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Abstract

Deep NLP models have been shown to be brit-
tle to input perturbations. Recent work has
shown that data augmentation using counter-
factuals — i.e. minimally perturbed inputs —
can help ameliorate this weakness. We focus
on the task of creating counterfactuals for ques-
tion answering, which presents unique chal-
lenges related to world knowledge, semantic
diversity, and answerability. To address these
challenges, we develop a Retrieve-Generate-
Filter (RGF) technique to create counterfac-
tual evaluation and training data with minimal
human supervision. Using an open-domain
QA framework and question generation model
trained on original task data, we create coun-
terfactuals that are fluent, semantically diverse,
and automatically labeled. Data augmenta-
tion with RGF counterfactuals improves per-
formance on out-of-domain and challenging
evaluation sets over and above existing meth-
ods, in both the reading comprehension and
open-domain QA settings. Moreover, we find
that RGF data leads to significant improve-
ments in a model’s robustness to local pertur-
bations.'

1 Introduction

Models for natural language understanding (NLU)
may outperform humans on standard benchmarks,
yet still often perform poorly under a multitude of
distributional shifts (Jia and Liang (2017); Naik
et al. (2018); McCoy et al. (2019), inter alia) due
to over-reliance on spurious correlations or dataset
artefacts. Recent work (Kaushik et al., 2020; Gard-
ner et al., 2020) proposes the construction of con-
trast or counterfactual data — minimal yet mean-
ingful perturbations to test examples that are cre-
ated by humans to flip the task label — to expose
gaps in a model’s local decision boundaries. For in-
stance, perturbing the movie review “A real stinker,
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Figure 1: Retrieve-Generate-Filter to generate coun-
terfactual queries for Natural Question (Kwiatkowski
et al., 2019) using an open-domain retrieval system,
question generation and post-hoc filtering.

one out of ten!" to “A real classic, ten out of ten!"
changes its sentiment label. Kaushik et al. (2020,
2021); Wu et al. (2021a); Geva et al. (2021) show
that augmenting with counterfactual data (CDA)
improves out-of-domain generalization and robust-
ness to small input perturbations. Consequently,
several techniques have been proposed for the auto-
matic generation of counterfactual data for several
downstream tasks (Wu et al., 2021a; Ross et al.,
2021b,a; Bitton et al., 2021; Geva et al., 2021; Asai
and Hajishirzi, 2020; Mille et al., 2021).

In this paper, we focus on counterfactuals for
question answering, in both the reading compre-
hension and open-domain settings (e.g. Rajpurkar
et al., 2016; Kwiatkowski et al., 2019). Model in-
puts consist of a question and optionally a context
passage, and the target is a short answer span. We
define counterfactuals in this setting to be distinct
but semantically proximal questions and (option-
ally) contexts. Unlike in classification, where the
label space is fixed, the set of alternate labels, and
hence alternate questions in QA is diverse, open-
ended, and instance-specific. Exploring the seman-
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tic neighborhood around a particular question often
requires world knowledge. For example, going
from “Who is the captain of the Richmond Football
Club” to “Who captained Richmond’s women’s
team?” as in Figure 1 requires knowledge about the
club’s alternate teams, and the perturbation “Who
was the captain of RFC in 1998?” requires knowl-
edge about the time-sensitive nature of the original
question. In the absence of such knowledge, other-
wise reasonable edits — such as “Who captained
the club in 2050?” — can result in false premises
or unanswerable questions.

We develop a simple yet effective technique to
address these challenges: Retrieve, Generate, and
Filter (RGF; Figure 1). We use the near-misses
of a retrieve-and-read QA model to propose alter-
nate contexts and answers which are closely related
to — but semantically distinct from — the origi-
nal question. We then use a sequence-to-sequence
question generation model (Alberti et al., 2019) to
generate corresponding questions to these passages
and answers. This results in fully-labeled examples,
which can be used directly to augment training data
or filtered post-hoc for analysis.

While our method requires no supervised inputs
besides the original task training data, it is able
to generate highly diverse counterfactuals cover-
ing a range of semantic phenomena (§4), including
many transformation types which existing meth-
ods generate through heuristics (Dua et al., 2021),
meaning representations (Ross et al., 2021b; Geva
et al., 2021) or human generation (Bartolo et al.,
2020; Gardner et al., 2020). Compared to alterna-
tive sources of synthetic data (§5.1), training aug-
mented with RGF data leads to increased perfor-
mance on a variety of settings (§5.2, §5.3), includ-
ing out-of-domain (Fisch et al., 2019) and contrast
evaluation sets (Bartolo et al., 2020; Gardner et al.,
2020), while maintaining in-domain performance.
Additionally, we introduce a measure of pairwise
consistency, and show that RGF leads to significant
improvements in model robustness to a range of
local perturbations (§6).

2 Related Work

2.1 Counterfactual Generation

There has been considerable interest in developing
challenging evaluation sets for NLU that evaluate
models on a wide variety of counterfactual input
perturbations. Gardner et al. (2020); Khashabi et al.
(2020); Kaushik et al. (2020); Ribeiro et al. (2020)

use humans to create these perturbations, optionally
in an adversarial setting against a particular model
(Bartolo et al., 2020). However, these methods can
be expensive and difficult to scale.

