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Abstract

Current black-box variational inference (BBVI) methods require the user to make
numerous design choices—such as the selection of variational objective and ap-
proximating family—yet there is little principled guidance on how to do so. We
develop a conceptual framework and set of experimental tools to understand the
effects of these choices, which we leverage to propose best practices for max-
imizing posterior approximation accuracy. Our approach is based on studying
the pre-asymptotic tail behavior of the density ratios between the joint distribu-
tion and the variational approximation, then exploiting insights and tools from
the importance sampling literature. Our framework and supporting experiments
help to distinguish between the behavior of BBVI methods for approximating
low-dimensional versus moderate-to-high-dimensional posteriors. In the latter case,
we show that mass-covering variational objectives are difficult to optimize and do
not improve accuracy, but flexible variational families can improve accuracy and
the effectiveness of importance sampling—at the cost of additional optimization
challenges. Therefore, for moderate-to-high-dimensional posteriors we recommend
using the (mode-seeking) exclusive KL divergence since it is the easiest to optimize,
and improving the variational family or using model parameter transformations
to make the posterior and optimal variational approximation more similar. On
the other hand, in low-dimensional settings, we show that heavy-tailed variational
families and mass-covering divergences are effective and can increase the chances
that the approximation can be improved by importance sampling.

1 Introduction

A great deal of progress has been made in black-box variational inference (BBVI) methods for
Bayesian posterior approximation, but the interplay between the approximating family, divergence
measure, gradient estimators and stochastic optimizer is non-trivial — and even more so for high-
dimensional posteriors [[1,[10, 29, 31]. While the main focus in the machine learning literature has
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Figure 1: Illustration of a mean-field approximation with exclusive (mode-seeking) and inclusive
(mass-covering) divergences. (a) The typical 2D illustration (correlation 0.9) gives the impression that
the inclusive divergence would provide a better approximation. (b) For correlated Gaussian targets in
dimensions D = 2,5, 10, 50, the marginal distributions of the distance from the mode for samples
drawn from the approximation (red) and the target (blue). The intuition from the low-dimensional
examples does not carry over to higher dimensions: although the importance ratios are still bounded,
even for a lower correlation level, the overlap in typical sets of the target and the approximations gets
worse both for exclusive and inclusive divergences.

been on improving predictive accuracy, the choice of method components becomes even more critical
when the goal is to obtain accurate summaries of the posterior itself.

In this paper, we show that, while the choice of approximating family and divergence is often
motivated by low-dimensional illustrations, the intuition from these examples do not necessarily carry
over to higher-dimensional settings. By drawing a connection between importance sampling and the
estimation of common divergences used in BBVI, we are able to develop a comprehensive framework
for understanding the reliability of BBVI in terms of the pre-asymptotic behavior of the density ratio
between the target and the approximate distribution. When this density ratio is heavy-tailed, even
unbiased estimators exhibit a large bias with high probability, in addition to high variance. Such
heavy tails occur when there is a mismatch between the typical sets of the approximating and target
distributions. In higher dimensions, even over-dispersed distributions miss the typical set of the
target [[18| [27]. Thus, as illustrated in Fig. [I] the benefits of heavy-tailed approximate families and
divergences favoring mass-covering diminish as dimensionality of the target distribution increases.
Building on these insights, we make the following main contributions:

1. We develop a conceptual and experimental framework for predicting and empirically evaluating
the reliability of BBVI based on the choice of variational objective, approximating family, and
target distribution. Our framework also incorporates the Pareto k£ diagnostic [27] as a simple
and practical approach for obtaining empirical and conceptual insights into the pre-asymptotic
convergence rates of estimators of common divergences and their gradients.

2. We validate our framework through an extensive empirical study using simulated data and many
commonly used real datasets with both Gaussian and non-Gaussian target distributions. We
consider the exclusive and inclusive Kullback-Leibler (KL) divergences [4, 21} 124]), tail-adaptive
f-divergence [29], X2 divergence [7|], and a-divergences [12], and the resulting variational
approximation for isotropic Gaussian and Student-¢ and normalising flow families.

