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ABSTRACT

Temporal difference (TD) learning is a simple algorithm for policy evaluation
in reinforcement learning. The performance of TD learning is affected by high
variance and it can be naturally enhanced with variance reduction techniques, such
as the Stochastic Variance Reduced Gradient (SVRG) method. Recently, multiple
works have sought to fuse TD learning with SVRG to obtain a policy evaluation
method with a geometric rate of convergence. However, the resulting convergence
rate is significantly weaker than what is achieved by SVRG in the setting of convex
optimization. In this work we utilize a recent interpretation of TD-learning as the
splitting of the gradient of an appropriately chosen function, thus simplifying the
algorithm and fusing TD with SVRG. We prove a geometric convergence bound
with predetermined learning rate of 1/8, that is identical to the convergence bound
available for SVRG in the convex setting.

1 INTRODUCTION

Reinforcement learning (RL) is a learning paradigm which addresses a class of problems in sequen-
tial decision making environments. Policy evaluation is one of those problems, which consists of
determining expected reward agent will achieve if it chooses actions according to stationary policy.
Temporal Difference learning (TD learning, Sutton (1988)) is popular algorithm, since it is simple
and might be performed online on single samples or small mini-batches. TD learning method uses
Bellman equation to bootstrap the estimation process update the value function from each incoming
sample or minibatch. As all methods in RL, TD learning from the “curse of dimensionality” when
number of states is large. To address this issue, in practice linear or nonlinear feature approximation
of state values is often used.

Despite its simple formulation, theoretical analysis of approximate TD learning is subtle. There are
few important milestones in this process, one of which is a work of Tsitsiklis & Van Roy (1997),
in which asymptotic convergence guarantees were established. More recently advances were made
by Bhandari et al. (2018), Srikant & Ying (2019) and Liu & Olshevsky (2020). In particular, the
last paper shows that TD learning might be viewed as an example of gradient splitting, a process
analogous to gradient descent.

TD-learning has inherent variance problem, which is that the variance of the update does not go to
zero as the method converges. This problem is also present in a class of convex optimization prob-
lems where target function is represented as a sum of functions and SGD-type methods are applied
Robbins & Monro (1951). Such methods proceed incrementally by sampling a single function,
or a minibatch of functions, to use for stochastic gradient evaluations. A few variance reduction
techniques were developed to address this problem and make convergence faster, including SAG
Schmidt et al. (2013), SVRG Johnson & Zhang (2013) and SAGA Defazio et al. (2014). These
methods are collectively known as variance-reduced gradient methods. The distinguishing feature
of these methods is that they converge geometrically.

The first attempt to adapt variance reduction to TD learning with online sampling was done by
Korda & La (2015). Their results were discussed by Dalal et al. (2018) and Narayanan & Szepesvári
(2017); Xu et al. (2020) performed reanalysis of their results and shown geometric convergence for
Variance Reduction Temporal Difference learning (VRTD) algorithm for both Markovian and i.i.d
sampling. The work of Du et al. (2017) directly apply SVRG and SAGA to a version of policy
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evaluations by transforming it into an equivalent convex-concave saddle-point problem. Since their
algorithm uses two sets of parameters, in this paper we call it Primal Dual SVRG or PD SVRG.

All these results obtained geometric convergence of the algorithms, improving the sub-geometric
convergence of the standard TD methods. However, the convergence rates obtained in these papers
are significantly worse than the convergence of SVRG in convex setting. In particular, the result-
ing convergence times for policy evaluations scaled with the square of the condition number, as
opposed to SVRG which retains the linear scaling with the condition number of SGD. Quadratic
scaling makes practical application of theoretically obtain values almost unfeasible, since number
of computations becomes very large even for simple problems. Moreover, the convergence time
bounds contained additional terms coming from the condition number of a matrix that diagonalizes
some of the matrices appearing the problem formulations, which can be arbitrarily large.

In this paper we analyze the convergence of the SVRG technique applied to TD (TD-SVRG) in two
settings: piq a pre-sampled trajectory of the Markov Decision Process (MDP) (finite sampling), and
piiq when states are sampled directly from the MDP (online sampling). Our contribution is threefold:

• For the finite sample case we achieve significantly better results with simpler analysis. We
are first to show that TD-SVRG has the same convergence rate as SVRG in the convex
optimization setting with a pre-determined learning rate of 1/8.

• For i.i.d. online sampling, we similarly achieve better results with simpler analysis. Sim-
ilarly, we are first to show that TD-SVRG has the same convergence rate as SVRG in
the convex optimization setting with a predetermined learning rate of 1/8. In addition,
for Markovian online sampling, we provide convergence guarantees that in most cases are
better than state-of-the art results.

• We are the first to develop theoretical guarantees for an algorithm that can be directly
applied to practice. In previous works, batch sizes required to guarantee convergence were
very large that made them impractical (see Subsection H.1) and grid search was needed to
optimize the learning rate and batch size values. We include experiments that show our
theoretically obtained batch size and learning rate can be applied in practice and achieve
geometric convergence.

2 PROBLEM FORMULATION

We consider a discounted reward Markov Decision Process (MDP) pS,A,P, r, γq, where S is a state
space, A is an action space, P “ Pps1|s, aqs,s1PS,aPA are the transition probabilities, r “ rps, s1q

are the rewards and γ P r0, 1q is a discount factor. In this MDP agent follows policy π, which is
a mapping π : S

Ś

A Ñ r0, 1s. Given that policy is fixed, for the remainder of the paper we will
consider transition matrix P , such that: P ps, s1q “

ř

a πps, aqPps1|s, aq. We assume, that Markov
process produced by transition matrix is irreducible and aperiodic with stationary distribution µπ .