This has led to an increased interest in creating
automatic counterfactual data for evaluating out-
of-distribution generalization (Bowman and Dahl,
2021) and for counterfactual data augmentation
(Geva et al., 2021; Longpre et al., 2021). Some
work focuses on using heuristics like swapping su-
perlatives and nouns (Dua et al., 2021), changing
gendered words (Webster et al., 2020), or target-
ing specific data splits (Finegan-Dollak and Verma,
2020). More recent work has focused on using
meaning representation frameworks and structured
control codes, including grammar formalisms (Li
et al., 2020), semantic role labeling (Ross et al.,
2021b), structured image representations like scene
graphs (Bitton et al., 2021), and query decomposi-
tions in multi-hop reasoning datasets (Geva et al.,
2021). Ye et al. (2021) and Longpre et al. (2021)
perturb contexts instead of questions by swapping
out all mentions of a named entity. The change
in label can be derived heuristically or requires a
round of human re-labeling of the data. These may
also be difficult to apply to tasks like Natural Ques-
tions (Kwiatkowski et al., 2019), where pre-defined
schemas can have difficulty covering the range of
semantic perturbations that may be of interest.

2.2 Data Augmentation

Non-counterfactual data augmentation methods for
QA, where the synthetic examples are not paired
with the original data, have shown only weak im-
provements to robustness and out-of-domain gener-
alization (Bartolo et al., 2021; Lewis et al., 2021).
Moreover, Joshi and He (2021) find that methods
that limit the structural and semantic space of per-
turbations can potentially hurt generalization to
other types of transformations. This problem is ex-
acerbated in the question answering scenario where
there can be multiple semantic dimensions to edit.
Our method attempts to address this by targeting a
broad range of semantic phenomena, thus reducing
the chance for the augmented model to overfit.

3 RGF: Counterfactuals for
Information-seeking Queries

A counterfactual is commonly defined as a per-
turbed version of an input which alters a single
latent variable while holding other aspects un-



changed. While many existing works focus on
label-preserving transformations, in this work we
explore the much broader space of transforma-
tions which allow the label to change as well.
For question-answering, we take as input triples
(g, c,a) consisting of the question, context pas-
sage, and short answer, and produce counterfactual
triples (¢/, ¢/, a’) where a’ # a. This setting poses
some unique challenges, such as the need for back-
ground knowledge to identify relevant semantic
dimensions, ensuring sufficient semantic diversity
in question edits, and avoiding questions with false
premises or no viable answers. Ensuring (or char-
acterizing) minimality can also be a challenge, as
small changes to surface form can lead to signifi-
cant semantic changes, and vice-versa. We intro-
duce a generalized paradigm — Retrieve, Generate
and Filter — to tackle these challenges.

3.1 Overview of RGF

An outline of the RGF method is given in Figure 1.
Given an input example z = (q, ¢, a) consisting
of a question, a context paragraph, and the cor-
responding answer, RGF generates a set of new
examples N (z) = {(¢},c},a}), (Céa 0/27 a’2), "
from the local neighborhood around x. We first
use an open-domain retrieve-and-read model to re-
trieve alternate contexts ¢’ and answers a’ where
a # a'. As near-misses for a task model, these
candidates (¢, a’) are closely related to the origi-
nal target (¢, a) but often differ along interesting,
latent semantic dimensions (Figure 2) in their rela-
tion to the original question, context, and answer.
We then use a sequence-to-sequence question gen-
eration model to generate new questions ¢’ from the
context and answer candidates (¢/, a’). This yields
triples (¢’, ¢, a’) which are fully labeled, avoid-
ing the problem of unanswerable or false-premise
questions.

Compared to methods that rely on a curated set
of minimal edits (e.g. Wu et al., 2021b; Ross et al.,
2021b), our method admits the use of alternative
contexts> ¢/ # ¢, and we do not explicitly constrain
our triples to be minimal counterfactuals during the
generation step. Instead, we use post-hoc filtering
to reduce noise, select minimal candidates, or se-
lect for specific semantic phenomena based on the

2 An alternative approach would be to make direct, targeted
edits to the original context c. However, beyond a limited
space of local substitutions (Longpre et al., 2021; Ye et al.,
2021; Ross et al., 2021a) this is very difficult due to the need
to model complex discourse and knowledge relations.

relation between ¢ and ¢’. This allows us to explore
a significantly more diverse set of counterfactual
questions ¢’ (§C.1), capturing relations that may
not be represented in the original context c.

We give a description of each component of RGF
below; additional implementation details are pro-
vided in Appendix A.

3.2 Retrieval

We use REALM retrieve-and-read model of (Guu
et al., 2020). REALM consists of consists of
a BERT-based bi-encoder for dense retrieval, a
dense index of Wikipedia passages, and a BERT-
based answer-span extraction model for reading
comprehension, all fine-tuned on Natural Ques-
tions (NQ; Kwiatkowski et al., 2019). Given
a question q, REALM outputs a ranked list
of contexts and answers within those contexts:
{(c},d),(cy,a5),... (¢}, a})}. These alternate
contexts and answers provide relevant yet diverse
background information to construct counterfac-
tual questions. For instance, in Figure 1, the ques-
tion “Who is the captain of the Richmond Football
Club" with answer “Trent Cotchin” also returns
other contexts with alternate answers like “Jeff
Hogg" (¢’ =“Who captained the team in 1994"),
and “Steve Morris" (¢ =“Who captained the re-
serve team in the VFL league"). Retrieved con-
texts can also capture information about closely re-
lated or ambiguous entities. For instance, the ques-
tion “who wrote the treasure of the sierra madre"
retrieves passages about the original book Sierra
Madre, its movie adaptation, and a battle fought
in the Sierra de las Cruces mountains. This back-
ground knowledge allows us to perform contextual-
ized counterfactual generation, without needing to
specify a priori the type of perturbation or semantic
dimension. To focus on label-transforming coun-
terfactuals, we retain all (¢}, a;) where a/ does not
match any of the gold answers a from the original
NQ example.