3. Based on our framework and numerical results, we provide justified recommendations on design
choices for different scenarios, including low- to moderate-dimensional and high-dimensional
posteriors.



2 Preliminaries and Background

Let p(6,Y) be a joint distribution of a probabilistic model, where § € RP is a vector of model
parameters and Y is the observed data. In Bayesian analysis, the posterior p(f) = p(6 | V) =
p(6,Y)/p(Y) (where p(Y) := [p(#,Y)df) is typically the object of interest, but most posterior
summaries of interest are not accessible because the normalizing integral, in general, is intractable.
Variational inference approximates the exact posterior p(6 | Y) using a distribution ¢ € Q from a
family of tractable distributions Q. The best approximation is determined by minimizing a divergence
D(p || q), which measures the discrepancy between p and ¢:

«~ =arg min D , 1
ax g min D(p | q) (D

where A € R is a vector parameterizing the variational family Q. Thus, the properties of the
resulting approximation ¢ are determined by the choice of variational family Q as well as the choice
of divergence D.

The family Q is often chosen such that quantities of interest (e.g., moments of ¢) can be computed
efficiently. For example, ¢ can be used to compute Monte Carlo or importance sampling estimates
of the quantities of interest. Let w(6) := p(6,Y)/q(6) denote the density ratio between the joint
and approximate distributions. For a function ¢ : R” — R, the biased self-normalized importance
sampling estimator for the posterior expectation Eg..,[¢(6)] is given by
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where 601, ...,0g ~ g are independent. Using importance sampling can allow for computation of
more accurate posterior summaries and to go beyond the limitations of the variational family. For
example, it is possible to estimate the posterior covariance even when using a mean-field variational
family.

Pareto Smoothed Importance Sampling. Since importance sampling estimates can have very high
variance, Pareto smoothed importance sampling (PSIS) can be used to substantially reduce the
variance with small additional bias [27]. This procedure modifies and stabilises extreme importance
ratios using a generalized Pareto distribution fit to the upper tail of the distribution of the ratios.

Variational families. Let ¢)(#) be an approximating family parameterised by a K-dimensional
vector A € RX for D-dimensional inputs § € R”. Typical choices of ¢ include mean-field Gaussian
and Student’s ¢ families [3}[14]], full and low rank Gaussians [[15} 22]], mixtures of exponential families

[17,19], and normalising flows [25]. We focus on the most popular mean-field and normalizing flow

families. Mean-field families assume independence across the D dimensions: ¢(f) = Hil q:(6;),

where each g; typically belongs to some exponential family or other simple class of distributions.
Normalising flows [1]] provide more flexible families that can capture correlation and non-linear
dependencies. A normalizing flow is defined via the transformation of a probability density through
a sequence of invertible mappings. By composing several maps, a simple distribution such as a
mean-field Gaussian can be transformed into a more complex distribution [25]].

f-divergences. The most commonly used divergences are examples of f-divergences [28]. For a
convex function f satisfying f(1) = 0, the f-divergence is given by

M@n@:mwp(%%pﬂ.

The exclusive Kullback-Leibler (KL) divergence corresponds to f(w) = — log(w), the inclusive KL
divergence corresponds to f(w) = w log(w), the x? divergence corresponds to f(w) = (w — 1)2,
and the general a-divergences correspond to (w® — w)/{a(a — 1)}. We also consider the adaptive
f-divergence proposed by Wang et al. [29]].

