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Abstract

The success of multilingual pre-trained mod-
els in transferring knowledge cross-lingually
is underpinned by their ability to learn repre-
sentations shared by multiple languages even
in absence of any explicit supervision. How-
ever, it remains unclear how. In this work, we
conjecture that multilingual pre-trained mod-
els can derive language-universal abstractions
about grammar. In particular, we investigate
whether morphosyntactic information is en-
coded in the same subset of neurons in differ-
ent languages. We conduct the first large-scale
empirical study over 43 typologically diverse
languages and 14 morphosyntactic categories
with a state-of-the-art neuron-level probe. Our
findings show that the cross-lingual overlap
between neurons is significant, but its extent
may vary across categories and depends on lan-
guage proximity and pretraining data size.

1 Introduction

Massively multilingual pre-trained models (Devlin
et al., 2019; Conneau et al., 2020; Liu et al., 2020;
Xue et al., 2021, inter alia) display an impressive
ability to transfer knowledge between languages
and perform zero-shot inference (Pires et al., 2019;
Wu and Dredze, 2019). Nevertheless, it remains
unclear how pre-trained models learn multilingual
representations despite the lack of an explicit signal
through parallel texts. While some speculate that
overlap in sub-words plays a key role in this process
(Wu and Dredze, 2019; Cao et al., 2020), Artetxe
et al. (2020) provide contrary evidence.

In this work, we conjecture that multilingual
representations are facilitated by the fact that—in
addition to lexical alignment (Pires et al., 2019;
Vuli¢ et al., 2020)—the neurons dedicated to spe-
cific morphosyntactic categories (such as gender
for nouns and mood for verbs) are shared across
languages.! We validate this hypothesis empiri-

!Concurrent work by Antverg and Belinkov (2021) sug-
gests a similar hypothesis based on smaller-scale experiments.
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Figure 1: Percentages of neurons most associated with
a particular morphosyntactic category that overlap be-
tween pairs of languages. Colours in the plot refer to 2
models: m-BERT (red) and XLM-R-base (blue).

cally by probing 3 multilingual pre-trained models,
m-BERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020) base and large, for morphosyn-
tactic information in 43 typologically diverse lan-
guages from Universal Dependencies (Nivre et al.,
2017). In particular, we use the state-of-the-art
intrinsic probe of Anonymous (2021) inspired by
Torroba Hennigen et al. (2020), which can iden-
tify small subsets of neurons in a representation
that jointly encode morphosyntactic information.
We collect compelling evidence that, while trained
independently, these probes find similar neuron
subsets in multiple languages.

Moreover, we discover that language pairs with
high proximity (in the same genus or with similar
typological features) and with large amounts of
pretraining data tend to exhibit more overlap. In
addition, more neurons are shared in models with
less parameters and for morphosyntactic categories
with a small inventory of possible values.

2 Background

First, we must determine which neurons in a model
representation encode a particular linguistic prop-



erty, which is known as intrinsic probing (Dalvi
et al., 2019). In particular, we adopt the method-
ology of Torroba Hennigen et al. (2020), where
we aim to find a subset of k neurons C* C D =
{1,...,d}, where d is the total number of dimen-
sions in the representation being probed, that jointly
maximise some performance measure S

C* = argmax S(C) (D
cco,
|Cl=k

Following Torroba Hennigen et al. (2020), we
choose the log-likelihood of a probe evaluated on
held out data as S, and solve the objective in Eq. (1)
by greedy selection.

Even with greedy selection, however, the objec-
tive in Eq. (1) is intractable. This is because this
procedure would require training a separate probe
for every different subset of dimensions under con-
sideration, which means #’_k), times. To address
this, we resort to the probe of Anonymous (2021),
which can be trained once and yields a parameteri-
sation that works well regardless of which subset of
features is being evaluated. Furthermore, Anony-
mous (2021) find that this approach outperforms
previous intrinsic probes from Torroba Hennigen
et al. (2020) and Dalvi et al. (2019).