3.3 Question Generation

This component generates questions ¢’ that cor-
respond to the answer-context pairs (¢’,a’). We
use a TS5 (Raffel et al., 2020) model fine-tuned
on (g, ¢, a) triples from Natural Questions, using
context passages as input with the answer marked
with special tokens. We use the trained model to
generate questions (gj, ¢, - - . q;,) for each of the
the retrieved set of alternate contexts and answers,
((c},d)), (ch,ah),...(c),ay)). For each (c,al),



we use beam decoding to generate 15 different
questions ¢’. We measure the fluency and correct-
ness of generated questions in §4.

3.4 Filtering for Data Augmentation

Noise Filtering The question generation model
can be noisy, resulting in a question that cannot be
answered given ¢’ or for which a’ is an incorrect an-
swer. Round-trip consistency (Alberti et al., 2019;
Fang et al., 2020) uses an existing QA model to
answer the generated questions, ensuring that the
predicted answer is consistent with the target an-
swer provided to the question generator. We use an
ensemble of six T5-based reading-comprehension
((g,¢) — a) models, trained on Natural Questions
using different random seeds, and keep any gen-
erated (¢, ¢, d’) triples where at least 5 of the 6
models agree on the answer. This discards about
5% of the generated data, although some noise still
remains; see §4 for further discussion.

Filtering for Minimality Unlike prior work on
generating counterfactual perturbations, we do not
explicitly control for the type of semantic shift or
perturbation in the generated questions. Instead,
we use post-hoc filtering over generated questions
¢ to encourage minimality of perturbation. We
define a filtering function f(q, ¢’) that categorizes
the semantic shift or perturbation in ¢’ with respect
to g. One simple version of f is the word-level
edit (Levenshtein) distance between g and ¢’. Af-
ter applying ensemble-based noise filtering, for
each original (g, c,a) triple we select the gener-
ated (¢/, ¢, a’) with the smallest word-edit distance
between ¢ and ¢ such that a # a’. We use this sim-
ple heuristic to create large-scale counterfactual
training data for augmentation experiments (§5).
Over-generating potential counterfactuals based on
latent dimensions identified in retrieval and using a
simple filtering heuristic avoids biasing the model
toward a narrow set of perturbation types (Joshi
and He, 2021).

3.5 Semantic Filtering for Evaluation

To better understand the types of counterfactuals
generated by RGF, we can apply additional filters
based on query meaning representations to catego-
rize counterfactual (g, ¢’) pairs during evaluation.
Meaning representations provide a way to decom-
pose a question into semantic units and categorize
(¢, q') based on which of these units are perturbed.
In this work, we employ the QED formalism for

Question from NQ
Original: who is the captain of richmond football club?
Predicate: who is the captain of X?

Reference Change
CF1: who is the captain of richmond’s vfl reserve team?
Predicate: who is the captain of X?

Predicate Change
CF2: who wears number 9 for richmond football club?
Predicate: who wears Y for X?

Predicate and Reference Change
CF3: who did graham negate in the grand final last year?
Predicate: who did X negate in Y last year?

Table 1: Categorization of generated questions based
on QED decomposition. The original reference “Rich-
mond football Club" changes in CF1 and CF3. Predi-
cate “Who is the captain"” changes in CF2 and CF3.

explanations in question answering (Lamm et al.,
2021). QED explanations segment the question
into a predicate template and a set of reference
phrases. For example, the question “Who is cap-
tain of richmond football club" decomposes into
one question reference “richmond football club"
and the predicate “Who is captain of X". A few
example questions and their QED decompositions
are illustrated in Table 1.

We use these query decompositions to identify
the relation between a counterfactual pair (q,q’).
Concretely, we fine-tune a T5-based model on the
QED dataset to perform explanation generation
following the recipe of Lamm et al. (2021), and
use this to identify predicates and references for
the question from each (g, ¢, a) triple in the eval-
uation data. We use exact match between strings
to identify reference changes. As predicates can
often differ slightly in phrasing (who captained vs.
who is captain), we take a predicate match to be a
prefix matching with more than 10 characters. For
instance, “Who is the captain of Richmond’s first
ever women’s team?" has the same predicate as
“Who is the captain of the Richmond Football Club".
We then filter generated questions into three per-
turbation categories — reference change, predicate
change, or both.

4 Intrinsic Evaluation

Following desiderata from Wu et al. (2021a) and
Ross et al. (2021b), we evaluate our RGF data
along three qualitative evaluation measures: flu-
ency, correctness, and directionality.

Fluency Fluency measures whether the gener-
ated text is grammatically correct and semantically
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Semantic Change ‘ Example (Original, Counterfactual)

Reference Change
TAILOR
(Ross et al., 2021b)

O: when did lebron_james join
the Miami_Heat? C: When did
lebron_james come into the league?

