Retrieval-guided Counterfactual Generation for QA

Anonymous ACL submission

Abstract

Deep NLP models have been shown to be brittle to input perturbations. Recent work has shown that data augmentation using counterfactuals — i.e. minimally perturbed inputs — can help ameliorate this weakness. We focus on the task of creating counterfactuals for question answering, which presents unique challenges related to world knowledge, semantic diversity, and answerability. To address these challenges, we develop a Retrieve-Generate-Filter (RGF) technique to create counterfactual evaluation and training data with minimal human supervision. Using an open-domain QA framework and question generation model trained on original task data, we create counterfactuals that are fluent, semantically diverse, and automatically labeled. Data augmentation with RGF counterfactuals improves performance on out-of-domain and challenging evaluation sets over and above existing methods, in both the reading comprehension and open-domain QA settings. Moreover, we find that RGF data leads to significant improvements in a model’s robustness to local perturbations.\(^1\)

1 Introduction

Models for natural language understanding (NLU) may outperform humans on standard benchmarks, yet still often perform poorly under a multitude of distributional shifts (Jia and Liang (2017); Naik et al. (2018); McCoy et al. (2019), inter alia) due to over-reliance on spurious correlations or dataset artefacts. Recent work (Kaushik et al., 2020; Gardner et al., 2020) proposes the construction of contrast or counterfactual data — minimal yet meaningful perturbations to test examples that are created by humans to flip the task label — to expose gaps in a model’s local decision boundaries. For instance, perturbing the movie review “A real stinker, one out of ten!” to “A real classic, ten out of ten!” changes its sentiment label. Kaushik et al. (2020, 2021); Wu et al. (2021a); Geva et al. (2021) show that augmenting with counterfactual data (CDA) improves out-of-domain generalization and robustness to small input perturbations. Consequently, several techniques have been proposed for the automatic generation of counterfactual data for several downstream tasks (Wu et al., 2021a; Ross et al., 2021b,a; Bitton et al., 2021; Geva et al., 2021; Asai and Hajishirzi, 2020; Mille et al., 2021).

In this paper, we focus on counterfactuals for question answering, in both the reading comprehension and open-domain settings (e.g. Rajpurkar et al., 2016; Kwiatkowski et al., 2019). Model inputs consist of a question and optionally a context passage, and the target is a short answer span. Unlike in classification, where the label space is fixed, the set of alternate labels, and hence alternate questions in QA is diverse, open-ended, and instance-specific. Exploring the seman-

\(^1\)Code is available at https://anonymous/to/be/released

Figure 1: Retrieve-Generate-Filter to generate counterfactual queries for Natural Question (Kwiatkowski et al., 2019) using an open-domain retrieval system, question generation and post-hoc filtering.
tic neighborhood around a particular question often requires world knowledge. For example, going from “Who is the captain of the Richmond Football Club” to “Who captained Richmond’s women’s team?” as in Figure 1 requires knowledge about the club’s alternate teams, and the perturbation “Who was the captain of RFC in 1998?” requires knowledge about the time-sensitive nature of the original question. In the absence of such knowledge, otherwise reasonable edits — such as “Who captained the club in 2050?” — can result in false premises or unanswerable questions.

We develop a simple yet effective technique to address these challenges: Retrieve, Generate, and Filter (RGF; Figure 1). We use the near-misses of a retrieve-and-read QA model to propose alternate contexts and answers which are closely related to — but semantically distinct from — the original question. We then use a sequence-to-sequence question generation model (Alberti et al., 2019) to generate corresponding questions to these passages and answers. This results in fully-labeled examples, which can be used directly to augment training data or filtered post-hoc for analysis.

While our method requires no supervised inputs besides the original task training data, it is able to generate highly diverse counterfactuals covering a range of semantic phenomena (§4), including many transformation types which existing methods generate through heuristics (Dua et al., 2021), meaning representations (Ross et al., 2021b; Geva et al., 2021) or human generation (Bartolo et al., 2020). Compared to alternative sources of synthetic data (§5.1), training augmented with RGF data leads to increased performance on a variety of settings (§5.2, §5.3), including out-of-domain (Fisch et al., 2019) and contrast evaluation sets (Bartolo et al., 2020; Gardner et al., 2020), while maintaining in-domain performance. Additionally, we introduce a measure of pairwise consistency, and show that RGF leads to significant improvements in model robustness to a range of local perturbations (§6).

2 Related Work

2.1 Counterfactual Generation

There has been considerable interest in developing challenging evaluation sets for NLU that evaluate models on a wide variety of counterfactual input perturbations. Gardner et al. (2020); Khashabi et al. (2020); Kaushik et al. (2020); Ribeiro et al. (2020) use humans to create these perturbations, optionally in an adversarial setting against a particular model (Bartolo et al., 2020). However, these methods can be expensive and difficult to scale.