Anonymous (2021) achieve this by sampling
random dimensions during training as a regular-
isation. More formally, let IT be the inventory
of values that some morphosyntactic category
can take in a particular language, for example
IT = {FEMININE, MASCULINE, NEUTRAL} for
grammatical gender in Russian. Moreover, let
D = {(#™, h™)}N_ be a dataset of labelled
embeddings such that 7(®) € II and h(™ € RY,
where d is the dimensionality of the representa-
tion being considered, e.g., d = 768 for m-BERT.
Anonymous (2021) observe that marginalising over
subsets of informative neurons C, one can derive
an expression for the log-likelihood of a neural
model with parameters 6

N
L(0) = logpe(x™ | A™) 2)
n=1
N
=Y tog 3 po (= | B, C) p(C)
n=1 CCD

where we opt for an (uninformative) uniform prior
p(C), similarly to Anonymous (2021). This ob-
jective is still intractable due to the sum over 2%

subsets of dimensions. Hence, we optimise the
variational lower bound (ELBo) of Eq. (2) instead.
In particular, we introduce a variational distribution
¢¢(C') over subsets of neurons

N
£(o) =Y log > po(r™.C 1AM} )

=1  CCD
N

- () | B

> ;(CINE% [10gp9(7f ,Clh )} +H(Q¢)>

where 7{(-) stands for the entropy of a distribu-
tion. The full derivation of Eq. (3) is provided in
App. A. For this paper, we chose gg(-) to corre-
spond to a Poisson sampling scheme (Héjek, 1964),
where subsets of dimensions are sampled by sub-
jecting each dimension to an independent Bernoulli
trial. The variational parameters ¢ correspond to
the unnormalised probability of sampling a particu-
lar dimension.?

3 Method

In our work, we learn distinct intrinsic probes for
43 languages and for 14 categories as described in
§2. Then we assess whether the neuron overlaps
between languages are statistically significant.

Data. We select 43 treebanks from Universal De-
pendencies 2.1 (UD; Nivre et al., 2017), which
contain sentences annotated with morphosyntactic
information in a wide array of languages. After-
wards, we compute contextual representations for
every individual word in the treebanks using mul-
tilingual BERT (m-BERT) and the base and large
versions of XLM-RoBERTa (XLM-R-base and
XLM-R-large). We then associate each word with
its parts of speech and morphosyntactic features,
which are mapped to the UniMorph schema (Kirov
et al., 2018).> The selected treebanks include all
languages supported by both BERT and XLM-R
which are available in UD.

Rather than adopting the default UD splits, we
re-split word representations based on lemmata
ending up with disjoint vocabularies for the train,
development, and test set. This prevents a probe
from achieving high performance by sheer memo-
rising. Moreover, for every category—language pair
(e.g., mood—Czech), we discard any lemma with
fewer than 20 tokens in its split.

“We opt for this sampling scheme as Anonymous (2021)
found that it is more computationally efficient than conditional

Poisson while achieving a comparable performance.
3We use the converter from McCarthy et al. (2018).
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Figure 2: The percentage overlap between the top-50
most informative number dimensions in m-BERT for
number. Statistically significant overlap is marked with
an orange square.

Experimental Setup. We first train a probe for
each morphosyntactic category—language combina-
tion with the objective in Eq. (3). In line with estab-
lished practices in probing, we parameterise pg(-)
as a linear layer followed by a softmax. Afterwards,
we identify the top-%k most informative neurons in
the last layer of m-BERT, XLM-R-base, and XLM-
R-large. Specifically, following Torroba Hennigen
et al. (2020), we use the log-likelihood of the probe
on the test set as our greedy selection criterion.
Thus, we single out 50 dimensions for each combi-
nation of morphosyntactic category and language.

Next, we measure the pairwise overlap in the top-
k most informative dimensions between all pair of
languages where a morphosyntactic category is ex-
pressed. This results in matrices such as Fig. 2,
where the pair-wise percentages of overlapping di-
mensions is visualised as a heat map.