Predicate Change
AmbigQA
(Min et al., 2020b)

O: Who won the war between india
and pakistan C: Who started
the war between india and pakistan

Disambiguation
AmbigQA
(Min et al., 2020b)

O: When does walking dead season
8 start? C: When does walking
dead season 8 second half start?

Negation
Polyjuice
(Wu et al., 2021a)

O: what religion observes the
sabbath day C: what religion does
not keep the sabbath day

Table 2: Patterns of semantic change between original
queries (O) and RGF counterfactuals (C), correspond-
ing to patterns explored by related works.

meaningful. Fluency is very high from RGF, as the
generation step leverages a high-quality pretrained
langauge model (T5). We manually annotate a sub-
set of 100 generated questions, and find that 96%
of these are fluent.

Correctness Correctness measures if the gener-
ated question ¢’ and context, alternate answer pairs
(', a’) are aligned i.e. the question is answerable
given context ¢ and @’ is that answer. We quantify
correctness in the generated dataset by manually
annotating a samples of 100 (¢/, ¢, a’) triples (see
Appendix B). The proportion of noise varies from
30% before noise filtering and 25% after noise fil-
tering using an ensemble of models (§3.4).

Directionality/Semantic Diversity In Table 2,
we show examples of semantic changes that oc-
cur in our data, including reference changes (50%
of changes), predicate changes (30% of changes),
negations, question expansions, disambiguations,
and contractions. These cover many of the transfor-
mations found in prior work (Gardner et al., 2020;

Ross et al., 2021b; Min et al., 2020b), but RGF is
able to achieve these without the use of heuristic
transformations or structured meaning representa-
tions. As shown in Figure 2, the types of relations
are semantically rich and cover attributes relevant
to each particular instance that would be difficult
to capture with a globally-specified schema.

S Data Augmentation

Unlike many counterfactual generation methods,
RGF natively creates fully-labeled (¢', ¢, a’) exam-
ples which can be used directly for counterfactual
data augmentation (CDA). We augment the origi-
nal NQ training set with additional examples from
RGEF, shuffling all examples in training. We explore
two experimental settings, reading comprehension
(§5.2) and open-domain QA (§5.3), and compare
RGF-augmented models to those trained only on
NQ, as well as to alternative baselines for synthetic
data generation. Additional training details for all
models and baselines are included in Appendix A.

5.1 Baselines

In the abstract, our model for generating counterfac-
tuals specifies a way of selecting contexts ¢’ from
original questions, and answers a’ within those
contexts, and a way of a generating questions ¢’
from them. RGF uses a retrieval model to identify
relevant contexts; here, we experiment with two
baselines that use alternate ways to select c’.

Random Passage (Rand. Agen-Qgen) Here, ¢/
is arandomly chosen paragraph from the Wikipedia
index, with no explicit relation with the original
question. This setting simulates generation from
the original data distribution of Natural Questions.
To ensure that the random sampling of Wikipedia
paragraphs has a similar distribution, we employ
the learned passage selection model from Lewis



Exact Match (RC)

| TrainSize | NQ | SQuAD | TriviaQA | HotpotQA | BioASQ | AQA | AmbigQA

Original NQ 90K 70.40 | 80.22 14.69 51.03 3730 | 2630 | 4655
Gold Agen-Qgen | 90K +90K | 70.60 | 74.64 13.24 45.59 3198 | 2050 | 4345
Rand. Agen-Qgen | 90K + 90K | 71.08 | 76.78 13.87 45.26 33.64 | 2250 | 42.04
RGF (REALM-Qgen) | 90K + 90K | 70.68 | 79.88 1699 | 5341 | 44.88 | 2820 | 47.61

Table 3: Exact Match results for the reading comprehension task for in-domain NQ development set, out-of-
domain datasets from MRQA 2019 Challenge (Fisch et al., 2019), Adversarial QA (Bartolo et al., 2020) and
AmbigQA (Min et al., 2020b). RGF improves out-of-domain and challenge-set performance compared to other

data augmentation baselines.

et al. (2021),> which was also used by Bartolo
et al. (2021) in their closely related work on (non-
counterfactual) data augmentation for the SQuUAD
dataset (Rajpurkar et al., 2016).

Gold Context (Gold Agen-Qgen) Here, ¢’ is the
passage c containing the original short answer a
from the NQ training set. This baseline specifically
ablates the retrieval component of RGF, testing
whether the use of alternate passages leads to more
diversity in the resulting counterfactual questions.

Answer Generation for Baselines For both the
above baselines for context selection, we select
spans in the new passage that are likely to be an-
swers for a potential counterfactual question. We
use a TS5 (Raffel et al., 2020) model fine-tuned for
question-independent answer selection ¢ — a on
NQ, and select the top 15 candidates from beam
search. To avoid simply repeating the original ques-
tion, we only retain answer candidates a’ which do
not match the original NQ answers a for that exam-
ple. These alternate generated answer candidates
and associated passages are then used for question
generation and filtering as in RGF (§3.3).

5.2 Reading Comprehension (RC)

In the reading comprehension (RC) setting, the in-
put consists of the question and context and the task
is to identify an answer span in the context. Thus,
we augment training with full triples (¢/, ¢/, a’) con-
sisting of the retrieved passage ¢/, generated and
filtered question ¢/, and alternate answer a’.