This has led to an increased interest in creating automatic counterfactual data for evaluating out-of-distribution generalization (Bowman and Dahl, 2020) and for counterfactual data augmentation (Geva et al., 2021; Longpre et al., 2021). Some work focuses on using heuristics like swapping superlatives and nouns (Dua et al., 2021), changing gendered words (Webster et al., 2020), or targeting specific data splits (Finegan-Dollak and Verma, 2020). More recent work has focused on using meaning representation frameworks and structured control codes, including grammar formalisms (Li et al., 2020), semantic role labeling (Ross et al., 2021b), structured image representations like scene graphs (Bitton et al., 2021), and query decompositions in multi-hop reasoning datasets (Geva et al., 2021). Ye et al. (2021) and Longpre et al. (2021) perturb contexts instead of questions by swapping out all mentions of a named entity. The change in label can be derived heuristically or requires a round of human re-labeling of the data. These may also be difficult to apply to tasks like Natural Questions (Kwiatkowski et al., 2019), where pre-defined schemas can have difficulty covering the range of semantic perturbations that may be of interest.

2.2 Data Augmentation

Non-counterfactual data augmentation methods for QA, where the synthetic examples are not paired with the original data, have shown only weak improvements to robustness and out-of-domain generalization (Bartolo et al., 2021; Lewis et al., 2021). Moreover, Joshi and He (2021) find that methods that limit the structural and semantic space of perturbations can potentially hurt generalization to other types of transformations. This problem is exacerbated in the question answering scenario where there can be multiple semantic dimensions to edit. Our method attempts to address this by targeting a broad range of semantic phenomena, thus reducing the chance for the augmented model to overfit.

3 RGF: Counterfactuals for Information-seeking Queries

A counterfactual is commonly defined as a perturbed version of an input which alters a single latent variable while holding other aspects un-
changed. While many existing works focus on label-preserving transformations, in this work we explore the much broader space of transformations which allow the label to change as well. For question-answering, we take as input triples \((q, c, a)\) consisting of the question, context passage, and short answer, and produce counterfactual triples \((q', c', a')\) where \(a' \neq a\). This setting poses some unique challenges, such as the need for background knowledge to identify relevant semantic dimensions, ensuring sufficient semantic diversity in question edits, and avoiding questions with false premises or no viable answers. Ensuring (or characterizing) minimalism can also be a challenge, as small changes to surface form can lead to significant semantic changes, and vice-versa. We introduce a generalized paradigm — **Retrieve, Generate and Filter** — to tackle these challenges.

3.1 Overview of RGF

An outline of the RGF method is given in Figure 1. Given an input example \(x = (q, c, a)\) consisting of a question, a context paragraph, and the corresponding answer, RGF generates a set of new examples \(N(x) = \{(q_1', c_1', a_1'), (q_2', c_2', a_2'), \ldots\}\) from the local neighborhood around \(x\). We first use an open-domain retrieve-and-read model to retrieve alternate contexts \(c'\) and answers \(a'\) where \(a \neq a'\). As near-misses for a task model, these candidates \((c', a')\) are closely related to the original target \((c, a)\) but often differ along interesting, latent semantic dimensions (Figure 2) in their relation to the original question, context, and answer. We then use a sequence-to-sequence question generation model to generate new questions \(q'\) from the context and answer candidates \((c', a')\). This yields triples \((q', c', a')\) which are fully labeled, avoiding the problem of unanswerable or false-premise questions.

Compared to methods that rely on a curated set of minimal edits (e.g. Wu et al., 2021b; Ross et al., 2021b), our method admits the use of alternative contexts\(^2\) \(c' \neq c\), and we do not explicitly constrain our triples to be minimal counterfactuals during the generation step. Instead, we use post-hoc filtering to reduce noise, select minimal candidates, or select for specific semantic phenomena based on the relation between \(q\) and \(q'\). This allows us to explore a significantly more diverse set of counterfactual questions \(q'\) (§C.1), capturing relations that may not be represented in the original context \(c\).

We give a description of each component of RGF below; additional implementation details are provided in Appendix A.

3.2 Retrieval

We use REALM retrieve-and-read model of (Guu et al., 2020). REALM consists of consists of a BERT-based bi-encoder for dense retrieval, a dense index of Wikipedia passages, and a BERT-based answer-span extraction model for reading comprehension, all fine-tuned on Natural Questions (NQ: Kwiatkowski et al., 2019). Given a question \(q\), REALM outputs a ranked list of contexts and answers within those contexts: \(\{(c_1', a_1'), (c_2', a_2'), \ldots (c_k', a_k')\}\). These alternate contexts and answers provide relevant yet diverse background information to construct counterfactual questions. For instance, in Figure 1, the question “Who is the captain of the Richmond Football Club” with answer “Trent Cotchin” also returns other contexts with alternate answers like “Jeff Hogg” \(q' = \text{“Who captained the team in 1994”}\), and “Steve Morris” \(q' = \text{“Who captained the reserve team in the VFL league”}\). Retrieved contexts can also capture information about closely related or ambiguous entities. For instance, the question “who wrote the treasure of the sierra madre” retrieves passages about the original book *Sierra Madre*, its movie adaptation, and a ball battle fought in the Sierra de las Cruces mountains. This background knowledge allows us to perform contextualized counterfactual generation, without needing to specify a priori the type of perturbation or semantic dimension. To focus on label-transforming counterfactuals, we retain all \((c_i', a_i')\) where \(a_i'\) does not match any of the gold answers \(a\) from the original NQ example.