Statistical Significance. Suppose that two lan-
guages have m = {1,..., k} overlapping neurons
when considering the top-k selected neurons for
each of them. To determine whether such overlap
is statistically significant, we compute the proba-
bility of an overlap of at least m neurons under
the null hypothesis that the sets of neurons are
sampled independently at random. We estimate
these probabilities with a permutation test. In this
paper, we set a threshold of o = 0.05 for signif-
icance. Finally, we use Holm-Bonferroni (Holm,
1979) family-wise error correction as detailed in
App. C. Hence, our threshold is appropriately ad-
justed for multiple comparisons, which makes in-
correctly rejecting the null hypothesis more likely.
For instance, in Fig. 2, statistically significant pairs
are marked with an orange square.
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Figure 3: Mean percentage of neuron overlap in XLM-
R-base with languages either within or outside the same
genus for each morphosyntactic category.

4 Results

We begin by analysing our claim that multilingual
pre-trained models develop a cross-lingually entan-
gled notion of morphosyntax. The matrices of pair-
wise overlaps for each of the 14 categories, such
as Fig. 2 for number, are reported in App. E. We
condense these results in two distinct ways. First,
we report the cross-lingual distribution for each cat-
egory in in Fig. 1 for m-BERT and XLM-R-base.*
Moreover, we calculate how many overlaps are
statistically significant out of the total number of
pairwise comparisons in Tab. 1. From these figures,
it emerges that around 20% of neurons among the
top-50 most informative ones overlap on average,
but the number of statistically significant ones may
vary dramatically across categories.

Morphosyntactic Categories. Based on Tab. 1,
significant overlap is particularly accentuated in
specific categories, such as comparison, polarity,
and number. However, neurons for other categories
such as mood, aspect, and case are shared by only
a handful of language pairs despite the high num-
ber of comparisons. This finding may be partially
explained by the different number of values each
category can take. Hence, we test whether there
is a correlation between this number and average
cross-lingual overlap in Fig. 4a. As expected, we
generally find negative correlation coefficients—
prominent exceptions being number and person.
As the inventory of values of a category grows,
cross-lingual alignment becomes harder.

Language Proximity. Moreover, we investigate
whether language proximity, in terms of both lan-

* An equivalent plot comparing XLM-R-base and XLM-R-
large is available in Fig. 5.



Figure 4: Spearman’s correlation, for a given model
and morphological category, between the cross-lingual
average percentage of overlapping neurons and:
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(c) language model training data size.

guage family and typological features, bears any
relationship with the neuron overlap for any partic-
ular pair. In Fig. 3, we plot pairwise similarities
with languages within the same genus (e.g., Baltic)
against those outside. From the distribution of the
dots, we can extrapolate than sharing of neurons is
more likely to occur between languages in the same
genus. This is further corroborated by the language
groupings emerging in the matrices of App. E.

In Fig. 4b, we also measure the correlation be-
tween neuron overlap and similarity of syntactic
typological features based on Littell et al. (2017).
While correlation coefficients are mostly positive
(with the exception of polarity), we remark that the
patterns is strongly influenced by whether a cate-
gory is typical for a specific genus. For instance,
correlation is highest for animacy, a category al-
most exclusive to Slavic languages in our sample.

Pre-trained models. Afterwards, we determine
whether the 3 models under consideration reveal
different patterns. Comparing m-BERT and XLM-

R-base in Fig. 1, we find that, on average, XLM-R-
base tends to share more neurons when encoding
particular morphosyntactic attributes. Moreover,
comparing XLM-R-base to XLM-R-large in Fig. 5
suggests that more neurons are shared in the former
than in the latter. Altogether, these results seem to
suggest that the presence of additional training data
engenders cross-lingual entanglement, but increas-
ing model size incentivises morphosyntactic infor-
mation to be allocated to different subsets of neu-
rons. We conjecture that this may be best viewed
from the lens of compression: If model size is a
bottleneck, then, to attain good performance across
many languages, a model must learn cross-lingual
abstractions that can be reused.