Experimental Setting We finetune a TS5 (Raf-
fel et al., 2020) model for reading comprehension,
with input consisting of the question prepended to
the context. We evaluate domain generalisation of
our RC models on three evaluation sets from the
MRQA 2019 Challenge (Fisch et al., 2019). We

Shttps://github.com/facebookresearch/
PAQ

also measure performance on evaluation sets con-
sisting of counterfactual or perturbed versions of
RC datasets on Wikipedia, including SQuAD (Ra-
jpurkar et al., 2016), AQA (adversarially-generated
SQuAD questions; Bartolo et al., 2020), and human
authored counterfactual examples (contrast sets;
Gardner et al., 2020) from the QUOREF dataset
(Dasigi et al., 2019). We also evaluate on the set
of disambiguated queries in AmbigQA (Min et al.,
2020b), which by construction are minimal edits to
queries from the original NQ.

Results We report exact-match scores in Table 3;
F1 scores follow a similar trend. We observe
only limited improvements on the in-domain NQ
development set, but we see significant improve-
ments from CDA with RGF data in out-of-domain
and challenge-set evaluations compared both to
the original NQ model and the Gold and Random
baselines. RGF improves by 1-2 EM points on
most challenge sets, and up to 7 EM points on
the BioASQ set compared to training on NQ only,
while baselines often underperform the NQ-only
model on these sets. Note that all three augmen-
tation methods have similar proportion of noise
(Appendix B), so CDA’s benefits may be attributed
to improving model’s ability to learn more robust
features for the task of reading comprehension and
reduce reliance on spurious correlations. RGF’s
superior performance compared to the Gold Agen-
Qgen baseline is especially interesting, since the
latter also generates topically related questions. We
observe that filtered RGF counterfactuals are more
closely related to the original question compared
to this baseline (Figure 5 in Appendix C), since
q' is derived from a near-miss candidate (¢, a’) to
answer the original ¢ (S3.1).

5.3 Open-Domain Question Answering (OD)

In the open-domain (OD) setting, only the question
is provided as input. The pair (¢’,a’), consisting
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Exact Match (OD)

| TrainSize | NQ | TriviaQA | AmbigQA | SQuAD v1.0 | TREC

Original 90K 37.65 | 26.75 22.43 14.25 31.93

Gold Agen-Qgen | 90K +90K | 37.86 | 27.02 23.65 15.01 32.94
Rand. Agen-Qgen | 90K + 90K | 37.45 | 29.87 24.13 14.55 26.89
RGF (REALM-Qgen) | 90K + 90K | 39.11 | 3232 | 2698 | 1694 | 33.61

Table 4: Exact Match results on open-domain QA datasets (TriviaQA, AmbigQA, SQuAD and TREC) for data
augmentation with RGF counterfactuals and baselines. Open-domain improvements are larger than in the RC
setting, perhaps as the more difficult task benefits more from additional data.

of generated and filtered question ¢’ and alternate
answer d/, is used for augmentation. Compared to
the RC setting where passages change as well, here
the edit distance filtering of §3.4 ensures the aug-
mentation data represents minimal perturbations.

Experimental Setting We use the method and
implementation from Guu et al. (2020) to finetune
REALM on (g, a) pairs from NQ. End-to-end train-
ing of REALM updates both the reader model and
the query-document encoders of the retriever mod-
ule. We evaluate domain generalization on pop-
ular open-domain benchmarks: TriviaQA (Joshi
etal., 2017), SQuAD (Rajpurkar et al., 2016), Cu-
rated TREC dataset (Min et al., 2021), and dis-
ambiguated queries from AmbigQA (Min et al.,
2020b).

Results In the open-domain setting, we observe
an improvement of 2 EM points over the original
model even in the in-domain setting on Natural
Questions (Table 4), while also improving signifi-
cantly when compared to other data augmentation
techniques. RGF improves over the next best base-
line — Random Agen-Qgen — by up to 6 EM
points (for TriviaQA). We hypothesize that data
augmentation has more benefit in this setting, as
the open-domain task is more difficult than read-
ing comprehension, and counterfactual queries may
help the model learn better query and document
representations to improve retrieval.

6 Analysis

To better understand how CDA improves the model,
we introduce a measure of local consistency (§6.1)
to measure model robustness, and perform a strat-
ified analysis (§6.2) to show the benefits of the
semantic diversity available from RGF.

6.1 Local Robustness

Compared to synthetic data methods such as PAQ
(Lewis et al., 2021), RGF generates counterfactual

examples that are paired with the original inputs
and concentrated in local neighborhoods around
them (Figure 2). As such, we hypothesize that
augmentation with this data should specifically im-
prove local consistency, i.e. how the model behaves
under small perturbations of the input.

Experimental Setting We explicitly measure
how well a model’s local behavior respects per-
turbations to input. Specifically, if a model f :
(g,¢) — a correctly answers g, how often does
it also correctly answer ¢’? We define pairwise
consistency as accuracy over the counterfactuals
(¢',d, ), conditioned on correct predictions for
the original examples:

(C(D) = ED{f(q,a Cl) =a ‘ f(qa C) = CL]

To measure consistency, we construct val-
idation sets consisting of paired examples
(q,c,a),(q,c,a’): one original, and one counter-
factual. We use QED to categorize our data, as
described in §3.5. Specifically, we create two types
of pairs: (a) a change in reference where question
predicate remains fixed, and (b) a change in predi-
cate, where the original reference(s) are preserved.*
We create a clean evaluation set by first selecting
RGF examples for predicate or reference change,
then manually filtering the data to discard incorrect
triples (§4) until we have 1000 evaluation pairs of
each type (see Appendix B).