3.3 Question Generation

This component generates questions \(q'\) that correspond to the answer-context pairs \((c', a')\). We use a T5 (Raffel et al., 2020) model fine-tuned on \((q, c, a)\) triples from Natural Questions, using context passages as input with the answer marked with special tokens. We use the trained model to generate questions \((q_1', q_2', \ldots, q_k')\) for each of the retrieved set of alternate contexts and answers, \((c_1', a_1'), (c_2', a_2'), \ldots (c_k', a_k')\). For each \((c_i', a_i')\),

\(^2\)An alternative approach would be to make direct, targeted edits to the original context \(c\). However, beyond a limited space of local substitutions (Longpre et al., 2021; Ye et al., 2021; Ross et al., 2021a) this is very difficult due to the need to model complex discourse and knowledge relations.
we use beam decoding to generate 15 different questions \(q' \). We measure the fluency and correctness of generated questions in §4.

3.4 Filtering for Data Augmentation

Noise Filtering The question generation model can be noisy, resulting in a question that cannot be answered given \(c' \) or for which \(a' \) is an incorrect answer. Round-trip consistency (Alberti et al., 2019; Fang et al., 2020) uses an existing QA model to answer the generated questions, ensuring that the predicted answer is consistent with the target answer provided to the question generator. We use an ensemble of six T5-based reading-comprehension \((q, c) \to a)\) models, trained on Natural Questions using different random seeds, and keep any generated \((q', c', a')\) triples where at least 5 of the 6 models agree on the answer. This discards about 5% of the generated data, although some noise still remains; see §4 for further discussion.

Filtering for Minimality Unlike prior work on generating counterfactual perturbations, we do not explicitly control for the type of semantic shift or perturbation in the generated questions. Instead, we use post-hoc filtering over generated questions \(q' \) to encourage minimality of perturbation. We define a filtering function \(f(q, q') \) that categorizes the semantic shift or perturbation in \(q' \) with respect to \(q \). One simple version of \(f \) is the word-level edit (Levenshtein) distance between \(q \) and \(q' \). After applying ensemble-based noise filtering, for each original \((q, c, a)\) triple we select the generated \((q', c', a')\) with the smallest word-edit distance between \(q \) and \(q' \) such that \(a \neq a' \). We use this simple heuristic to create large-scale counterfactual training data for augmentation experiments (§5). Over-generating potential counterfactuals based on latent dimensions identified in retrieval and using a simple filtering heuristic avoids biasing the model toward a narrow set of perturbation types (Joshi and He, 2021).

3.5 Semantic Filtering for Evaluation

To better understand the types of counterfactuals generated by RGF, we can apply additional filters based on query meaning representations to categorize counterfactual \((q, q')\) pairs during evaluation. Meaning representations provide a way to decompose a question into semantic units and categorize \((q, q')\) based on which of these units are perturbed. In this work, we employ the QED formalism for explanations in question answering (Lamm et al., 2021). QED explanations segment the question into a predicate template and a set of reference phrases. For example, the question “Who is captain of Richmond football Club” decomposes into one question reference “Richmond football Club” and the predicate “Who is captain of X”.

A few example questions and their QED decompositions are illustrated in Table 1.

Question from NQ	Original: who is the captain of richmond football club?	Predicate: who is the captain of X?
Reference Change	CF1: who is the captain of Richmond's vfl reserve team?	Predicate: who is the captain of X?
Predicate Change	CF2: who wears number 9 for richmond football club?	Predicate: who wears Y for X?
Predicate and Reference Change	CF3: who did Graham negate in the grand final last year?	Predicate: who did X negate in Y last year?

Table 1: Categorization of generated questions based on QED decomposition. The original reference “Richmond football Club” changes in CF1 and CF3. Predicate “Who is the captain” changes in CF2 and CF3.

We use these query decompositions to identify the relation between a counterfactual pair \((q, q')\). Concretely, we fine-tune a T5-based model on the QED dataset to perform explanation generation following the recipe of Lamm et al. (2021), and use this to identify predicates and references for the question from each \((q, c, a)\) triple in the evaluation data. We use exact match between strings to identify reference changes. As predicates can often differ slightly in phrasing (who captured vs. who is captain), we take a predicate match to be a prefix matching with more than 10 characters. For instance, “Who is the captain of Richmond’s first ever women’s team?” has the same predicate as “Who is the captain of the Richmond Football Club”.

We then filter generated questions into three perturbation categories — reference change, predicate change, or both.

4 Intrinsic Evaluation

Following desiderata from Wu et al. (2021a) and Ross et al. (2021b), we evaluate our RGF data along three qualitative evaluation measures: fluency, correctness, and directionality.

Fluency Fluency measures whether the generated text is grammatically correct and semantically...
Figure 2: Context-specific semantic diversity of perturbations achieved by RGF on an NQ Question. The multiple latent semantic dimensions identified (arrows in the diagram) emerge from our retrieval-guided approach.

<table>
<thead>
<tr>
<th>Semantic Change</th>
<th>Example (Original, Counterfactual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Change</td>
<td>O: when did lebron_james join the Miami Heat? C: When did lebron_james come into the league?</td>
</tr>
<tr>
<td>Predicate Change</td>
<td>O: Who started the war between india and pakistan C: Who started the war between India and Pakistan?</td>
</tr>
<tr>
<td>Disambiguation</td>
<td>O: When does walking dead season start? C: When does walking dead season 8 second half start?</td>
</tr>
<tr>
<td>Negation</td>
<td>O: what religion observes the sabbath day C: what religion does not keep the sabbath day</td>
</tr>
</tbody>
</table>

Table 2: Patterns of semantic change between original queries (O) and RGF counterfactuals (C), corresponding to patterns explored by related works.