The policy evaluation problem is to compute V π , defined as: V πpsq :“ E
“
ř8

t“0 γ
trt`1

‰

. Here V π

is the value function, formally defined to be the unique vector which satisfies the equality TπV π “

V π , where Tπ is a Bellman operator, defined as: TπV πpsq “
ř

s1 P ps, s1q prps, s1q ` γV πps1qq .
The TD(0) method is defined as follows: one iteration performs a fixed point update on randomly
sampled pair of states s, s1 with learning rate η: V psq Ð V psq`ηprps, s1q`γV ps1q´V psqq. When
the state space size |S| is large, tabular methods which update a value for every state V psq become
impractical. For this reason linear approximation is often used. Each state a represented as feature
vector ϕpsq P Rd and state value V πpsq is approximated by V πpsq « ϕpsqT θ, where θ is a tunable
parameter vector. Now a single TD update on randomly sampled transition s, s1 becomes:

θ Ð θ ` ηgs,s1 pθq

“ θ ` ηpprps, s1q ` γϕps1qT θ ´ ϕpsqT θqϕpsqq,

where the second equation should be viewed as a definition of gs,s1 pθq.

Our goal is to find parameter vector θ˚ such that average update vector is zero

Es,s1 rgs,s1 pθ˚qs “ 0.

This expectation is also called mean-path update ḡpθq and can be written as:
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Table 1: Algorithms parameter comparison. PD SVRG and PD SAGA results reported from Du
et al. (2017), VRTD and TD results from Xu et al. (2020), GTD2 from Touati et al. (2018). λminpQq

and κpQq are used to define, respectively, minimum eigenvalue and condition number of matrix Q.
λA in this table denotes minimum eigenvalue of matrix 1{2pA ` AT q. Other notation is taken from
original papers. For simplicity 1 ` γ is upper bounded by 2.

Setting Method Learning rate Batch size Total complexity

Finite sample

GTD2 92ˆ2σ
8σ2pk`2q`92ζ

1 Op
κpQq

2Hd
λminpGqϵ q

PD SVRG λminpATC´1Aq

48κpCqL2
G

51κ2
pCqL2

G

λminpATC´1Aq2
Op

κ2
pCqL2

G

λminpATC´1Aq2
logp 1

ϵ qq

PD SAGA λminpATC´1Aq

3p8κC2L2
G`nµρq

1 Op
κ2

pCqL2
G

λminpATC´1Aq2
logp 1

ϵ qq

This paper 1/8 16{λA Op 1
λA

logp 1
ϵ qq

i.i.d sampling

TD minpλA

16 ,
2
λA

q 1 Op 1
ϵλ2

A
logp 1

ϵ qq

VRDT λA{64 132
λ2
A

Opmaxp 1
ϵ ,

1
λ2
A

q logp 1
ϵ qq

This paper 1/8 16{λA Opmaxp 1
ϵ ,

1
λA

q logp 1
ϵ qq

ḡpθq “ Es,s1 rgs,s1 pθqs

“ Es,s1 rpγϕps1qT θ ´ ϕpsqT θqϕpsqs ` Es,s1

“

rps, s1qϕpsq
‰

:“ ´Aθ ` b,

where the last line should be taken as the definition of A and b. Finally, the minimum eigenvalue of
matrix pA ` AT q{2 plays an important role in our analysis and will be denoted as λmin.

There are few possible setting of the problem: the samples s, s1 might be drawn from the MDP
on-line (Markovian sampling) or independently (i.i.d. sampling): first state s is drawn from µπ ,
then s1 is drawn from correspondent row of P . The latter case analysis is covered in 6. An-
other possible setting for analysis is the ”finite sample set” setting, in which states a data set
D “ tpst, at, rt, st`1quNt“1 of size N is drawn ahead of time following Markov sampling, and
TD(0) proceeds by drawing samples from this data set. We analyze this case in Sections 4 and 5.

We make following standard assumptions:

Assumption 1. The matrix A is non-singular.

Assumption 2. ||ϕpsq||2 ď 1 for all s P S.

Assumption 1 needed to guarantee that A´1b exists and the problem is solvable. Assumption 2 is
introduced for simplicity, it always might be fulfilled by rescaling feature matrix.

2.1 KEY IDEA OF THE ANALYSIS

In our analysis we often use function fpθq, defined as:

fpθq “ pθ ´ θ˚qTApθ ´ θ˚q. (1)
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Function fpθq is a key characteristic function of TD learning. In their paper Liu & Olshevsky
(2020) introduce function fpθq as p1 ´ γq||Vθ ´ Vθ˚ ||2D ` γ||Vθ ´ Vθ˚ ||2Dir. Then, authors define
gradient splitting (linear function hpxq “ Bpx ´ aq is gradient splitting of quadratic function
jpxq “ px ´ aqTQpx ´ aq, where Q is symmetric positive semi-definite matrix, if B ` BT “ 2Q)
and show that negation to mean-path update ´ḡpθq is indeed a gradient splitting of function fpθq.
In this paper we do not use the fact that function fpθq might be represented as weighted sum of D-
norm and Dirichlet norm and, for convenience, define function fpθq based on its gradient splitting
properties.