We also construct paired versions of AQA, Am-
bigQA, and the QUOREEF contrast set. For Am-
bigQA, we pair two disambiguated questions and
for the QUOREEF contrast set, we pair original and
human-authored counterfactuals. AQA consists of
human-authored adversarial questions ¢’ which are
not explicitly paired with original questions; we
create pairs by randomly selecting an original ques-
tion ¢ and a generated question ¢’ from the same
passage.

*We require that the new reference set is a superset of

the original, since predicate changes can introduce additional
reference slots (see CF2 in Table 1).



Consistency (RC) | TrainSize | AQA | AmbigQA | QUOREF-C | RGF (A Ref) | RGF (A Pred)
Original NQ 90K 58.47 46.67 39.66 64.57 51.50
Gold Agen-Qgen 90K + 90K | 59.27 50.23 42.83 44.62 38.10
Rand. Agen-Qgen 90K + 90K | 5545 49.06 41.93 60.77 48.53
RGF (REALM-Qgen) ‘ 90K + 90K ‘ 63.29 ‘ 51.61 ‘ 46.42 ‘ 76.36 ‘ 64.98

Effect of Perturbation Type

RGF A Ref. 90K + 52K | 62.55 53.85 41.34 80.10 62.33
RGF A Pred. 90K + 52K | 64.10 47.45 44.25 74.96 64.08

Table 5: Results for pairwise consistency (§6.1) on reading comprehension, measured for datasets containing pairs
of very similar questions. QUOREF-C refers to the QUOREEF contrast set from (Gardner et al., 2020). RGF leads
to better consistency in RC and open-domain settings (Appendix C.2). Results on effect of perturbation type during
training (A Ref. and A Pred.) suggest that perturbation-bias does not degrade consistency over the original model.

Results Training with RGF data improves consis-
tency by 12-14 points on the QED-filtered slices of
RGF data, and 5-7 points on AQA, AmbigQA and
QUOREEF contrast (Table 5). The Gold Agen-Qgen
baseline (which contains topically related queries
about the same passage) also improves consistency
over the original model compared to the Random
Agen-Qgen baseline. Consistency improvements
on AQA, AmbigQA and QUOREEF are especially
noteworthy, since they suggest an improvement in
robustness to local perturbations that is indepen-
dent of other confounding distributional similarities
between training and evaluation data.

6.2 Effect of Perturbation Type

QED-based decomposition of queries allows for the
creation of label-changing counterfactuals along
orthogonal dimensions — a change of reference or
predicate. We investigate whether training towards
one type of change induces generalization bias, a
detrimental effect which has been found in tasks
like NLI (Joshi and He, 2021).

Experimental Setting We shard training exam-
ples into two categories based on whether ¢ and ¢/
have the same reference (predicate change) or same
predicate (reference change), as defined in §3.5.
We over-generate by starting with 20 (¢/,c,d’)
for each original training example to ensure that
we find at least one ¢’ that matches the criterion.
We similarly evaluate on the paired evaluation sets
from §6.1.

Results Results are shown for QED-filtered train-
ing in Table 5. Counterfactual perturbation of a
specific kind (a predicate or a reference change)
during augmentation does not hurt performance on
another perturbation type compared to the baseline
NQ model, which differs from the observations of

Joshi and He (2021) on NLI. Furthermore, similar
to the observations of Min et al. (2020a), augment-
ing with one type of perturbation has orthogonal
benefits that improve model generalization on an-
other perturbation type: augmenting with RGF (A
Pred.) leads to significant improvement on RGF
(A Ref.), and vice-versa. Overall, we observe that
augmenting with predicate-change examples leads
to greater improvements in local consistency com-
pared to reference-change examples, except for on
RGF (A Ref.) and on AmbigQA which contains a
disproportionate number of reference-change pairs.
Predicate-change examples may be more informa-
tive to the model, as reference changes can be mod-
eled more easily by lexical matching within com-
mon context patterns.

7 Conclusion

Retrieve-Generate-Filter (RGF) creates counterfac-
tual examples for question-answering which are
semantically diverse, using knowledge from the
passage context and a retrieval model to capture
semantic changes that would be difficult to specify
a priori with a global schema. The resulting ex-
amples are fully-labeled, and can be used directly
for training augmentation or filtered using heuris-
tics or meaning representations for analysis. We
show that training with this data leads to improve-
ments on open-domain QA, as well as on challenge
sets, and leads to significant improvements in lo-
cal robustness. While in this paper we focus on
question answering, a task for which retrieval com-
ponents are readily available, we note that the RGF
paradigm is quite general and could potentially be
applied to many other tasks with suitable choice of
context and retrieval system.
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A Model Training and Implementation
Details

Below, we describe the details of different models
trained in the RGF pipeline. For all T5 models, we
use the pre-trained checkpoints from Raffel et al.
(2020)°.