Loss estimation and stochastic optimization. In all the cases we consider, minimizing the f-
divergence is equivalent to minimizing the loss function L¢(p || ¢) == Eg~q[f(w(0))] (although, see
Wan et al. [28] for a different approach). Let L(A) := L¢(p || g») denote the loss as a function of
the variational parameters A. The loss and its gradient G(\) := VL(\) can both be approximated
using, respectively, the Monte Carlo estimates

L) =35 f(w(6y) and GOV =137 ¢(6,), ©)



where 61, . .., 0 are independent draws from ¢ and g : R — R¥ is an appropriate gradient-like
function that depends on f and w. The two most popular gradient estimators in the literature are the
score function and the reparameterization gradient estimator [20,|[30]]. The score function gradient
corresponds to g(0) = {f(w(#)) — w(0) f'(w(8))}Valoggr(f). It is a general-purpose estimator
that applies to both discrete and continuous distributions ¢, but it is known to suffer from high
variance. When this estimator is used for the mass-covering divergences such as the inclusive KL
and general a-divergences with o > 1, the importance weights are usually replaced with self-

normalized importance weights w(6s)/ Zle w(6;). The reparameterization gradient [20] requires
expressing the distribution g, as a deterministic transformation of a simpler base distribution r
such that T (z) ~ ¢, with z ~ r. This allows writing an expectation with respect to ¢y as an
expectation over the simpler distribution r. The reparameterization estimator corresponds to using
9(zs) = Vaf(w(Tx(zs))) (for zs ~ r) in place of g(#), where w implicitly depends on A as well.
In the case of the adaptive f-divergence, the importance weights w(61), ..., w(fg) are sorted, and
the gradients corresponding to each sample are then weighed by the empirical rank. The gradient
estimates can be used in a stochastic gradient optimization scheme such that

AL X G, 3)

where 7, is the step size. In practice, more stable adaptive stochastic gradient optimisation methods
such as RMSProp or Adam [9! [13]], which smooth or normalize the noisy gradients, are often used.

Numerous prior work have studied some of the challenges tied to optimizing these divergence
measures under the presence of noisy gradient estimates [, |10} 29, [31]]. Particularly, when dealing
with mass-covering divergences, the gradient estimates can become so noisy that convergence is not
possible in practice, as we will illustrate later on.

3 Assessing the Reliability of Black-box Variational Inference

3.1 Conceptual framework

How can we determine — both conceptually and experimentally — what is required to obtain reliable
estimates of the variational divergence and optimal variational approximation? As we have seen, the
most common variational divergences and their Monte Carlo gradient estimators can be expressed in
terms of the density ratio w(6). Reliable black-box variational inference ultimately depends on the
behavior of w(#) since (1) accurate optimization requires low-variance and (nearly) unbiased gradient

estimates G(\), and (2) determining convergence and validating the quality of variational approxima-

tions can require accurate estimates L(A) of variational divergences [[14} [15]]. While asymptotically
(in the number of iterations and Monte Carlo sample size .S) there may be no issues with stochastic
optimization or divergence estimation, in practice black-box variational inference operates in the
pre-asymptotic regime. Therefore, the reliability of black-box variational inference depends on
the pre-asymptotic behavior of the w(#), and how it interacts with the choice of variational
objective and gradient estimator.

Before accounting for the effects of the objective and gradient estimator, first consider the behavior
of the density ratio w(#), which can also be interpreted as an importance sampling weight with
gx(0) as the proposal distribution [cf. [2[16] 29]. Pickands [23] proved, under commonly satisfied
conditions, that for u tending to infinity, the distribution of w(#) | w(6) > w is well-approximated
by the three-parameter generalized Pareto distribution GPD(u, o, k), which for k£ > 0 has density
p(w | u,0,k) = o1 + k(w — u)/o}~'~/* where w is restricted to (u,c0). Since w(#) > 0,
this implies its distribution is heavily skewed to the right with a power-law tail. Consider the idealized
scenario of estimating the mean of w(6) ~ GPD(u, o, k). We assume the mean is finite, which is
equivalent to assuming k < 1 since |1/k| determines the number of finite moments. Because of
the heavy right skew, most of the mass of w(6) is below its mean. Therefore, even after averaging a