We rely on interpretation of TD learning as splitting of the gradient descent in our analysis. In
Xu et al. (2020) authors note: ”In Johnson & Zhang (2013) , the convergence proof relies on the
relationship between the gradient and the value of the objective function, but there is not such an
objective function in the TD learning problem.” Well, viewing on TD learning as gradient splitting
gives the relationship between the gradient and the value function, which allows implementation of
similar analysis as in Johnson & Zhang (2013) to achieve stronger results. It also gives the objective
function fpθq which is better measure of the distance to optimal solution, rather than ||θ ´ θ˚||2,
and yields tighter convergence bounds.

3 THE TD-SVRG ALGORITHM

We next propose a modification of the TD(0) method (TD SVRG) which can attain a geometric
rate. This algorithm is given below as Algorithm 1. The algorithm works under the “fixed sample
set” setting which assumes there already exists a sampled data set D. This is the same setting was
considered in Du et al. (2017). However, the method we propose does not add regularization and
does not use dual parameters, which makes it considerably simpler.

Algorithm 1 TD-SVRG for finite sample case
Parameters update frequency M and learning rate η
Initialize θ̃0.
Iterate: for m “ 1, 2, . . .

θ “ θ̃m´1,
ḡpθq “ 1

N

ř

s,s1PD gs,s1 pθq,
where gs,s1 pθq “ prps, s1q ` γϕps1qT θ ´ ϕpsqT θqϕpstq,
θ0 “ θ.
Iterate: for t “ 1, 2, . . . ,M

Randomly sample s, s1 from the dataset and compute update vector
vt “ gs,s1 pθt´1q ´ gs,s1 pθq ` ḡpθq.
Update parameters θt “ θt´1 ´ ηvt.

end
Set θ̃m “ θt for randomly chosen t P p0, . . . ,M ´ 1q.

end

Like the classic SVRG algorithm, our proposed TD-SVRG has two layers of loops. We refer one
step of the outer loop as an epoch and one step of inner loop as an iteration. TD-SVRG keeps
two parameter vectors: current parameter vector θt, which is being updated every iteration, and the
vector θ̃, which is updated the end of each epoch. In the beginning of outer loop, the mean-path TD
update vector ḡpθ̃q is computed with a pass through the entire data set. This vector is used in inner
loop to compute local updates vt “ gs,s1 pθt´1q ´ gs,s1 pθ̃q ` ḡpθq, where gs,s1 pθt´1q is a TD update
computed on a uniformly randomly sampled data point from D with current parameter vector θt and
gs,s1 pθ̃q is a TD update computed on the same data point. Each iteration ends with an update of
epoch vector, which is randomly chosen from parameter vectors during the epoch.

4 CONVERGENCE ANALYSIS

In this section we show, that under simple assumption Algorithm 1 attain geometric convergence in
terms of specially chosen function fpθq with η is Op1q and M is Op1{λminq.
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4.1 PRELIMINARIES

In order to analyze the convergence of the presented algorithm we define expected square norm of
difference in current and optimal parameters as wpθq :

wpθq “ Es,s1 ||gs,s1 pθq ´ gs,s1 pθ˚q||2. (2)

With this notation we provide an technical lemma. All of our proofs are based on variations of this
lemma.

Lemma 1. If Assumptions 1, 2 hold, epoch parameters of two consecutive epochs m´ 1 and m are
related by the following inequality:

2ηMEfpθ̃mq ´ 2Mη2Ewpθ̃mq ď E||θ̃m´1 ´ θ˚||2 ` 2η2MEwpθ̃m´1q, (3)

where the expectation is taken with respect to all previous epochs and choices of states s, s1 during
the epoch m.

Proof. The proof of the lemma generally follows the analysis logic in Johnson & Zhang (2013), it
might be found in Appendix A.

Lemma 1 plays an auxiliary role in our analysis and significantly simplifies it. It introduces a new
approach to the convergence proof by carrying iteration to iteration and epoch to epoch bounds to
the earlier part of the analysis. In particular, deriving bounds in terms of some arbitrary function
upθq is now reduced to deriving upper bounds on ||θ̃m´1||2 and wpθq and a lower bound on fpθq in
terms of the function u. In fact, the function fpθq itself will play the role of upθq in our proof.

In addition, it is now easy to demonstrate the point we made in Subsection 2.1. The main problem
of direct application of the SVRG convergence analysis to TD learning is that it requires the target
function P pwq to be a sum of convex functions ϕipwq, where all functions ϕi are L-Lipschitz and γ-
smooth (notation here is from Johnson & Zhang (2013)). Of course, the TD learning problem cannot
be represented in this form. However, the main use of L-Lipschitz and smoothness properties in the
original is to derive a bound on the expected norm of the difference between current and optimal
parameters. As will be shown later, in TD learning this expected norm (wpθq in our notation) still
might be derived, even when a sum representation does not exist.

4.2 WARM-UP: CONVERGENCE IN TERMS OF SQUARED NORM

Firstly, we derive the convergence bound in terms of ||θ ´ θ˚||2 and show that they are consistent
with previous results.

Proposition 1. Suppose Assumptions 1, 2 hold. If we chose learning rate as η “ λmin{32 and
number of iteration as M “ 32{λ2

min, then Algorithm 1 has a convergence rate of:

Er||θ̃m ´ θ˚||2s ď

ˆ

5

7

˙m

||θ̃0 ´ θ˚||2.