Meaningful. Fluency is very high from RGF, as the generation step leverages a high-quality pretrained language model (T5). We manually annotate a subset of 100 generated questions, and find that 96% of these are fluent.

Correctness Correctness measures if the generated question \(q'\) and context, alternate answer pairs \((c', a')\) are aligned i.e. the question is answerable given context \(c'\) and \(a'\) is that answer. We quantify correctness in the generated dataset by manually annotating a samples of 100 \((q', c', a')\) triples (see Appendix B). The proportion of noise varies from 30% before noise filtering and 25% after noise filtering using an ensemble of models ($\S3.4$).

Directionality/Semantic Diversity In Table 2, we show examples of semantic changes that occur in our data, including reference changes (50% of changes), predicate changes (30% of changes), negations, question expansions, disambiguations, and contractions. These cover many of the transformations found in prior work (Gardner et al., 2020; Ross et al., 2021b; Min et al., 2020b), but RGF is able to achieve these without the use of heuristic transformations or structured meaning representations. As shown in Figure 2, the types of relations are semantically rich and cover attributes relevant to each particular instance that would be difficult to capture with a globally-specified schema.

5 Data Augmentation

Unlike many counterfactual generation methods, RGF natively creates fully-labeled \((q', c', a')\) examples which can be used directly for counterfactual data augmentation (CDA). We augment the original NQ training set with additional examples from RGF, shuffling all examples in training. We explore two experimental settings, reading comprehension ($\S5.2$) and open-domain QA ($\S5.3$), and compare RGF-augmented models to those trained only on NQ, as well as to alternative baselines for synthetic data generation. Additional training details for all models and baselines are included in Appendix A.

5.1 Baselines

In the abstract, our model for generating counterfactuals specifies a way of selecting contexts \(c'\) from original questions, and answers \(a'\) within those contexts, and a way of a generating questions \(q'\) from them. RGF uses a retrieval model to identify relevant contexts; here, we experiment with two baselines that use alternate ways to select \(c'\).

Random Passage (Rand. Agen-Qgen) Here, \(c'\) is a randomly chosen paragraph from the Wikipedia index, with no explicit relation with the original question. This setting simulates generation from the original data distribution of Natural Questions. To ensure that the random sampling of Wikipedia paragraphs has a similar distribution, we employ the learned passage selection model from Lewis et al. (2019).
Table 3: Exact Match results for the reading comprehension task for in-domain NQ development set, out-of-domain datasets from MRQA 2019 Challenge (Fisch et al., 2019), Adversarial QA (Bartolo et al., 2020) and AmbigQA (Min et al., 2020b). RGF improves out-of-domain and challenge-set performance compared to other data augmentation baselines.

<table>
<thead>
<tr>
<th>Exact Match (RC)</th>
<th>Train Size</th>
<th>NQ</th>
<th>SQuAD</th>
<th>TriviaQA</th>
<th>HotpotQA</th>
<th>BioASQ</th>
<th>AQA</th>
<th>AmbigQA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original NQ</td>
<td>90K</td>
<td>70.40</td>
<td>80.22</td>
<td>14.69</td>
<td>51.03</td>
<td>37.30</td>
<td>26.30</td>
<td>46.55</td>
</tr>
<tr>
<td>Gold Agen-Qgen</td>
<td>90K + 90K</td>
<td>70.60</td>
<td>74.64</td>
<td>13.24</td>
<td>45.59</td>
<td>31.98</td>
<td>20.50</td>
<td>43.45</td>
</tr>
<tr>
<td>Rand. Agen-Qgen</td>
<td>90K + 90K</td>
<td>71.08</td>
<td>76.78</td>
<td>13.87</td>
<td>45.26</td>
<td>33.64</td>
<td>22.50</td>
<td>42.04</td>
</tr>
<tr>
<td>RGF (REALM-Qgen)</td>
<td>90K + 90K</td>
<td>70.68</td>
<td>79.88</td>
<td>16.99</td>
<td>53.41</td>
<td>44.88</td>
<td>28.20</td>
<td>47.61</td>
</tr>
</tbody>
</table>

3 which was also used by Bartolo et al. (2021) in their closely related work on (non-counterfactual) data augmentation for the SQuAD dataset (Rajpurkar et al., 2016).

Gold Context (Gold Agen-Qgen) Here, c' is the passage c containing the original short answer a from the NQ training set. This baseline specifically ablates the retrieval component of RGF, testing whether the use of alternate passages leads to more diversity in the resulting counterfactual questions.

Answer Generation for Baselines For both the above baselines for context selection, we select spans in the new passage that are likely to be answers for a potential counterfactual question. We use a T5 (Raffel et al., 2020) model fine-tuned for question-independent answer selection $c \rightarrow a$ on NQ, and select the top 15 candidates from beam search. To avoid simply repeating the original question, we only retain answer candidates a' which do not match the original NQ answers a for that example. These alternate generated answer candidates and associated passages are then used for question generation and filtering as in RGF (§3.3).

