪ (k∗)
γ ← (GTI GI)

−1GTI g
end while
return I, γ

Algorithm 2 Continual GMC
g ← 0
C ← ()

while receiving G(t) = [g
(t)
1 , . . . , g

(t)
Nt

] do
g ← g +

∑
i g

(t)
i

G← [C,G(t)]
I, γ ← OMP(G, g, n)
C ← GI

end while

4 Experiments

We now evaluate our coreset method in the continual learning setting. We use the simple but effective
GDUMB strategy proposed by Prabhu et al. [2020]. Upon receiving a new batch of data, GDUMB
updates its rehearsal memory, reinitializes the model and trains it from scratch using only the data in
memory. Prabhu et al. [2020] used a greedy class-balancing sampler, but the strategy can likewise be
used with any other subsampling or coreset method. We use this paradigm because it has been shown
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Figure 1: Results on continual learning scenarios using the GDUMB paradigm with different subsam-
pling/coreset methods. The graphs depict the final accuracy, after seeing all tasks/batches, on the full
test set as a function of the memory size. Results are averaged over five random seeds and the shaded
area spans one standard deviation.

to outperform many more involved methods (e.g. EWC [Kirkpatrick et al., 2017] or LwF [Li and
Hoiem, 2017]) and it isolates the effect of the memory curation strategy, which is our main interest.

We present experiments training a simple MLP on tabular datasets, as well as a CNN on FASHION-
MNIST and ResNet-18 [He et al., 2016] on CIFAR-10. For the tabular datasets, we simulate a
task-free continual learning scenario by sorting the data points according to the value of a single
feature and splitting into 10 equally sized batches. For FASHION-MNIST and CIFAR-10, we use the
popular “class-incremental” scenario, where the dataset is divided into discrete tasks, each consisting
of two classes. Appendix B contains more details.

We compare GMC to reservoir sampling Vitter [1985], which maintains a uniform subsample of
all data points seen so far, as well as the greedy class-balancing method used by Prabhu et al.
[2020] and a naive sliding window of the most recent data points. We test memory sizes between
100 and 5000. Figure 1 depicts the results. The sliding window heuristic fails due to the non-iid
nature of the continual learning scenarios. The greedy class-balancing method performs well in
the class-incremental scenario, but fails in the task-free sorted scenario, where there’s a continual
structure beyond a shift in class occurences. We see that the gradient-matching coreset method
achieves consistent improvements over reservoir sampling at all tested memory sizes. The relative
improvement tends to be larger at small memory sizes. More detailed plots with the performance
over time in different experiments are reported in Appendix A. We also provide additional results
using experience replay.

5 Conclusion

We demonstrated that GMC is an effective method for coreset selection, applicable to non-iid
sequence of data batches. It is simple, robust and scales to coreset sizes of several thousand data
points. Moreover, GMC does not expose any critical hyperparameters. In the future, we would like to
futher increase the scalability of the method to create larger coreset which can be useful to train large
neural networks from scratch.
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Figure 2: Results on continual learning scenarios using the GDUMB paradigm with different subsam-
pling/coreset methods at a memory size of 1000. The graphs depict the accuracy on the full test set
after the processing of each task/batch. Results are averaged over five random seeds and the shaded
area spans one standard deviation.

A Additional results

A.1 Continual performance

The plots in the main text depict the performance after processing all tasks. To get a more fine-grained
few of the continual behavior, Figure 2 depicts the performance after each individual task. It shows
results from the same experiment that underlies Figure 1 but only shows a single memory size of
1000 for readability.

A.2 Facility location baseline

As a baseline for our gradient-matching coreset method, we experimented with a coreset based on the
solution of a facility location problem in feature space, i.e., choose C ⊂ T such as to minimize∑

x∈T
max
x′∈C

‖x− x′‖. (5)

This is a submodular function and can be optimized approximately with greedy submodular opti-
mization methods. In the continual setting, this has to be done in a streaming fashion; we followed
the sieve streaming approach of Badanidiyuru et al. [2014] and relied on an implementation in the
open source Python package apricot-select. We depict results on Covertype in Fig. 3. We show
two different continual learning scenarios; our usual sorted scenario and, as a sanity check, a simple
“iid-incremental” scenario, where batches consist of uniform subsamples of the dataset. While the
facility location method matches, but fails to outperform, reservoir sampling in the iid-incremental
setting, it fails in the sorted setting.