Proof. The proof is given in Appendix B

Note that deriving a convergence rate in terms of squared norm ||θ̃m ´ θ˚||2 leads to batch size
m to be Op1{λ2

minq, which is better than results in Du et al. (2017), since their results has com-
plexity Opκ2pCqκ2

Gq, where κpCq is condition number of matrix C “ EsPDrϕpsqϕpsqT s and
κG91{λminpATC´1Aq. Experimental comparison of these values is provided in Subsection H.1
.
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4.3 FIRST MAIN RESULT: CONVERGENCE IN TERMS OF fpθq

In this section derive a bound in terms of fpθq. For analysis to be simpler and illustrative we
introduce one more assumption which we ease in section 4.5.
Assumption 3 (Dataset Balance). In the dataset D first state of the first sample and the second state
of the last sample is the same state, i.e. s1 “ sN`1.

We need this assumption to omit dataset bias, so that states s and s1 have the same distribution, as in
the original MDP. Having this assumption, we can proof theorem 1:
Theorem 1. Suppose Assumptions 1, 2, 3 hold. If we choose learning rate η “ 1{8 and number of
inner loop iterations M “ 16{λmin, then Algorithm 1 will have a convergence rate of:

Erfpθ̃mqs ď

ˆ

2

3

˙m

fpθ̃0q.

Note that θ̃m refers to the iterate after m iterations of the outer loop. Because we choose the length
M of the inner loop to be 16{λmin, the total number of samples guaranteed by this theorem until
Erfpθ̃mqs ď ϵ is actually p16{λminq logp1{ϵq.

Proof of Theorem 1. The proof is given in Appendix C.

Convergence analysis without Assumption 3 provided in Appendix Section D.

4.4 SIMILARITY OF SVRG AND TD-SVRG

Liu & Olshevsky (2020) show that negation to mean-path update ´ḡpθq is a gradient splitting of
fpθq. In this work we show even greater importance of function fpθq for TD learning process.
Recall convergence rate obtained in Johnson & Zhang (2013) for sum of convex functions setting:

1

γηp1 ´ 2Lηqm
`

2Lη

1 ´ 2Lη
,

where γ is a strong convexity parameter and L is Lipschitz smoothness parameter (employing nota-
tion from the original paper). Function fpθq “ pθ ´ θ˚qTApθ ´ θ˚q is 2λminpAq strongly convex
and 2-Lipschitz smooth, which means that convergence rate obtained in this paper is identical to the
convergence rate of SVRG in convex setting (we have slightly better bound L instead of 2L due to
strong bound on wpθq we derived for this setting). This fact further extends the analogy between TD
learning and convex optimization earlier explored by Bhandari et al. (2018) and Liu & Olshevsky
(2020).

5 BATCHING SVRG CASE ANALYSIS

In this section we extend our results to inexact mean-path update computation, applying the results of
Babanezhad et al. (2015) to TD SVRG algorithm. We show that geometric convergence rate might
be achieved with smaller number of computations by estimating mean-path TD-update instead of
performing full computation. This approach is similar to Peng et al. (2019), but again doesn’t require
introduction of dual variables. In addition, we provide a particular way to compute nm, which might
be used in practice.

Since computation of mean-path error is not related to the dataset balance, in this section for sim-
plicity we assume that dataset is balanced.
Theorem 2. Suppose Assumptions 1, 2, 3 hold, then if learning rate is chosen as η “ 1{8 number of
inner loop iterations M “ 16{λmin and batch size nm “ minpN, N

cρ2mpN´1q
p2|rmax|2`8||θ̃m||2qq,

where c is a parameter, Algorithm 2 will have a convergence rate of:

Erfpθ̃mqs ď ρmpfpθ̃0q ` Cq,

where ρ P p0, 1q is convergence rate and C is some constant.
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Algorithm 2 TD-SVRG with batching for finite sample case
Parameters update frequency M and learning rate η
Initialize θ̃0.
Iterate: for m “ 1, 2, . . .

θ “ θ̃m´1,
choose batch size nm,
sample batch Dm of size nm from D without replacement,
compute µ “ 1

nm

ř

s,s1PDm gs,s1 pθq,
where gs,s1 pθq “ prps, s1q ` γϕps1qT θ ´ ϕpsqT θqϕpstq,
θ0 “ θ̃.
Iterate: for t “ 1, 2, . . . ,M

Randomly sample s, s1 from D and compute update vector
vt “ gs,s1 pθt´1q ´ gs,s1 pθ̃q ` µ,
Update parameters θt “ θt´1 ´ ηvt.

end
set θ̃m “ θt for randomly chosen t P p0, . . . ,M ´ 1q.

end

Proof. The proof is given in Appendix E.

This theorem shows that during early epochs approximation of mean-path update is good enough
to guarantee geometric convergence. However, the batch size used for approximation increases
geometrically with each epoch with rate ρ2, where ρ is a desired convergence rate, until it reaches
size of the dataset N . The constant C depends on parameter c and upper bound Z “ maxθp|θ´θ˚|),
where the max is taken over all parameter vectors seen during the run of the algorithm.

6 SECOND MAIN RESULT: ONLINE IID SAMPLING FROM THE MDP

In this section we apply TD learning as gradient splitting analysis to the case of online i.i.d sampling
from the MDP each time we need to generate a new state s. We show that this view of TD learning
as gradient splitting might be applied in this case to derive tighter convergence bounds. One issue
of TD-SVRG in i.i.d. setting is that mean-path update may not be computed directly. However, this
issue might be addressed with sampling technique introduced in Section 5, which makes i.i.d. case
very similar to TD-SVRG with non-exact mean-path computation in finite samples case.