large number of samples, most empirical estimates Zle w(0,) will be smaller than the true mean.
Figure [3a)illustrates this behavior for different values of k: even with 1 million samples, the empirical
mean is far below the true mean when k& > 0.7. The highly variable sizes of the confidence intervals
based on 10,000 replications further highlight the instability of the estimator. So, even though the
empirical mean is an unbiased estimator, in the pre-asymptotic regime (before the generalized
central limit theorem is applicable [5]), in practice the estimates are heavily biased downward
with high probability. If w(6) is not a generalized Pareto distribution, we can instead treat k as
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Figure 2: The ratio of estimated mean and true mean for different values of k shape parameter of a
generalized Pareto distribution and confidence intervals in a finite sample size simulation.

the tail index k := inf{¢ > 0 : Eg,{w()'/*} < oo}, which encodes the same tail behavior as
GPD(u, 0, k). Crucially, we should expect k to be much larger than O when there is a significant
mismatch between the target distribution and the variational family. Since selecting a variational
family that can match the typical set tends to be more difficult in higher dimensions, we should
expect k to be larger for higher-dimensional posteriors.

We can generalize our observations about pre-asymptotic estimation bias to the estimators E()\)

and G(\). For the loss estimator, we replace w(f,) with f(w(6,)), where f(w) is polynomial in
w and log w for the class of losses we consider. If the dominant term of f(w) is of order w®, the

tail behavior will be similar to a generalized Pareto with k, = ak. Thus, L()) will have larger
pre-asymptotic bias as « increases. For example, estimation of the mass-covering inclusive KL
(where oo = 1) — and, more generally, mass-covering a-divergences with o > 0 — will suffer from a
large pre-asymptotic bias. On the other hand, for the mode-seeking exclusive KL, f(w) = log(w),
so we can expect all moments to be finite and therefore a much smaller pre-asymptotic bias.

Similar considerations apply to the gradient estimator, with the details depending on the specific
estimator used. However, when using self-normalized weights for a-divergences, we can expect a
large pre-asymptotic bias whenever w(6) has such bias since self-normalization involves estimating
the mean of w(#). This bias will affect the accuracy of the solution found using stochastic optimization.
Thus, the quality of the solutions found can only partially be improved by using a smaller step size
since smaller step sizes will only reduce the effects of a large estimator variance, but not the effects
from a large bias. We provide more details on the behavior of the score function and reparameterized
gradients for each of the divergences in ????, following Geffner and Domke [[11]].

In summary, our framework makes two key predictions:

(P1) Estimates and gradients of mode-seeking divergences (in particular exclusive KL divergence
with log dependence on w) have lower variance and are less biased than those of mass-covering
divergences (in particular a-divergences with oo > 0, with polynomial dependence on w).

(P2) The degree of polynomial dependence on w determines how rapidly the bias and variance will
increase as approximation accuracy degrades — in particular, in high dimensions.

Because the adaptive f-divergence depends directly on the (ordered) weights, we expect it to behave
similarly to the mass-covering divergences.

3.2 Experimental framework

In the light of potentially large non-asymptotic bias arising from the heavy right tail of w(0), it is
important to verify the pre-asymptotic behavior of the Monte Carlo estimators used in variational
inference. We follow the approach developed by Vehtari et al. [27] for importance sampling and
compute an empirical estimate k of the tail index k by fitting a generalized Pareto distribution to the
observed tail draws. In the importance sampling setting, Vehtari et al. [27] show that the minimal
sample size to have a small error with high probability scales as S = O(exp{k/(1 — k)?}). Vehtari
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Figure 3: Results for correlated Gaussian targets of dimension D = 1,...,50 using either the

exclusive or inclusive KL divergence as the variational objective. Each line in the plots corresponds
to fitting and evaluating the same divergence measure as indicated in the legend. Each result is the
average of 50 independent simulations. Quantiles are computed from simulating 100, 000 draws. (a)
Bias and variance of the gradients of the optimised f-divergence for one parameter 8 for increasing
dimensions at the end of the optimisation for correlated Gaussian targets of dimension D =1, ...,20
and mean field Gaussian as variational approximation. (b) The ratio of the f-divergence estimate to

the true value. (c¢) The k values for the variational approximations.