A.3 Experience replay

Figure 4 shows results using the experience replay method. In contrast to GDUMB, experience replay
does not reinitialize the model after receiving a new batch of data. Instead, it resumes training from
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Figure 3: Results for the submodular facility location method using the GDUMB paradigm. Note
that we display results on a single dataset, but two different continual scenarios: iid-incremental
and sorted. The graphs depict the final accuracy, after seeing all tasks/batches, on the full test set
as a function of the memory size. Results are averaged over five random seeds and the shaded area
spans one standard deviation. The facility location method matches, but fails to outperform, reservoir
sampling in the iid-incremental setting. In the sorted setting, the method fails.
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Figure 4: Results on continual learning scenarios using the experience replay paradigm with different
subsampling/coreset methods. The graphs depict the final accuracy, after seeing all tasks/batches, on
the full test set as a function of the memory size. Results are averaged over five random seeds and the
shaded area spans one standard deviation.

the previously found solution and trains on an (appropriately weighted) combination of the current
batch and the stored memory (see, e.g., Chaudhry et al. [2019]). The memory is updated after the
processing of each task. Like with GDUMB, our coreset method outperforms reservoir sampling,
albeit by a smaller margin. In the CIFAR-10 experiment, all tested subsampling/coreset methods have
almost identical performance.
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Figure 5: Results of the local variant of GMC on continual learning scenarios using the experience
replay paradigm with different subsampling/coreset methods. The graphs depict the final accuracy,
after seeing all tasks/batches, on the full test set as a function of the memory size. Results are
averaged over five random seeds and the shaded area spans one standard deviation.
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Figure 6: Class frequencies in the different batches of the task-free “sorted” scenario.

A.4 Local variant of GMC

We also performed initial exploratory experiments with a “local” variant of GMC, designed to work
with experience replay. After training on a task and the current memory, we perform gradient
matching locally at the latest iterate and replace the memory with the obtained coreset. Since the
gradients used for gradient matching now change over time, this requires a small change in Continual
GMC (Alg. 2). Instead of storing the gradient embedding matrix of the coreset for use in the next
iteration, we need to recompute it in each iteration. The resulting method can be seen as an adaptation
of the method proposed by Killamsetty et al. [2021] to the continual scenario. Unfortunately, the
results, depicted in Fig. 5, are much worse. We conjecture that the gradients at a single point in
weight space contain too little information to select coresets that are useful beyond a small number of
training epochs.

B Experimental details

B.1 Continual learning scenarios

As mentioned in the main text, the class-incremental scenario on FASHIONMNIST and CIFAR-
10 is obtained by splitting the 10 classes of the dataset into 5 tasks, consisting of classes
{0, 1}, {2, 3}, . . . , {8, 9}. The evaluation is done on the entire test set containing all classes.

The task-free scenario for the tabular datasets is generated by sorting the data points according to the
value of a single feature. We arbitrarily chose the first feature. The resulting sequence is split into
10 batches of approximately equal size. Since the sequence changes smoothly, there is no notion of
distinct tasks. Nevertheless, the sorting generates a non-trivial pattern in the relative frequencies of
the classes across the 10 batches, see Fig. 6.
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B.2 Model architectures

All experiments have been implemented using PyTorch [Paszke et al., 2019].

MLP The MLP architecture consists of two fully-connected hidden layers with 128 units each and
ReLU activation, followed by a fully-connected output layer.

CNN The CNN architecture consists of four convolution blocks, each comprising of a convolutional
layer with a 64 filters with a receptive field of 3 × 3 pixels and padding of 1 pixel, followed by
batch normalization, ReLU activation, and max pooling over 2× 2 windows. The resulting feature
map is average-pooled spatially, leading to a 64-dimensional representation. This is followed by a
fully-connected output layer.

ResNet-18 as described by He et al. [2016] and implemented in the torchvision Python package.

B.3 Optimization hyperparameters

All models are trained using the Adam optimizer with a step size of 10−3 and default choices for the
other hyperparameters. We use a minibatch size of 100. No weight decay is applied. We train each
model for a fixed number of 200 epochs.

B.4 Parameters of GMC

We use s = 4 draws from the model’s initialization distribution as implemented by the standard
initialization scheme in PyTorch. For the random projections, we use d = 2000. This results in an
embedding dimension of D = sd = 8000. For the last-layer variant, the dimensions varies with the
chosen model architecture and dataset.

C Computational complexity of GMC

Orthogonal matching pursuit inverts a quadratic matrix of size |I| in each iteration. This can be
done efficiently by maintaining the Cholesky factorization of the matrix GTI GI and updating it when
a new element is added, see Rubinstein et al. [2008]. The computational complexity of OMP is
O(DNn+Nn2 + n3), where D is the dimension of the gradient embedding, N is the size of the
original dataset and n is the desired coreset size (see, e.g., Rubinstein et al. [2008]). In addition, we
need O(ND) memory to store the gradient embedding matrix. While we can “choose” the gradient
embedding dimension D, it needs to be large enough to support the construction of a coreset of size
n. This means at least D ≥ n; otherwise the matrix GTI GI will become singular as soon as |I| > D.
Therefore, the algorithm also needs O(Nn) memory. Both the computational complexity and the
memory requirements restrict the applicability of the method to moderate coreset sizes. It is quite
common in the literature to find experiments with corsets between 100 and 500 elements, but we
show that our method can scale to higher values and experiment with coresets sizes up to 5000.

The cost of obtaining the gradient embeddings corresponds to s epochs of training on the full dataset.
In our experiments, we achieved good results with values as small as s = 4.
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