In this setting, geometric convergence is clearly not attainable with variance reduction, which always
relies on a pass through the entire dataset. Since here there is no data set, and one samples from the
MDP at every step, one clearly cannot make a pass through all states of the MDP (or, rather, this is
unrealistic to do in practice). To obtain convergence, one needs to take increasing batch sizes. Our
next theorem does so, while improving the scaling with condition number from quadratic to linear.

TD-SVRG algorithm for iid sampling case is very similar to Algorithm 2, with only difference that
states s, s1 are being sampled from the MDP instead of the dataset D. Formal definition of Algorithm
3 might be found in section F.

Theorem 3. Suppose Assumptions 1, 2 hold, then if learning rate is chosen as η “ 1{8, number of
inner loop iterations M “ 16{λmin and batch size nm “ 1

cρ2m p2|rmax|2 `8||θ||2q, where c is some
arbitrary chosen constant, Algorithm 3 will have a convergence rate of:

Erfpθ̃mqs ď ρmpfpθ̃0q ` Cq,

where ρ P p0, 1q is convergence rate and C is some constant.

Proof. The proof is given in Appendix F.

To parse this, observe that as in 5, each epoch requires nm computations to estimate mean-path
update and 16{λmin to perform inner loop iterations. Thus, as epoch number m grows, nm will

7



Under review as a conference paper at ICLR 2023

dominate 16{λmin, which results in the total computational complexity of Opmaxp 1
ϵ ,

1
λmin

q logp 1
ϵ qq,

which is better than Opmaxp 1
ϵ ,

1
λ2
min

q logp 1
ϵ qq shown by Xu et al. (2020) when λmin ą ϵ.

In practice, λmin is determined by the MDP and the feature matrix, while ϵ is a desired accuracy,
thus, the former is given and the latter might be chosen. In most scenarios, λmin is a small number
and ϵ is chosen such that ϵ ă λmin. Even if this is not a case, λ2

min is a very small number and most
likely ϵ ă λ2

min. Thus, in the absolute majority of cases results shown in this paper are stronger.

The same convergence result with predetermined constant learning rate cannot be derived for Marko-
vian sampling case, in which update sampling strategy is different from one in classical SVRG
sampling. However, gradients splitting interpretation of TD learning still allows to achieve better
convergence guarantees than in previous works for the absolute majority of problems. Algorithm,
discussion and convergence proof is provided in Appendix Section G.

7 EXPERIMENTS

Figure 1: Average performance of different algorithms in finite sample case. Columns - dataset
source environments: MDP, Acrobot, CartPole and Mountain Car. Rows - performance measure-
ments: logpfpθqq and logp|θ ´ θ˚|q.

7.1 ALGORITHMS COMPARISON

In this set of experiments we compare the performance of TD-SVRG with GTD2 Sutton et al. (2009),
Vanilla TD learning Sutton (1988) and PD SVRG Du et al. (2017) in finite sample setting. Generally,
experiment set-up is similar to Peng et al. (2019). Datasets of size 5000 are generated from 4
environments: Random MDP Dann et al. (2014) and Acrobot, CartPole and Mountain car OpenAI
Gym environments Brockman et al. (2016). For Random MDP, we construct MDP environment with
|S| “ 400, 21, features and 10 actions, with actions choice probabilities generated from U r0, 1q.
For OpenAI gym environments, agent select states uniformly at random. Features constructed by
applying RBF kernels to original states and then removing highly correlated features (correlation
coefficient ą 0.5). To produce datasets of similar sizes we resampled dataset if smallest eigen-value
of its matrix A was outside the interval r0.32, 0.54s ¨ 10´4, which corresponds to TD-SVRG batch
sizes between 30000 and 50000. Decay rate γ is set to 0.95.

Hyperparameters for algorithms selected as follows: for TD-SVRG theoretically justified parameters
are selected, learning rate η “ 1{8 and number of inner loop computations M “ 16{λmin; for
GTD2 we used parameters which are suggested for small problems α “ 1 and β “ 1. For vanilla
TD decreasing learning rates are set to α “ 1{

?
t and α “ 1{t. For PD-SVRG setting parameters

to theoretically suggested is not feasible, since even for simple problems values of number of inner
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loop computations M is too large (see Appendix Subsection H.1). Following original paper Du
et al. (2017) we run a simple grid search are pick best performing values, which are σθ “ σw “

0.1{λmaxpĈq. Results presented on Figure 1. Each algorithm for each setting was run 10 times,
average result is presented. As theory predicts, TD-SVRG and PD-SVRG converge geometrically,
while GTD and vanilla TD converge sub linearly.

7.2 ONLINE IID SAMPLING FROM THE MDP

Figure 2: Average performance of TD-SVRG, VRTD and vanilla TD in i.i.d. sampling case. ”TD-
decr” refers to vanilla TD with decrasing learning rate, ”TD-const” - to vanilla TD with constant
learning rate. Left figure - performance in terms of logpfpθqq, right in terms of logp|θ ´ θ˚|q.

In this set of experiments we compare the performance of TD-SVRG, VRTD and three Vanilla TD
with fixed and decreasing learning rates in i.i.d. sampling case. States and rewards are sampled from
the same MDP as in Section 7.1. Hyperparameters are chosen as follows: for TD-SVRG - learning
rate η “ 1{8, number of inner loop computations M “ 16{λmin. VRTD - learning rate α “ 0.1
and batch size M “ 2000. For vanilla TD with constant learning rate its value set to 0.1 and for
decreasing learning rate it is 1{t, where t is number of performed update. Average results over 10
runs presented on Figure 2.