Pre-training data size. Finally, we assess the ef-
fect of pre-training data size for neuron overlap in
every language. According to Fig. 4c, their corre-
lation is very high. We explain this phenomenon
with the fact that more data yields higher-quality
(and hence, more entangled) multilingual represen-
tations.

5 Conclusions

In this paper, we hypothesise that the ability of
multilingual models to generalise across languages
results from cross-lingually entangled representa-
tion, where the same subsets of neurons encode
universal morphosyntactic information. We vali-
date this claim with a large-scale empirical study on
43 typologically diverse languages and 3 models,
namely m-BERT, XLLM-R-base, and XLM-R-large.
Based on our empirical results, we conclude that
the overlap is statistically significant for a consid-
erable amount of language pairs. However, the
extent of the overlap varies remarkably across mor-
phosyntactic categories and tends to be lower for
categories with large inventories of possible val-
ues. Moreover, we found that neuron subsets are
shared mostly between languages in the same genus
or with similar typological features. Finally, we
discover that the overlap of each language grows
proportionally to its pre-training data size, but it
also decreases in larger model architectures.

In future work, artificially encouraging a tighter
neuron overlap might facilitate zero-shot cross-
lingual inference to low-resource and typologically
distant languages (Zhao et al., 2021).

SWe rely on the CC-100 statistics reported by Conneau

et al. (2020) for XLM-R and on the Wikipedia dataset’s size
with TensorFlow datasets (Abadi et al., 2015) for m-BERT.



References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, lan Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
giang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems.

Anonymous. 2021. A latent-variable model for intrin-
sic probing.

Omer Antverg and Yonatan Belinkov. 2021. On the
pitfalls of analyzing individual neurons in language
models.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2020. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 4623—4637, Online. Asso-
ciation for Computational Linguistics.

Steven Cao, Nikita Kitaev, and Dan Klein. 2020. Mul-
tilingual alignment of contextual word representa-
tions. In International Conference on Learning Rep-
resentations.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan
Belinkov, Anthony Bau, and James Glass. 2019.
What is one grain of sand in the desert? Analyz-
ing individual neurons in deep NLP models. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 33:6309-6317.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jaroslav Hajek. 1964. Asymptotic theory of rejective
sampling with varying probabilities from a finite

population. The Annals of Mathematical Statistics,
35(4):1491-1523.

Sture Holm. 1979. A simple sequentially rejective mul-

tiple test procedure. Scandinavian Journal of Statis-
tics, 6(2):65-70.

Christo Kirov, Ryan Cotterell, John Sylak-Glassman,

Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sabrina J. Mielke, Arya Mc-
Carthy, Sandra Kiibler, David Yarowsky, Jason FEis-
ner, and Mans Hulden. 2018. UniMorph 2.0: Uni-
versal morphology. In Proceedings of the Eleventh
International Conference on Language Resources
and Evaluation (LREC 2018), Miyazaki, Japan. Eu-
ropean Language Resources Association (ELRA).

Patrick Littell, David R. Mortensen, Ke Lin, Kather-

ine Kairis, Carlisle Turner, and Lori Levin. 2017.
URIEL and lang2vec: Representing languages as
typological, geographical, and phylogenetic vectors.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 8-14,
Valencia, Spain. Association for Computational Lin-
guistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey

Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-

tics, 8:726-742.

Arya D. McCarthy, Miikka Silfverberg, Ryan Cotterell,

Mans Hulden, and David Yarowsky. 2018. Marry-
ing universal dependencies and universal morphol-
ogy. In Proceedings of the Second Workshop on Uni-
versal Dependencies (UDW 2018), pages 91-101,
Brussels, Belgium. Association for Computational
Linguistics.