Question Generation We use a T5-3B model
fine-tuned on Natural Questions (NQ) dataset. We
only train on the portion of the dataset that consists
of gold short answers and an accompanying long
answer evidence paragraph from Wikipedia. The
input consists of the title of the Wikipedia article
the passage is taken from, a separator (‘»’) and
the passage. The short answer is enclosed in the
passage using character sequences ‘« answer =’
and ‘»’ on left and right respectively. The output
is the original NQ question. The input and output
sequence lengths are restricted to be 640 and 256
respectively. We train the model for 20k steps with
a learning rate of 2 - 10~°, dropout 0.1, and batch
size of 128. We decode with a beam size of 15, and
take the top candidate as our generated question ¢’.

Answer Generation We use a T5-3B model
trained on the same subset of Natural Questions
(NQ) as question generation with same set of hyper-
parameters and model size described above. The
input consists of the title of the Wikipedia article
the passage is taken from, a separator (‘»’) and
the passage, while the output sequence is the short
answer from NQ.

Reading Comprehension Model We model the
task of span selection-based reading comprehen-
sion, i.e. identifying an answer span given question
and passage, as a sequence-to-sequence problem.
Input consists of the question, separator (‘»’), and
title of Wikipedia article, separator (‘»’) and pas-
sage. The answer format is simply one of the gold
answer strings. The reading comprehension model
is a T5-large model trained with batch size of 512
and learning rate 2 - 10~ for 20K steps.

Open-domain Question Answering model
The open domain QA model is based on the
implementation from (Lee et al., 2019), and
initialized with the REALM checkpoint from (Guu
et al., 2020)%. Both the retriever and reader are
Shttps://github.com/google-research/

text-to-text-transfer-transformer#
released-model-checkpoints

®https://github.com/google-research/
language/tree/master/language/realm
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initialized from the BERT-base-uncased model.
The query and document representations are 128
dimensional vectors. When finetuning, we use a
learning rate of 10~ and a batch size of 1 on a
single Nvidia V100 GPU. We perform 2 epochs of
fine-tuning for Natural Questions.

Noise Filtering We train 6 reading comprehen-
sion models based on the configurations above
with different seed values for randomizing train-
ing dataset shuffling and optimizer initialization.
We retain examples where more than 5 out of 6
models have the same answer for a question.

QED Training We use a T5-large model fine-
tuned on the Natural Questions subset with QED
annotations (Lamm et al., 2021).” We refer the
reader to the QED paper for details on the lineariza-
tion of explanations and inputs in the T5 model.
Our model is fine-tuned with batch size of 512 and
learning rate 2 - 10~* for 20k steps.

B Evaluation of Fluency and Noise

The authors sampled 300 examples of generated
questions. To annotate for fluency, authors use
the following rubric: Is the generated question
grammatically well-formed barring non-standard
spelling and capitalization of named entities. This
noise annotation was done for RGF, as well as Gold
Agen-Qgen and Random Agen-Qgen.

Data ‘ Unfiltered ‘ Filtered

RGF 29.8% 25.3%

Gold Agen-Qgen 27.9% 20.7%
Random Agen-Qgen 30.7% 28.3%

Table 6: Fraction of noise (incorrect (¢, ¢/, a’)) in gen-
erated data, from 300 examples manually annotated by
the authors.

Creation of paired data for counterfactual eval-
uation Once again, authors annotate for cor-
rectness of counterfactual RGF instances that are
paired by reference or predicate, as described in
§3.5. Filtering is done until 1000 examples are
available under each category.


https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints
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https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints
https://github.com/google-research/language/tree/master/language/realm
https://github.com/google-research/language/tree/master/language/realm

Dataset Type

NQ Passage RGF Random Wiki Passage

35,000
30,000+
25,000+
20,000+

15,000+

Count of Records

10,000+

5,000

D,
1.0 50 9.0 13.0 170 21.0 25.0 29.0 33.0 37.0

Edit Distance (binned)

Figure 3: Distribution of edit distance between origi-
nal ¢ and counterfactual ¢’ for RGF and other baselines
for context selection. Note: For Random Wiki Pass-
sage, original and generated questions bear no relation
to each other and are randomly paired.

C Additional Experiments

C.1 Intrinsic Evaluation

In Figure 3, we compare distributions of the edit
distance between the original and generated ques-
tions for questions generated by our approach,
those generated with the gold evidence passage,
and those generated from a random Wikipedia
passage (§5). We find that RGF counterfactuals
undergo minimal perturbations from the original
question compared to questions that are generated
from random Wikipedia paragraph. Surprisingly,
this pattern also holds when compared to questions
generated from gold NQ passages. We hypothe-
size that the set of alternate answers retrieved in
our pipeline approach are semantically similar to
the gold answer — same entity type, for instance.
Random answer spans chosen from the gold NQO
passage can result in significant semantic shifts in
generated questions.

In Figure 4, we measure the relation between re-
trieval rank and edit-distance for RGF. For retrieval
rank i, we plot average edit distance between the
original question and counterfactual question that
was generated using the ith passage and answer.
We observe a monotonic relation between retrieval
rank and edit distance (which we use for filtering
our training data). We measure changes in the dis-
tribution of question type and predicate type.