7.3 REPRODUCIBILITY

Authors provide a link to anonynous github repository with code and instruction how to reproduce
the experiments.

8 CONCLUSION

In the paper we utilize a view on TD learning as splitting of gradient descent to show that SVRG
technique applied to TD updates attain similar convergence rate as SVRG in convex function set-
ting. Our analysis addresses both finite sample and i.i.d. sampling cases, which previously were
analyzed separately, and improves state of the art bounds in both cases. In addition we show that
gradient splitting interpretation helps to improve convergence guarantees in Markovian sampling
case. The algorithms based on our analysis have fixed learning rate and small number of inner loop
computation, easy to implement and demonstrates good performance during experiments.
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C Narayanan and Csaba Szepesvári. Finite time bounds for temporal difference learning with func-
tion approximation: Problems with some “state-of-the-art” results. Technical report, Technical
report, 2017.

Zilun Peng, Ahmed Touati, Pascal Vincent, and Doina Precup. SVRG for policy evaluation with
fewer gradient evaluations. CoRR, abs/1906.03704, 2019.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient, 2013.

R. Srikant and Lei Ying. Finite-time error bounds for linear stochastic approximation and TD learn-
ing. CoRR, abs/1902.00923, 2019.

Richard Sutton. Learning to predict by the methods of temporal differences. Mach Learn, 3, 1988.

Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba
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A PROOF OF LEMMA 1

The proof follows the same logic as in Johnson & Zhang (2013) and organized in four steps.
Step A.1. In the original paper proof starts with deriving a bound on the squared norm of the
difference between current and optimal sets of parameters. Since the introduction of wpθq this step
in our proof is trivial.

Es,s1 ||gs,s1 pθq ´ gs,s1 pθ˚q||2 “ wpθq

Step A.2. During Step 2 we derive a bound on the norm of an single iteration t update vt “

gs,s1 pθt´1q ´ gs,s1 pθ̃q ` ḡpθ̃q, assuming that states s, s1 were sampled randomly during step t:

Es,s1 r||vt||
2s “ E||gs,s1 pθt´1q ´ gs,s1 pθ̃q ` ḡpθ̃q||2

“ Es,s1 ||pgs,s1 pθt´1q ´ gs,s1 pθ˚qq ` pgs,s1 pθ˚q ´ gs,s1 pθ̃q ` ḡpθ̃q||2

ď 2Es,s1 ||pgs,s1 pθt´1q ´ gs,s1 pθ˚qq||2

` 2Es,s1 ||gs,s1 pθ̃q ´ gs,s1 pθ˚q ´ pḡpθ̃q ´ ḡpθ˚qq||2

“ 2Es,s1 ||pgs,s1 pθt´1q ´ gs,s1 pθ˚qq||2 ` 2Es,s1 ||gs,s1 pθ̃q ´ gs,s1 pθ˚q

´ Es,s1 rgs,s1 pθ̃q ´ gs,s1 pθ˚qs||2

ď 2Es,s1 ||pgs,s1 pθt´1q ´ gs,s1 pθ˚qq||2 ` 2Es,s1 ||gs,s1 pθ̃q ´ gs,s1 pθ˚q||2

“ 2wpθt´1q ` 2wpθ̃q

The first inequality uses E||a ` b||2 ď 2E||a||2 ` 2E||b||2. The second inequality uses the face that
second central moment is smaller than second moment. The last equality uses the equality from step
1.
Step A.3. During this step we derive a bound on the expected squared norm of a distance to optimal
parameter vector after a single update t:

Es,s1 ||θt ´ θ˚||2 “ Es,s1 ||θt´1 ´ θ˚ ` ηvt||
2

“ ||θt´1 ´ θ˚||2 ` 2ηpθt´1 ´ θ˚qEvt ` η2E||vt||
2

ď ||θt´1 ´ θ˚||2 ` 2ηpθt´1 ´ θ˚qḡpθt´1q ` 2η2wpθt´1q ` 2η2wpθ̃q

“ ||θt´1 ´ θ˚||2 ´ 2ηfpθt´1q ` 2η2wpθt´1q ` 2η2wpθ̃q

The inequality uses the bound obtained in step 2. After rearranging terms it becomes:

E||θt ´ θ˚||2 ` 2ηfpθt´1q ´ 4η2wpθt´1q ď ||θt´1 ´ θ˚||2 ` 4η2wpθ̃q

Step A.4. During this step we sum the inequality obtained in Step 3 over the epoch and take expec-
tations with respect to all choices of pair of states s, s1 and all previous history and use the random
choice property to obtain Equation 1 which relates parameter vectors of two consecutive epochs:

M
ÿ

t“1

E||θt ´ θ˚||2 `

M
ÿ

t“1

2ηEfpθt´1q ´

M
ÿ

t“1

2η2Ewpθt´1q ď

M
ÿ

t“1

E||θt´1 ´ θ˚||2 `

M
ÿ

t“1

2η2Ewpθ̃q

We analyze this expression term-wise.
řM

t“1 E||θt´1 ´ θ˚||2 and
řM

t“1 E||θt ´ θ˚||2 consist of same terms, except the first term in the first
sum and the last term in the last sum, which are E||θ0´θ˚||2 and E||θM ´θ˚||2. Since E||θM ´θ˚||2

is always positive and it is on the left hand side of the inequality, we could drop it.