Joakim Nivre, Zeljko Agié, Lars Ahrenberg, Lene

Antonsen, Maria Jesus Aranzabe, Masayuki Asa-
hara, Luma Ateyah, Mohammed Attia, Aitziber
Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Miguel Ballesteros, Esha Banerjee, Sebastian Bank,
Verginica Barbu Mititelu, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick, Victo-
ria Bobicev, Carl Borstell, Cristina Bosco, Gosse
Bouma, Sam Bowman, Aljoscha Burchardt, Marie
Candito, Gauthier Caron, Giilsen Cebiroglu Ery-
igit, Giuseppe G. A. Celano, Savas Cetin, Fabri-
cio Chalub, Jinho Choi, Silvie Cinkovd, Cagr1 Col-
tekin, Miriam Connor, Elizabeth Davidson, Marie-
Catherine de Marneffe, Valeria de Paiva, Arantza
Diaz de Ilarraza, Peter Dirix, Kaja Dobrovoljc,
Timothy Dozat, Kira Droganova, Puneet Dwivedi,
Marhaba Eli, Ali Elkahky, Tomaz Erjavec, Richard
Farkas, Hector Fernandez Alcalde, Jennifer Fos-
ter, Claudia Freitas, Katarina GajdoSovd, Daniel
Galbraith, Marcos Garcia, Moa Girdenfors, Kim
Gerdes, Filip Ginter, Iakes Goenaga, Koldo Go-
jenola, Memduh Gokirmak, Yoav Goldberg, Xavier


https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://openreview.net/forum?id=eum8bkxrL_Z
https://openreview.net/forum?id=eum8bkxrL_Z
https://openreview.net/forum?id=eum8bkxrL_Z
http://arxiv.org/abs/2110.07483
http://arxiv.org/abs/2110.07483
http://arxiv.org/abs/2110.07483
http://arxiv.org/abs/2110.07483
http://arxiv.org/abs/2110.07483
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421
https://openreview.net/forum?id=r1xCMyBtPS
https://openreview.net/forum?id=r1xCMyBtPS
https://openreview.net/forum?id=r1xCMyBtPS
https://openreview.net/forum?id=r1xCMyBtPS
https://openreview.net/forum?id=r1xCMyBtPS
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.1609/aaai.v33i01.33016309
https://doi.org/10.1609/aaai.v33i01.33016309
https://doi.org/10.1609/aaai.v33i01.33016309
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/L18-1293
https://aclanthology.org/L18-1293
https://aclanthology.org/L18-1293
https://aclanthology.org/E17-2002
https://aclanthology.org/E17-2002
https://aclanthology.org/E17-2002
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.18653/v1/W18-6011
https://doi.org/10.18653/v1/W18-6011
https://doi.org/10.18653/v1/W18-6011
https://doi.org/10.18653/v1/W18-6011
https://doi.org/10.18653/v1/W18-6011