5.2 Reading Comprehension (RC) In the reading comprehension (RC) setting, the input consists of the question and context and the task is to identify an answer span in the context. Thus, we augment training with full triples (q', c', a') consisting of the retrieved passage c', generated and filtered question q', and alternate answer a'.

Experimental Setting We finetune a T5 (Raffel et al., 2020) model for reading comprehension, with input consisting of the question prepended to the context. We evaluate domain generalisation of our RC models on three evaluation sets from the MRQA 2019 Challenge (Fisch et al., 2019). We also measure performance on evaluation sets consisting of counterfactual or perturbed versions of RC datasets on Wikipedia, including SQuAD (Rajpurkar et al., 2016), AQA (adversarially-generated SQuAD questions; Bartolo et al., 2020), and human authored counterfactual examples (contrast sets; Gardner et al., 2020) from the QUOREF dataset (Dasigi et al., 2019). We also evaluate on the set of disambiguated queries in AmbigQA (Min et al., 2020b), which by construction are minimal edits to queries from the original NQ.

Results We report exact-match scores in Table 3; F1 scores follow a similar trend. We observe only limited improvements on the in-domain NQ development set, but we see significant improvements from CDA with RGF data in out-of-domain and challenge-set evaluations compared both to the original NQ model and the Gold and Random baselines. RGF improves by 1-2 EM points on most challenge sets, and up to 7 EM points on the BioASQ set compared to training on NQ only, while baselines often underperform the NQ-only model on these sets. Note that all three augmentation methods have similar proportion of noise (Appendix B), so CDA’s benefits may be attributed to improving model’s ability to learn more robust features for the task of reading comprehension and reduce reliance on spurious correlations. RGF’s superior performance compared to the Gold Agen-Qgen baseline is especially interesting, since the latter also generates topically related questions. We observe that filtered RGF counterfactuals are more closely related to the original question compared to this baseline (Figure 5 in Appendix C), since q' is derived from a near-miss candidate (c', a') to answer the original q (S3.1).

5.3 Open-Domain Question Answering (OD) In the open-domain (OD) setting, only the question is provided as input. The pair (q', a'), consisting
Table 4: Exact Match results on open-domain QA datasets (TriviaQA, AmbigQA, SQuAD and TREC) for data augmentation with RGF counterfactuals and baselines. Open-domain improvements are larger than in the RC setting, perhaps as the more difficult task benefits more from additional data.

<table>
<thead>
<tr>
<th></th>
<th>Train Size</th>
<th>NQ</th>
<th>TriviaQA</th>
<th>AmbigQA</th>
<th>SQuAD v1.0</th>
<th>TREC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>90K</td>
<td></td>
<td>37.65</td>
<td>26.75</td>
<td>22.43</td>
<td>14.25</td>
</tr>
<tr>
<td>Gold Agen-Qgen</td>
<td>90K + 90K</td>
<td></td>
<td>37.86</td>
<td>27.02</td>
<td>23.65</td>
<td>15.01</td>
</tr>
<tr>
<td>RGF (REALM-Qgen)</td>
<td>90K + 90K</td>
<td>39.11</td>
<td>32.32</td>
<td>26.98</td>
<td>16.94</td>
<td>33.61</td>
</tr>
</tbody>
</table>

Experimental Setting We use the method and implementation from Guu et al. (2020) to finetune REALM on \((q, a)\) pairs from NQ. End-to-end training of REALM updates both the reader model and the query-document encoders of the retriever module. We evaluate domain generalization on popular open-domain benchmarks: TriviaQA (Joshi et al., 2017), SQuAD (Rajpurkar et al., 2016), Curated TREC dataset (Min et al., 2021), and disambiguated queries from AmbigQA (Min et al., 2020b).

Results In the open-domain setting, we observe an improvement of 2 EM points over the original model even in the in-domain setting on Natural Questions (Table 4), while also improving significantly when compared to other data augmentation techniques. RGF improves over the next best baseline — Random Agen-Qgen — by up to 6 EM points (for TriviaQA). We hypothesize that data augmentation has more benefit in this setting, as the open-domain task is more difficult than reading comprehension, and counterfactual queries may help the model learn better query and document representations to improve retrieval.

6 Analysis

To better understand how CDA improves the model, we introduce a measure of local consistency (§6.1) to measure model robustness, and perform a stratified analysis (§6.2) to show the benefits of the semantic diversity available from RGF.

6.1 Local Robustness

Compared to synthetic data methods such as PAQ (Lewis et al., 2021), RGF generates counterfactual examples that are paired with the original inputs and concentrated in local neighborhoods around them (Figure 2). As such, we hypothesize that augmentation with this data should specifically improve local consistency, i.e. how the model behaves under small perturbations of the input.