et al. [27] also demonstrate that k provides a practical pre-asymptotic convergence rate estimate even

when the variance is infinite and a generalized central limit theorem holds. While estimating k in
general requires larger sample size than is commonly used to estimate the stochastic gradients, we
can still use it to diagnose and identify the challenges with different divergences. If k > 0.7, the
minimal sample size to obtain a reliable Monte Carlo estimate is so large that it is usually infeasible
in practice. This cutoff is in agreement with our findings shown in Fig. Thus, together with our
conceptual framework, we have a third key prediction:

(P3) The k value can be used to diagnose pre-asymptotic reliability of variational objectives. In

particular, the a-divergence with @ > 0 will become unreliable when max(1, o) x k>o07,
even if w is bounded (by a very large constant).

3.3 Verification of Pre-asymptotic (Un)reliability

We first verify our three key predictions in a simple setting where we can compute most of the
relevant quantities such as the loss function in closed form. Specifically, we fit a mean-field Gaus-
sian to a Gaussian with constant 0.5 correlation factor using the inclusive KL, exclusive KL, 2,
and 1/2-divergences. We vary the dimensionality D from 1 to 50, which is a surrogate for the
degree of mismatch between the optimal variational approximation and the target distribution. To
find the optimal divergence-based approximation, we optimize the closed-form expression for the
divergences between two Gaussians. Hence, we can consider on the best-case scenario and ignore
the complexities and uncertainty due to the stochastic optimization. Due to space limitations, we
focus on representative cases of the approximations from optimising the mode-seeking exclusive KL
divergence and the mass-covering inclusive KL divergence. Results for the other divergences are
included in the appendix.

(P1) Mode-seeking divergences are more stable and reliable than mass-covering ones. Figure[3b|
shows that as the approximation—target mismatch increases with dimension, the bias in and variance
of the divergence estimates increases substantially for the inclusive KL and x? but only moderately
for the exclusive KL. Similarly, Fig. [2|shows that gradient bias and variance increases with dimension
for inclusive KL and x2 but not exclusive KL.

(P2) Degree of polynomial dependence on w determines sensitivity to approximation—target
mismatch. Figure|3b|shows that divergence estimates resulting from optimising higher polynomials
of w become more and more unstable as dimensions increases.
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Figure 4: Results for increasing dimensions of the robust regression model. (a) Pareto k values for
BBVI approximations. (b) Relative error of covariance estimates for BBVI (solid lines) and after
PSIS correction (dashed lines).

P3) k diagnoses pre-asymptotic reliability. Figure [3c[shows that the k values grow rapidly for the
inclusive KL-based approximation, particularly for higher-degree dependence on w, which agrees
with predicted behavior and large bias and variance of the inclusive KL and x2. In contrast, the

k values remain fairly stable for the exclusive KL-based approximation, again in agreement with
predicted and observed bias and variance behavior.

4 Experiments

In this section, we describe a series of experiments to study how our pre-asymptotic framework can
be used for assessing the reliability of black-box variational approximations for practical applications
and developing best-practices. For all posteriors, we fit mean-field Gaussian and Student-¢ families, a
planar flow [25]] with 6 layers and a non-volume preserving (NVP) flow [8] with 6 stacked neural
networks with 2 hidden layers of 10 neurons each for both the translation and scaling operations with
a standard Gaussian distribution for the latent variables. We use Stan [26] for model construction. For
stochastic optimization we use RMSProp with initial step size of 103 run for either T}, iterations
or until convergence was detected using a modified version of the algorithm by Dhaka et al. [6]. For
the exclusive KL we use 10 draws for gradient estimation per iteration, while for the other divergences
we use 200 draws, and a warm start at the solution of the exclusive KL. In practice, we found the
optimisation for x? divergence extremely challenging, with the solution failing to converge even for
moderate dimensions D = 10. Therefore, we only include results for the KL divergences and the
adaptive f-divergence. We compare the accuracy of approximated posterior moments to ground-truth
computed either analytically or using the dynamic Hamiltonian Monte Carlo algorithm in Stan [26].