Goémez Guinovart, Berta Gonzales Saavedra, Ma-
tias Grioni, Normunds Gruzitis, Bruno Guillaume,
Nizar Habash, Jan Haji¢, Jan Haji€ jr., Linh Ha My,
Kim Harris, Dag Haug, Barbora Hladk4, Jaroslava
Hlavacova, Florinel Hociung, Petter Hohle, Radu
Ion, Elena Irimia, Tomas Jelinek, Anders Jo-
hannsen, Fredrik Jgrgensen, Hiiner Kagikara, Hi-
roshi Kanayama, Jenna Kanerva, Tolga Kayade-
len, Vaclava Kettnerova, Jesse Kirchner, Natalia
Kotsyba, Simon Krek, Veronika Laippala, Lorenzo
Lambertino, Tatiana Lando, John Lee, Phuong
Lé Héng, Alessandro Lenci, Saran Lertpradit, Her-
man Leung, Cheuk Ying Li, Josie Li, Keying
Li, Nikola Ljubesi¢, Olga Loginova, Olga Lya-
shevskaya, Teresa Lynn, Vivien Macketanz, Aibek
Makazhanov, Michael Mandl, Christopher Manning,
Catalina Maranduc, David Marecek, Katrin Marhei-
necke, Héctor Martinez Alonso, André Martins, Jan
Masek, Yuji Matsumoto, Ryan McDonald, Gustavo
Mendonga, Niko Miekka, Anna Missild, Catalin
Mititelu, Yusuke Miyao, Simonetta Montemagni,
Amir More, Laura Moreno Romero, Shinsuke Mori,
Bohdan Moskalevskyi, Kadri Muischnek, Kaili
Miiiirisep, Pinkey Nainwani, Anna Nedoluzhko,
Gunta NeSpore-Bérzkalne, Luong Nguyén Thi,
Huyén Nguyén Thi Minh, Vitaly Nikolaev, Hanna
Nurmi, Stina Ojala, Petya Osenova, Robert Ostling,
Lilja @vrelid, Elena Pascual, Marco Passarotti,
Cenel-Augusto Perez, Guy Perrier, Slav Petrov,
Jussi Piitulainen, Emily Pitler, Barbara Plank, Mar-
tin Popel, Lauma Pretkalnina, Prokopis Proko-
pidis, Tiina Puolakainen, Sampo Pyysalo, Alexandre
Rademaker, Loganathan Ramasamy, Taraka Rama,
Vinit Ravishankar, Livy Real, Siva Reddy, Georg
Rehm, Larissa Rinaldi, Laura Rituma, Mykhailo
Romanenko, Rudolf Rosa, Davide Rovati, Benoit
Sagot, Shadi Saleh, Tanja Samardzié¢, Manuela San-
guinetti, Baiba Saulite, Sebastian Schuster, Djamé
Seddah, Wolfgang Seeker, Mojgan Seraji, Mo Shen,
Atsuko Shimada, Dmitry Sichinava, Natalia Sil-
veira, Maria Simi, Radu Simionescu, Katalin Simko,
Miria Simkovd, Kiril Simov, Aaron Smith, Anto-
nio Stella, Milan Straka, Jana Strnadova, Alane
Suhr, Umut Sulubacak, Zsolt Szantd, Dima Taji,
Takaaki Tanaka, Trond Trosterud, Anna Trukhina,
Reut Tsarfaty, Francis Tyers, Sumire Uematsu,
Zdenka UreSova, Larraitz Uria, Hans Uszkoreit,
Sowmya Vajjala, Daniel van Niekerk, Gertjan van
Noord, Viktor Varga, Eric Villemonte de la Clerg-
erie, Veronika Vincze, Lars Wallin, Jonathan North
Washington, Mats Wirén, Tak-sum Wong, Zhuoran
Yu, Zdenék Zabokrtsk}’/, Amir Zeldes, Daniel Ze-
man, and Hanzhi Zhu. 2017. Universal dependen-
cies 2.1. LINDAT/CLARIAH-CZ digital library
at the Institute of Formal and Applied Linguis-
tics (UFAL), Faculty of Mathematics and Physics,
Charles University.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.

How multilingual is multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996—
5001, Florence, Italy. Association for Computa-

tional Linguistics.

Lucas Torroba Hennigen, Adina Williams, and Ryan
Cotterell. 2020. Intrinsic probing through dimen-
sion selection. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 197-216, Online. As-
sociation for Computational Linguistics.

Ivan Vuli¢, Edoardo Maria Ponti, Robert Litschko,
Goran Glava$, and Anna Korhonen. 2020. Probing
pretrained language models for lexical semantics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7222-7240, Online. Association for Computa-
tional Linguistics.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-1IJCNLP), pages
833-844, Hong Kong, China. Association for Com-
putational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mT5: A massively
multilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483-498, Online. Association for Computa-
tional Linguistics.