Experimental Setting We explicitly measure how well a model’s local behavior respects perturbations to input. Specifically, if a model \(f : (q, c) \rightarrow a\) correctly answers \(q\), how often does it also correctly answer \(q'\)? We define pairwise consistency as accuracy over the counterfactuals \((q', a', c')\), conditioned on correct predictions for the original examples:

\[
C(D) = E_D[f(q', c') = a' \mid f(q, c) = a]
\]

To measure consistency, we construct validation sets consisting of paired examples \((q, c, a), (q', c', a')\): one original, and one counterfactual. We use QED to categorize our data, as described in §3.5. Specifically, we create two types of pairs: (a) a change in reference where question predicate remains fixed, and (b) a change in predicate, where the original reference(s) are preserved. We create a clean evaluation set by first selecting RGF examples for predicate or reference change, then manually filtering the data to discard incorrect triples (§4) until we have 1000 evaluation pairs of each type (see Appendix B).

We also construct paired versions of AQA, AmbigQA, and the QUOREF contrast set. For AmbigQA, we pair two disambiguated questions and for the QUOREF contrast set, we pair original and human-authored counterfactuals. AQA consists of human-authored adversarial questions \(q'\) which are not explicitly paired with original questions; we create pairs by randomly selecting an original question \(q\) and a generated question \(q'\) from the same passage.

\footnote{We require that the new reference set is a superset of the original, since predicate changes can introduce additional reference slots (see CF2 in Table 1).}
<table>
<thead>
<tr>
<th>Consistency (RC)</th>
<th>Train Size</th>
<th>AQA</th>
<th>AmbigQA</th>
<th>QUOREF-C</th>
<th>RGF (∆ Ref)</th>
<th>RGF (∆ Pred)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original NQ</td>
<td>90K</td>
<td>58.47</td>
<td>46.67</td>
<td>39.66</td>
<td>64.57</td>
<td>51.50</td>
</tr>
<tr>
<td>Gold Agen-Qgen</td>
<td>90K + 52K</td>
<td>59.27</td>
<td>50.23</td>
<td>42.83</td>
<td>44.62</td>
<td>38.10</td>
</tr>
<tr>
<td>Rand. Agen-Qgen</td>
<td>90K + 90K</td>
<td>55.45</td>
<td>49.06</td>
<td>41.93</td>
<td>60.77</td>
<td>48.53</td>
</tr>
<tr>
<td>RGF (REALM-Qgen)</td>
<td>90K + 90K</td>
<td>63.29</td>
<td>51.61</td>
<td>46.42</td>
<td>76.36</td>
<td>64.98</td>
</tr>
</tbody>
</table>

Table 5: Results for pairwise consistency (§6.1) on reading comprehension, measured for datasets containing pairs of very similar questions. QUOREF-C refers to the QUOREF contrast set from (Gardner et al., 2020). RGF leads to better consistency in RC and open-domain settings (Appendix C.2). Results on effect of perturbation type during training (Δ Ref. and Δ Pred.) suggest that perturbation-bias does not degrade consistency over the original model.

Results
Training with RGF data improves consistency by 12-14 points on the QED-filtered slices of RGF data, and 5-7 points on AQA, AmbigQA and QUOREF contrast (Table 5). The Gold Agen-Qgen baseline (which contains topically related queries about the same passage) also improves consistency over the original model compared to the Random Agen-Qgen baseline. Consistency improvements on AQA, AmbigQA and QUOREF are especially noteworthy, since they suggest an improvement in robustness to local perturbations that is independent of other confounding distributional similarities between training and evaluation data.

6.2 Effect of Perturbation Type

QED-based decomposition of queries allows for the creation of label-changing counterfactuals along orthogonal dimensions — a change of reference or predicate. We investigate whether training towards one type of change induces generalization bias, a detrimental effect which has been found in tasks like NLI (Joshi and He, 2021).

Experimental Setting
We shard training examples into two categories based on whether \(q \) and \(q' \) have the same reference (predicate change) or same predicate (reference change), as defined in §3.5. We over-generate by starting with 20 \((q', c', a') \) for each original training example to ensure that we find at least one \(q' \) that matches the criterion.

We similarly evaluate on the paired evaluation sets from §6.1.

Results

Results are shown for QED-filtered training in Table 5. Counterfactual perturbation of a specific kind (a predicate or a reference change) during augmentation does not hurt performance on another perturbation type compared to the baseline NQ model, which differs from the observations of Joshi and He (2021) on NLI. Furthermore, similar to the observations of Min et al. (2020a), augmenting with one type of perturbation has orthogonal benefits that improve model generalization on another perturbation type: augmenting with RGF (Δ Pred.) leads to significant improvement on RGF (Δ Ref.), and vice-versa. Overall, we observe that augmenting with predicate-change examples leads to greater improvements in local consistency compared to reference-change examples, except for on RGF (Δ Ref.) and on AmbigQA which contains a disproportionate number of reference-change pairs. Predicate-change examples may be more informative to the model, as reference changes can be modeled more easily by lexical matching within common context patterns.

7 Conclusion

Retrieve-Generate-Filter (RGF) creates counterfactual examples for question-answering which are semantically diverse, using knowledge from the passage context and a retrieval model to capture semantic changes that would be difficult to specify \textit{a priori} with a global schema. The resulting examples are fully-labeled, and can be used directly for training augmentation or filtered using heuristics or meaning representations for analysis. We show that training with this data leads to improvements on open-domain QA, as well as on challenge sets, and leads to significant improvements in local robustness. While in this paper we focus on question answering, a task for which retrieval components are readily available, we note that the RGF paradigm is quite general and could potentially be applied to many other tasks with suitable choice of context and retrieval system.
References

A Model Training and Implementation Details

Below, we describe the details of different models trained in the RGF pipeline. For all T5 models, we use the pre-trained checkpoints from Raffel et al. (2020)\(^6\).