Figure 5 indicates that counterfactual data ex-

"https://github.com/
google—research-datasets/QED
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Figure 4: Plot of average edit distance between ¢, ¢
vs. retrieval rank 7, where ¢ is generated from 7 pas-
sage, showing that edit distance and retrieval rank are
monotonically related.
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Figure 5: Distribution of top 20 question types for orig-
inal NQ data, RGF counterfactuals and questions gen-
erated from random Wikipedia passage, indicating bias
towards popular question types.

acerbates question-type bias. However, this bias
exists in RGF as well as baselines.

C.2 Consistency for Open-Domain QA

In Table 7, we show results on evaluating consis-
tency on paired datasets in the open-domain results,
similar to the results shown in §6.1 in the Reading
Comprehension setting.

C.3 Low-resource Transfer

Joshi and He (2021) show CDA to be most effective
in the low-resource regime. To better understand
the role that dataset size plays in CDA in the read-
ing comprehension setting, we evaluate RGF in a
cross-domain setting where only a small amount of
training data is available.

Experimental Setting Since our approach de-
pends on using an open-domain QA model and
a question generation model trained on all Natural


https://github.com/google-research-datasets/QED
https://github.com/google-research-datasets/QED

Consistency (OD) | Train Size | AQA | AmbigQA | RGF A Ref. | RGF A Pred.

Original NQ 90K 16.58
Random Agen-Qgen | 90K + 90K | 15.80
RGF (REALM-Qgen) | 90K + 90K | 17.66

13.33 25.12 11.23
20.00 27.94 17.16
28.57 31.77 19.81

Table 7: Consistency Results for Open-domain QA.

Training Data | Train Size BioASQ (Dev)
F1 EM
Original 1000 4293  23.67
Orig. + RGF 500 + 500 41.72  23.01
Original 2000 45.88 25.80
Orig. + RGF 1000 + 1000 | 44.64 26.80

Table 8: Results on the reading comprehension task
for Low Resource Transfer setting on BioASQ 2019
dataset. A model trained on 1000 gold BioASQ plus
1000 RGF examples performs nearly as well as a model
trained on 2000 gold examples.

Questions data, we instead experiment with a low-
resource transfer setting on the BioASQ domain,
which consists of questions on the biomedical do-
main. We use the domain-targeted retrieval model
from (Ma et al., 2021), where synthetic question-
passage relevance pairs generated over the PubMed
corpus are used to train domain-specific retrieval
without any in-domain supervision. We further fine-
tune the question generation model trained on NQ
on the limited amount of in-domain data, and use
a checkpoint trained on NQ as an initialization to
fine-tune the RC model for in-domain data. Details
of our training approach for low-resource transfer
can be found in Appendix A.

Results We observe significant improvements
over the baseline model in the low resource setting
for in-domain data (< 2000 examples), as shown in
Table 8. Compared with the limited gains we see
on the relatively high-resource NQ reading compre-
hension task, we find that on BioASQ, CDA with
1000 examples improves performance by 2% F1
and 3% exact match, performing nearly as well as
a model trained on 2000 gold examples.

C.4 Effect of perturbation type

Experimental Setting For edit distance-based
experiments, we shard training examples into three
categories by binning word-level edit distance be-
tween ¢ and ¢ into three ranges: 1-4, 5-10, and
> 10. We similarly categorize RGF data gener-
ated for the NQ development set into the same
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Consistency (RC) | Val1-4 | Val 5-10 | Val>10

Train 1-4 71.02 67.55 64.78
Train 5-10 68.89 68.98 63.92
Train >10 65.78 66.33 65.33
Train All 72.34 67.82 65.12

Table 9: Results on sharding training data based on edit
distance between (g, ¢'). Training dataset size for each
bin is 90k NQ + 167k generated. Once again, training
with all RGF data robustly improves consistency across
different amounts of perturbations.

categories. Evaluation sets for edit-distance experi-
ments based were not manually noise filtered. We
again report consistency on the reading comprehen-
sion model.

Results Similar to the observations for dataset
sharding along QED annotations, when data is
sharded by edit distance, we observe that using
the full RGF data nearly matches the best perfor-
mance from training on that shard, suggesting that
CDA with the highly diverse RGF data can lead to
improved consistency on a broad range of pertur-
bation types.



D Semantic Diversity

Figure 6 includes more examples from Natural Questions, showing the counterfactual questions generated
for different input questions by RGF.

what's the population of
what is the population of walnut grove washington? what is the population of apple
walnut grove bc ? T valley minnesota ?
State Town
Country Nalme Name

what's the population of
walnut grove minnesota?

Population
. based lhow many students at walnut grove
Locative |
. (Predicate Misc secondary school ?
where 1slwalx?ut grove what percentage of walnut grove
located in minnesota ? Change)

is below the poverty line ?

how long has the walnut twig beetle
been in california ?

here was the nursing home that caught
on fire ?

when did mother's day
when was mother's day first become a holiday where was the first mother's day
celebrated in czech republic? T held

Status Locative
Country

origin of mother's day
in the u.s.

Agent

Who is considered the founder of

when did father's day Gender, Misc mother's day

start in u.s.?

What is the traditional flower for
mother's day

What event was honored at the first recorded
mother's day in the united states?

Figure 6: Context-specific semantic diversity of perturbations achieved by RGF on an NQ Question. The multiple
latent semantic dimensions identified (arrows in the diagram) fall out of our retrieval-guided approach.

15