Wei Zhao, Steffen Eger, Johannes Bjerva, and Isabelle
Augenstein. 2021. Inducing language-agnostic mul-
tilingual representations. In Proceedings of *SEM
2021: The Tenth Joint Conference on Lexical and
Computational Semantics, pages 229-240, Online.
Association for Computational Linguistics.


http://hdl.handle.net/11234/1-2515
http://hdl.handle.net/11234/1-2515
http://hdl.handle.net/11234/1-2515
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.18653/v1/2020.emnlp-main.15
https://doi.org/10.18653/v1/2020.emnlp-main.15
https://doi.org/10.18653/v1/2020.emnlp-main.15
https://doi.org/10.18653/v1/2020.emnlp-main.586
https://doi.org/10.18653/v1/2020.emnlp-main.586
https://doi.org/10.18653/v1/2020.emnlp-main.586
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.starsem-1.22
https://doi.org/10.18653/v1/2021.starsem-1.22
https://doi.org/10.18653/v1/2021.starsem-1.22

A

Variational Lower Bound

The derivation of the variational lower bound is
shown below:
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Probed Property—Language Pairs

afr (Afrikaans): Part of Speech, Number,
Tense

ara (Arabic): Gender, Voice, Mood, Part of
Speech, Aspect, Person, Number, Case, Defi-
niteness

bel (Berlarusian): Part of Speech, Tense,
Number, Aspect, Finiteness, Voice, Gender,
Animacy, Case, Person

bul (Bulgarian): Part of Speech, Definite-
ness, Gender, Number, Mood, Tense, Person,
Voice, Comparison

cat (Catalan): Gender, Number, Part of
Speech, Tense, Mood, Person, Aspect

ces (Czech): Part of Speech, Number, Case,
Comparison, Gender, Mood, Person, Tense,
Aspect, Polarity, Animacy, Possession, Voice
dan (Danish): Part of Speech, Number, Gen-
der, Definiteness, Voice, Tense, Mood, Com-
parison

deu (German): Part of Speech, Case, Num-
ber, Tense, Person, Comparison

ell (Greek): Part of Speech, Case, Gender,
Number, Finiteness, Person, Tense, Aspect,
Mood, Voice, Comparison

eng (English): Part of Speech, Number,
Tense, Case, Comparison

est (Estonian): Part of Speech, Mood, Finite-
ness, Tense, Voice, Number, Person, Case
eus (Basque): Part of Speech, Case, Animacy,
Definiteness, Number, Argument Marking,
Aspect, Comparison

fas (Persian): Number, Part of Speech, Tense,
Person, Mood, Comparison

fin (Finnish): Part of Speech, Case, Num-
ber, Mood, Person, Voice, Tense, Possession,
Comparison

fra (French): Part of Speech, Number, Gen-
der, Tense, Mood, Person, Polarity, Aspect
gle (Irish): Tense, Mood, Part of Speech,
Number, Person, Gender, Case

e glg (Galician): Part of Speech

heb (Hebrew): Part of Speech, Number,
Tense, Person, Voice

hin (Hindi): Person, Case, Part of Speech,
Number, Gender, Voice, Aspect, Mood, Finite-
ness, Politeness

hrv (Croatian): Case, Gender, Number, Part
of Speech, Person, Finiteness, Mood, Tense,
Animacy, Definiteness, Comparison, Voice
ita (Italian): Part of Speech, Number, Gender,
Person, Mood, Tense, Aspect

jpn (Japanese): Part of Speech

lat (Latin): Part of Speech, Number, Gender,
Case, Tense, Person, Mood, Aspect, Compari-
son

lav (Latvian): Part of Speech, Case, Number,
Tense, Mood, Person, Gender, Definiteness,
Aspect, Comparison, Voice

lit (Lithuanian): Tense, Voice, Number, Part
of Speech, Finiteness, Mood, Polarity, Person,
Gender, Case, Definiteness

mar (Marathi): Case, Gender, Number, Part
of Speech, Person, Aspect, Tense, Finiteness
nld (Dutch): Person, Part of Speech, Number,
Gender, Finiteness, Tense, Case, Comparison
pol (Polish): Part of Speech, Case, Number,
Animacy, Gender, Aspect, Tense, Person, Po-
larity, Voice