Question Generation We use a T5-3B model fine-tuned on Natural Questions (NQ) dataset. We only train on the portion of the dataset that consists of gold short answers and an accompanying long answer evidence paragraph from Wikipedia. The input consists of the title of the Wikipedia article the passage is taken from, a separator (‘»’) and the passage. The short answer is enclosed in the passage using character sequences ‘« answer =’ and ‘»’ on left and right respectively. The output is the original NQ question. The input and output sequence lengths are restricted to be 640 and 256 respectively. We train the model for 20k steps with a learning rate of 2 \(\cdot 10^{-5} \), dropout 0.1, and batch size of 128. We decode with a beam size of 15, and take the top candidate as our generated question \(q'.\)

Answer Generation We use a T5-3B model trained on the same subset of Natural Questions (NQ) as question generation with same set of hyper-parameters and model size described above. The input consists of the title of the Wikipedia article the passage is taken from, a separator (‘»’) and the passage, while the output sequence is the short answer from NQ.

Reading Comprehension Model We model the task of span selection-based reading comprehension, i.e. identifying an answer span given question and passage, as a sequence-to-sequence problem. Input consists of the question, separator (‘»’), and title of Wikipedia article, separator (‘»’) and passage. The answer format is simply one of the gold answer strings. The reading comprehension model is a T5-large model trained with batch size of 512 and learning rate 2 \(\cdot 10^{-4} \) for 20k steps.

Open-domain Question Answering model The open domain QA model is based on the implementation from (Lee et al., 2019), and initialized with the REALM checkpoint from (Guu et al., 2020)\(^6\). Both the retriever and reader are initialized from the BERT-base-uncased model. The query and document representations are 128 dimensional vectors. When fine-tuning, we use a learning rate of \(10^{-5} \) and a batch size of 1 on a single Nvidia V100 GPU. We perform 2 epochs of fine-tuning for Natural Questions.

Noise Filtering We train 6 reading comprehension models based on the configurations above with different seed values for randomizing training dataset shuffling and optimizer initialization. We retain examples where more than 5 out of 6 models have the same answer for a question.

QED Training We use a T5-large model fine-tuned on the Natural Questions subset with QED annotations (Lamm et al., 2021).\(^7\) We refer the reader to the QED paper for details on the linearization of explanations and inputs in the T5 model. Our model is fine-tuned with batch size of 512 and learning rate 2 \(\cdot 10^{-4} \) for 20k steps.

B Evaluation of Fluency and Noise

The authors sampled 300 examples of generated questions. To annotate for fluency, authors use the following rubric: Is the generated question grammatically well-formed barring non-standard spelling and capitalization of named entities. This noise annotation was done for RGF, as well as Gold Agen-Qgen and Random Agen-Qgen.

<table>
<thead>
<tr>
<th>Data</th>
<th>Unfiltered</th>
<th>Filtered</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGF</td>
<td>29.8%</td>
<td>25.3%</td>
</tr>
<tr>
<td>Gold Agen-Qgen</td>
<td>27.9%</td>
<td>20.7%</td>
</tr>
<tr>
<td>Random Agen-Qgen</td>
<td>30.7%</td>
<td>28.3%</td>
</tr>
</tbody>
</table>

Table 6: Fraction of noise (incorrect (\(q',c',a'\))) in generated data, from 300 examples manually annotated by the authors.

Creation of paired data for counterfactual evaluation Once again, authors annotate for correctness of counterfactual RGF instances that are paired by reference or predicate, as described in §3.5. Filtering is done until 1000 examples are available under each category.
C Additional Experiments

C.1 Intrinsic Evaluation

In Figure 3, we compare distributions of the edit distance between the original and generated questions for questions generated by our approach, those generated with the gold evidence passage, and those generated from a random Wikipedia passage (§5). We find that RGF counterfactuals undergo minimal perturbations from the original question compared to questions that are generated from random Wikipedia paragraph. Surprisingly, this pattern also holds when compared to questions generated from gold NQ passages. We hypothesize that the set of alternate answers retrieved in our pipeline approach are semantically similar to the gold answer — same entity type, for instance. Random answer spans chosen from the gold NQ passage can result in significant semantic shifts in generated questions.

In Figure 4, we measure the relation between retrieval rank and edit-distance for RGF. For retrieval rank i, we plot average edit distance between the original question and counterfactual question that was generated using the ith passage and answer. We observe a monotonic relation between retrieval rank and edit distance (which we use for filtering our training data). We measure changes in the distribution of question type and predicate type.

Figure 5 indicates that counterfactual data exacerbates question-type bias. However, this bias exists in RGF as well as baselines.

C.2 Consistency for Open-Domain QA

In Table 7, we show results on evaluating consistency on paired datasets in the open-domain results, similar to the results shown in §6.1 in the Reading Comprehension setting.

C.3 Low-resource Transfer

Joshi and He (2021) show CDA to be most effective in the low-resource regime. To better understand the role that dataset size plays in CDA in the reading comprehension setting, we evaluate RGF in a cross-domain setting where only a small amount of training data is available.