We denote the parameter vector θ chosen for epoch parameters in the end of the epoch θ̃m. Since this
vector is chosen uniformly at random among all iteration vectors θt,

řM
t“1 Efpθt´1q “ MEfpθ̃mq

and
řM

t“1 Ewpθt´1q “ MEwpθ̃mq.

11
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At the same time, θ̃, which was chosen in the end of the previous epoch remains the same throughout
the epoch, therefore,

řM
t“1 Ewpθ̃q “ MEwpθ̃q. Note, that current epoch starts with setting θ0 “ θ̃.

Also, to underline it is previous epoch, we denote it as θ̃m´1.

Plugging this values in we have 3:

2ηMEfpθ̃mq ´ 2Mη2Ewpθ̃mq ď E||θ̃m´1 ´ θ˚||2 ` 2η2MEwpθ̃m´1q

B PROOF OF PROPOSITION 1

To transform inequality 3 from Lemma 1 into convergence rate guarantee, we need to bound wpθq

and fpθq in terms of ||θ ´ θ˚||2. Both bounds are easy to show:

wpθq “ Es,s1 ||gs,s1 pθq ´ gs,s1 pθ˚q||2

“ pθ ´ θ˚qTEs,s1 rpγϕps1q ´ ϕpsqqϕpsqTϕpsqpγϕps1q ´ ϕpsqqT spθ ´ θ˚q

ď pθ ´ θ˚qTEs,s1 r||pγϕps1q ´ ϕpsqq|| ¨ ||ϕpsq|| ¨ ||ϕpsq|| ¨ ||pγϕps1q ´ ϕpsqq||spθ ´ θ˚q

ď 4||θ ´ θ˚||2,

fpθq “ pθ ´ θ˚qTEs,s1 rϕpsqpϕpsq ´ γϕps1qqT spθ ´ θ˚q ě λmin||θ ´ θ˚||2.

Plugging these bounds into Equation 3 we have:

p2ηMλmin ´ 8Mη2q||θ̃m ´ θ˚||2 ď p1 ` 8Mη2q||θ̃m´1 ´ θ˚||2.

Which yields epoch to epoch convergence rate of:

1 ` 8Mη2

2ηMλmin ´ 8Mη2
.

For this expression to be ă 1, we need that ηM to be Op1{λminq, which means that η needs to be
Opλminq for Mη2 to be Op1q. Therefore, M need to be Op1{λ2

minq. Setting η “ λmin{32 and
m “ 32{λ2

min yields convergence rate of 5{7.

C PROOF OF THEOREM 1

The same as in the previous section, we start with deriving bounds, but this time we bound ||θ´θ˚||2

and wpθq in terms of fpθq. First bound is straightforward:

fpθq “ pθ ´ θ˚qTEϕ,ϕ1 rϕpϕ ´ γϕ1qT spθ ´ θ˚q ùñ ||θ ´ θ˚||2 ď
1

λmin
fpθq.

For wpθq we have:

12
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wpθq “ pθ ´ θ˚qTEs,s1 rpγϕps1q ´ ϕpsqqϕpsqTϕpsqpγϕps1q ´ ϕpsqqT spθ ´ θ˚q

“ pθ ´ θ˚qT
“ 1

N

ÿ

s,s1PD
pγϕps1q ´ ϕpsqqϕT psqϕpsqpγϕps1q ´ ϕpsqqT

‰

pθ ´ θ˚q

ď pθ ´ θ˚qT
“ 1

N

ÿ

s,s1PD
pγϕps1q ´ ϕpsqqpγϕps1q ´ ϕpsqqT

‰

pθ ´ θ˚q

“ pθ ´ θ˚qT
“ 1

N

ÿ

s,s1PD
γ2ϕps1qϕps1qT ´ γϕps1qϕpsqT

‰

pθ ´ θ˚q ` fpθq

“ pθ ´ θ˚qT
“ 1

N

ÿ

s,s1PD
γ2ϕpsqϕpsqT ´ γϕpsqϕps1qT

‰

pθ ´ θ˚q ` fpθq

ď 2fpθq,

(4)

first inequality uses Assumption 2, third equality uses Assumption 3, (
ř

s1 γ2ϕps1qϕps1qT “
ř

s γ
2ϕpsqϕpsqT , since s and s1 are the same set of states). The last inequality uses the fact that

γ ă 1.

Plugging these bound into Equation 3, we have:

2ηMEfpθ̃mq ´ 4Mη2Efpθ̃mq ď
1

λmin
Efpθ̃m´1q ` 4η2MEfpθ̃m´1q,

which yields epoch to epoch convergence rate of:

Efpθ̃mq ď

” 1

2λminηMp1 ´ 2ηq
`

2η

1 ´ 2η

ı

Efpθ̃m´1q.

Setting η “ 1
8 and M “ 16

λmin
we have the desired inequality.

D CONVERGENCE ANALYSIS WITHOUT DATASET BALANCE

In this section we show the convergence bound for the problem without Assumption 3. In this case,
the problem is that after the sampling, s and s1 in the dataset does not have the same distribution, i.e.,
the first element of the tuples pst, at, rt, st`1q in our dataset D need not have the same distribution
as the last element of this tuple. Indeed, it could happen that a particular state occurs a different
numbers of times as the first element of the tuples in D as compared to the last element, which would
not happen under Assumption 3. When this happens, we will say that the data set is unbalanced. In
that case, ḡpθq need not be a gradient splitting of function fpθq.