Specifically, we consider the estimates fi and X for, respectively, the posterior mean p and covariance

matrix . We also consider the mean and covariance estimates produced by PSIS and compute k.
The experiments were carried on a laptop and an internal cluster with only CPU capability. The code
for the experiments will be made available after acceptance using MIT license.

4.1 Heavy-tailed posteriors

First, we study the toy robust regression model previously used by Huggins et al. [14] given by

Bd NN(07 1O)a Yn ‘ xnaﬁ'\’th(ﬁTl‘nal)7
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Figure 5: Maximum dimensionality converged per step size for the robust regression model.

where y,, € R, z,, € RP are the target and predictors respectively, 3 denotes the unknown coefficients,
and D is varied from 2 to 50. We generated data from the same model with covariates generated from
a zero-mean Gaussian with constant correlation of 0.4. The Student’s ¢ leads to the posterior having
heavy tails, making it a more challenging target distribution. We use T}, = 10,000.

Mode-seeking divergences are easier to optimize. Figure |4a)shows that the estimated tail index k

generally increases with the dimension as expected. In particular, the k values when using normalizing
flows, which are more challenging to optimize, is low for D < 20 when using exclusive KL, but
infinite when using either the inclusive KL or f-divergence. From Fig. [db|we can see that exclusive
KL provides also more accurate and reliable posterior approximations than the inclusive KL and
adaptive f-divergence, particularly for the normalizing flows. This observation is consistent with
the prediction (P3) of the proposed framework. The better performance for normalizing flows
corroborates the relative ease of stochastic optimization with the exclusive KL divergence compared
to the inclusive KL or the adaptive f-divergence — despite the fact that we used 20 times as many
Monte Carlo samples to estimate the gradients for the inclusive KL and the f-divergence compared to
the exclusive KL. To further illustrate the relative difficulty of optimizing the inclusive KL divergence,
Fig.[5] shows the largest dimension for which the stochastic optimization converged as a function
of the step-size. For most step-sizes, the combination of normalizing flows and the inclusive KL
divergence only converged for D = 2, whereas convergence is possible in higher dimensions for
simpler variational families. These observations are consistent with predictions (P1)-(P2) of the
proposed framework.

Adaptive f-divergence interpolates between the exclusive and inclusive KL divergence, but is
difficult to optimize. In low dimensions, the adaptive f-divergence behaves somewhere between
the two KL divergences as seen in ?? — as it was designed to [29]. As confirmed by Fig. §] For
higher-dimensional posteriors, we expect it to behave more like the exclusive KL, but it is less stable
due to its functional dependence on the importance weights.

Normalizing flows can be effective but are challenging to optimize. Fig. |4| also shows that nor-
malizing flows can be quite effective when used with exclusive KL to ensure stable optimization.
However, as can be seen in ??, when using out-of-the-box optimization with no problem-specific
tuning (as we have done for a fair comparison), the normalizing flows approximations can have
pathological features — even in low dimensions.

4.2 Realistic models and datasets

We now study how the choice of divergence and approximating family compare across a diverse
range of benchmark posteriors. We compare variational approximations for models and datasets from
po steriordt{j in terms of accuracy of the estimated moments and predictive likelihood. We used an
80/20 training/test split on all datasets to compute the predictive likelihoods. We use Ti,,.x = 15,000.