por (Portuguese): Part of Speech, Person,
Mood, Number, Tense, Gender, Aspect

ron (Romanian): Definiteness, Number, Part
of Speech, Person, Aspect, Mood, Case, Gen-
der, Tense

rus (Russian): Part of Speech, Case, Gender,
Number, Animacy, Tense, Finiteness, Aspect,
Person, Voice, Comparison

slk (Slovak): Part of Speech, Gender, Case,
Number, Aspect, Polarity, Tense, Voice, Ani-
macy, Finiteness, Person, Mood, Comparison
slv (Slovenian): Number, Gender, Part of
Speech, Case, Mood, Person, Finiteness, As-
pect, Animacy, Definiteness, Comparison



e spa (Spanish): Part of Speech, Tense, Aspect,
Mood, Number, Person, Gender

e srp (Serbian): Number, Part of Speech, Gen-
der, Case, Person, Tense, Definiteness, Ani-
macy, Comparison

o swe (Swedish): Part of Speech, Gender, Num-
ber, Definiteness, Case, Tense, Mood, Voice,
Comparison

e tam (Tamil): Part of Speech, Number, Gen-
der, Case, Person, Polarity, Finiteness, Tense

o tur (Turkish): Case, Number, Part of Speech,
Aspect, Person, Mood, Tense, Polarity, Pos-
session, Politeness

e ukr (Ukrainian): Case, Number, Part of
Speech, Gender, Tense, Animacy, Person, As-
pect, Voice, Comparison

e urd (Urdu): Case, Number, Part of Speech,
Person, Finiteness, Voice, Mood, Politeness,
Aspect

e vie (Vietnamese): Part of Speech

e zho (Chinese): Part of Speech

C Family-wise Error Correction

The method for estimating statistical significance
works for any pair of languages; however, as we
are performing multiple comparisons, we should
expect the null hypothesis to be incorrectly rejected
100 x « percent of the time. To circumvent this
problem, we resort to Holm-Bonferroni (Holm,
1979) family-wise error correction.

In particular, the tests are ordered in an ascend-
ing order by means of their p-values. The test
with the smallest probability undergoes the Holm—
Bonferroni correction

puB = (n — i+ 1)p €]

where n denotes the number of conducted tests. If
already the first test is not significant, the procedure
stops, otherwise the test with the second smallest
p-value is corrected for a family of n — 1 tests. The
procedure stops either at the first non-significant
test or after iterating though all p-values. This
sequential approach guarantees that probability that
we incorrectly reject one or more of our hypotheses
is at most a.

D Overlap Rates

Tab. 1 depicts the proportion of neuron overlap for
different attributes and embeddings.
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A

2 3 3 3

E X k£
Definiteness 0.11 022 0.13 45
Comparison 0.20 0.90 0.50 10
Possession 0.00 0.00 0.00 1
Aspect 0.03 0.10 0.09 153
Polarity 0.33 0.67 0.33 3
Number 0.40 0.51 0.74 666
Animacy 0.14 057 032 28
Mood 0.00 0.07 0.05 105
Gender 0.15 032 0.19 378
Person 0.08 0.25 0.13 276
POS 0.04 0.27 0.70 861
Case 0.10 0.18 0.17 300
Tense 0.08 0.23 0.12 325
Finiteness 0.09 0.18 0.09 45

Table 1: Proportion of language pairs with statistically
significant overlap in the top-50 neurons for an attribute
(after Holm—Bonferroni (Holm, 1979) correction). We
compute these proportions for each model we consider.
The final column reports the total number of pairwise
comparisons.

Figure 5: Percentages of neurons most associated with
a particular morphosyntactic category that overlap be-
tween pairs of languages. Colours in the plot refer to
2 models: XLM-R-base (blue) and XLM-R-large (or-
ange).
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E Pairwise Overlap by Morphosyntactic
Category

Figure 6: The percentage overlap between the top-50
most informative dimensions in a randomly selected
language model for each of the morphosyntactic cate-
gories. Statistically significant overlap is marked with
an orange square.
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