Experimental Setting Since our approach depends on using an open-domain QA model and a question generation model trained on all Natural
Questions data, we instead experiment with a low-resource transfer setting on the BioASQ domain, which consists of questions on the biomedical domain. We use the domain-targeted retrieval model from (Ma et al., 2021), where synthetic question-passage relevance pairs generated over the PubMed corpus are used to train domain-specific retrieval without any in-domain supervision. We further fine-tune the question generation model trained on NQ on the limited amount of in-domain data, and use a checkpoint trained on NQ as an initialization to fine-tune the RC model for in-domain data. Details of our training approach for low-resource transfer can be found in Appendix A.

Results We observe significant improvements over the baseline model in the low resource setting for in-domain data (< 2000 examples), as shown in Table 8. Compared with the limited gains we see on the relatively high-resource NQ reading comprehension task, we find that on BioASQ, CDA with 1000 examples improves performance by 2% F1 and 3% exact match, performing nearly as well as a model trained on 2000 gold examples.

C.4 Effect of perturbation type

Experimental Setting For edit distance-based experiments, we shard training examples into three categories by binning word-level edit distance between \(q \) and \(q' \) into three ranges: 1–4, 5–10, and > 10. We similarly categorize RGF data generated for the NQ development set into the same categories. Evaluation sets for edit-distance experiments based were not manually noise filtered. We again report consistency on the reading comprehension model.

Results Similar to the observations for dataset sharding along QED annotations, when data is sharded by edit distance, we observe that using the full RGF data nearly matches the best performance from training on that shard, suggesting that CDA with the highly diverse RGF data can lead to improved consistency on a broad range of perturbation types.

Table 7: Consistency Results for Open-domain QA.

<table>
<thead>
<tr>
<th>Consistency (OD)</th>
<th>Train Size</th>
<th>AQA</th>
<th>AmbigQA</th>
<th>RGF ∆ Ref.</th>
<th>RGF ∆ Pred.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original NQ</td>
<td>90K</td>
<td>16.58</td>
<td>13.33</td>
<td>25.12</td>
<td>11.23</td>
</tr>
<tr>
<td>Random Agen-Qgen</td>
<td>90K + 90K</td>
<td>15.80</td>
<td>20.00</td>
<td>27.94</td>
<td>17.16</td>
</tr>
<tr>
<td>RGF (REALM-Qgen)</td>
<td>90K + 90K</td>
<td>17.66</td>
<td>28.57</td>
<td>31.77</td>
<td>19.81</td>
</tr>
</tbody>
</table>

Table 7: Consistency Results for Open-domain QA.

Table 8: Results on the reading comprehension task for Low Resource Transfer setting on BioASQ 2019 dataset. A model trained on 1000 gold BioASQ plus 1000 RGF examples performs nearly as well as a model trained on 2000 gold examples.

<table>
<thead>
<tr>
<th>Training Data</th>
<th>Train Size</th>
<th>BioASQ (Dev)</th>
<th>F1</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>1000</td>
<td>42.93</td>
<td>23.67</td>
<td></td>
</tr>
<tr>
<td>Orig. + RGF</td>
<td>500 + 500</td>
<td>41.72</td>
<td>23.01</td>
<td></td>
</tr>
<tr>
<td>Original</td>
<td>2000</td>
<td>45.88</td>
<td>25.80</td>
<td></td>
</tr>
<tr>
<td>Orig. + RGF</td>
<td>1000 + 1000</td>
<td>44.64</td>
<td>26.80</td>
<td></td>
</tr>
</tbody>
</table>

Table 8: Results on the reading comprehension task for Low Resource Transfer setting on BioASQ 2019 dataset. A model trained on 1000 gold BioASQ plus 1000 RGF examples performs nearly as well as a model trained on 2000 gold examples.

Table 9: Results on sharding training data based on edit distance between \((q, q') \). Training dataset size for each bin is 90k NQ + 167k generated. Once again, training with all RGF data robustly improves consistency across different amounts of perturbations.

<table>
<thead>
<tr>
<th>Consistency (RC)</th>
<th>Val 1-4</th>
<th>Val 5-10</th>
<th>Val > 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train 1-4</td>
<td>71.02</td>
<td>67.55</td>
<td>64.78</td>
</tr>
<tr>
<td>Train 5-10</td>
<td>68.89</td>
<td>68.98</td>
<td>63.92</td>
</tr>
<tr>
<td>Train >10</td>
<td>65.78</td>
<td>66.33</td>
<td>65.33</td>
</tr>
<tr>
<td>Train All</td>
<td>72.34</td>
<td>67.82</td>
<td>65.12</td>
</tr>
</tbody>
</table>

Table 9: Results on sharding training data based on edit distance between \((q, q') \). Training dataset size for each bin is 90k NQ + 167k generated. Once again, training with all RGF data robustly improves consistency across different amounts of perturbations.
D Semantic Diversity

Figure 6 includes more examples from Natural Questions, showing the counterfactual questions generated for different input questions by RGF.

Figure 6: Context-specific semantic diversity of perturbations achieved by RGF on an NQ Question. The multiple latent semantic dimensions identified (arrows in the diagram) fall out of our retrieval-guided approach.