. https://github.com/stan-dev/posteriordb
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Figure 6: Results for posteriordb experiments. Dimensionality of each dataset is given in paren-

theses. (a) Pareto k values for BBVI approximations. (b) Relative error of mean and covariance
estimates for BBVI using exclusive KL (circles) and after PSIS correction (triangles).

Table 1: Predictive likelihood results on posteriordb datasets using a Mean Field Gaussian
approximation. The results denote the likelihood with the variational approximation solution obtained
and after PSIS correction to the solution. Bold (underline) indicates best-performing method(s)
(variational method(s))

Name HMC Excl. KL Excl. KL+PSIS Incl. KL Incl. KL+PSIS
dogs -71.14+1.2 712 +1.3 717415 -11043.5 -70.5+4.1
arK -32.440.6 -34.3+0.7 -34.440.7 -35.240.8 -34.940.8

mesquite  -1681+127  -2512+140 -5418+186 -00 -00

nesl996  -412.9+1.7 -412.8+1.7 -427.9+1.8 -2140.54+59.7 -499.3+45.6

diamonds  22.1+3.1 -2.6+1.3 1.5+1.2 -3196.6+57.9 -3149455.7
radon -2344+1.1 -353.0£19.3 -325.0+19.5 -377.4+1.9 -370.5+£2.2

Exclusive KL remains the most reliable for realistic posteriors. The results are summarized
in Fig. [6] where the same pattern is seen: the exclusive KL is superior for higher-dimensional
posteriors (e.g., D > 10) or when combined with normalizing flows, while inclusive KL is better for
lower-dimensional posteriors. Despite the superior performance of the exclusive KL divergence, the
large values for k indicate that fitting approximations based on normalizing flows remains a challenge
in high dimensions. The performance for the adaptive f-divergence is comparable to the inclusive KL
divergence. Table[T]shows that the exclusive KL divergence consistently outperforms the inclusive
KL divergence in terms of predictive accuracy, but can be significantly worse than HMC.

Importance sampling can substantially improve accuracy. Focusing on exclusive KL, Fig. [6b]
shows the relative errors of the first two moments for the variational approximation (dots) and after
correcting the estimates using PSIS (triangles). In some cases, the PSIS correction dramatically
improved the accuracy of the normalizing flows.

Reparameterization is an important tool for improving accuracy. The 8-schools model is low-
dimensional (D = 10), but the funnel-shaped posterior makes inference challenging for variational
approximations [14} 31]]. As has been noted previously in the literature, and is clear from Figs. [63]
and[6b] reparameterizing the model so that the posterior better matches the variational family can be
an effective way to improve the accuracy of the approximation. See ?? for an illustration.



5 Discussion

Our conceptual framework based on the pre-asymptotic behavior of the density ratios / importance
weights w along with our comprehensive experiments lead to a number of important takeaways
for practitioners looking to obtain reasonably accurate posterior approximations using black-box
variational inference:

e The instability of mass-covering divergences like inclusive KL and 2 means that, given currently
available methodology, users are better off using the exclusive KL divergence except for easy
low-dimensional posteriors. The reliance of the adaptive f-divergence on importance weights
leads to similar instability.

° Importance sampling appears to almost always be beneficial for improving accuracy, even when

the k diagnostic is large. However, a large k does suggest the user should not expect even the
PSIS-corrected estimates to be particularly accurate.

e Using normalizing flows — particularly NVP flows — together with exclusive KL and PSIS provides
the best and most consistent performance across posteriors of varying dimensionality and difficulty.
We therefore suggest this combination as a good default choice.

Our results suggest an important direction for future work is improving the stability of optimization
with normalizing flows, which still tend to have some pathological behaviors unless they are very
carefully tuned since such tuning significantly detracts from the benefits of using BBVL.

6 Limitations

While our experiments included a range of common statistical model types, our findings may not
generalize to all types of posteriors or to other variational families. For example, we did not explore
semi-implicit methods or applications to neural networks. We also did not investigate alternative
divergences such as those used in importance-weighted autoencoders.
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