One might hope that, when the size of the data set N is large, this effect has an impact which decays
to zero with N . Our second main result shows something even stronger: we show that the effect of
unbalacedness disappears completely for large N . Thus our next theorem completely recovers the
performance attained by Theorem 1 for large N . The catch is the size of the dataset has to be at least
as big as λ´1

min for this to happen.

Theorem 4. Suppose Assumptions 1, 2 hold and dataset is unbalanced. Define error term J “
4γ2

Nλmin
. Then, if we choose learning rate η “ 1{p8 ` Jq and number of inner loop iterations

M “ 2{pλminηq, Algorithm 1 will have a convergence rate of:

Erfpθ̃mqs ď

ˆ

2

3

˙m

fpθ̃0q.

Proof. The proof is given in Appendix D.1.

Note, that in this case η P Op 1
maxp1,1{pNλminqq

q and M P Op 1
λminη

q, which always better than
parameters required to guarantee convergence of ||θ´θ˚||2 (Proposition 1). Note that the guarantees
of this theorem are identical to the guarantees of Theorem 1 in the unbalanced case when N ě λ´1

min.
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D.1 PROOF OF THEOREM 4

To proof the theorem we follow the same strategy as in C. For the fpθq we can use the same bound:

fpθq “ pθ ´ θ˚qTEϕ,ϕ1 rϕpϕ ´ γϕ1qT spθ ´ θ˚q ùñ ||θ ´ θ˚||2 ď
1

λmin
fpθq

Bound for wpθq is a little bit more difficult:

wpθq “ pθ ´ θ˚qT
“ 1

N

ÿ

s,s1PD
pγϕps1q ´ ϕpsqqϕT psqϕpsqpγϕps1q ´ ϕpsqqT

‰

pθ ´ θ˚q

ď pθ ´ θ˚qT
“ 1

N

ÿ

s,s1PD
pγϕps1q ´ ϕpsqqpγϕps1q ´ ϕpsqqT

‰

pθ ´ θ˚q

“ pθ ´ θ˚qT
“ 1

N

ÿ

s,s1PD
γϕps1qpγϕps1q ´ ϕpsqqT ´ ϕpsqpγϕps1q ´ ϕpsqqT

‰

pθ ´ θ˚q

“ pθ ´ θ˚qT
“ 1

N

ÿ

s,s1PD
γ2ϕps1qϕps1qT ´ γϕps1qϕpsqT

‰

pθ ´ θ˚q ` fpθq

“ pθ ´ θ˚qT
“ 1

N

ÿ

s,s1PD
γ2ϕpsqϕpsqT ´ γϕpsqϕps1qT

‰

pθ ´ θ˚q ` fpθq

`
γ2

N
pθ ´ θ˚qT pϕpsN`1qϕpsN`1qT ´ ϕps1qϕps1qT qpθ ´ θ˚qT

ď 2fpθq `
γ2

N
pθ ´ θ˚qT pϕpsN`1qϕpsN`1qT ´ ϕps1qϕps1qT qpθ ´ θ˚qT .

The first inequality follows from the assumption about norms of feature vectors. The third equality
is obtained by adding and subtracting γ2

N pθ´θ˚qTϕps1qϕps1qT pθ´θ˚q. Second inequality uses the
fact that γ2 ă 1. We denote maximum eigen-value of matrix ϕpsN`1qϕpsN`1qT ´ ϕps1qϕps1qT as
K (note that K ď 1). Thus,

wpθq ď 2fpθq `
γ2K
N

||θ ´ θ˚||2 ď fpθqp2 `
γ2K

Nλmin
q ď

γ2

Nλmin

Plugging these bounds into Equation 3 we have:

p2ηM ´ 2Mη2p2 `
γ2

Nλmin
qqEfpθ̃mq ď p

1

λmin
` 2η2Mp2 `

γ2

Nλmin
qqfpθ̃q

Which yields convergence rate of:

1

λmin2ηMp1 ´ ηp2 `
γ2

Nλmin
qq

`
ηp2 `

γ2

Nλmin
q

1 ´ ηp2 `
γ2

Nλmin
q

To achieve constant convergence rate, for example 2
3 , we set up η such that ηp2 `

γ2

Nλmin
q “ 0.25,

thus the second term is equal to 1/3 and η “ 1

8`
4γ2

Nλmin

. Then, to make the first term equal to 1/3,

we need to set

M “
2

λminη
“

2

λmin
1

8`
4γ2

Nλmin

Thus, η is a scale of 1
maxp1,1{pNλminq

and M is a scale of 1
λmin minp1,Nλminq

.
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E PROOF OF THEOREM 3

In the first part of the proof we derive an inequality which relates model parameters of two consec-
utive epochs similar to what we achieved in previous proofs, but with error term. In this part of the
proof we follow the same 4 steps logic as while proof of Lemma 1. In the second part of the proof
we show that there are conditions under which error term converges to 0.
Step E.1. During the first step we use the bound obtained in inequality 4:

wpθq ď 2fpθq

Step E.2. During this step we derive a bound on the squared norm of a single update Er||vt||
2s.

But now, compared to previous case, we do not compute the exact mean-path updated ḡpθq, but its
estimate, and assume our computation has error µ “ ḡpθq ` e. Thus the single update vector will
be

vt “ gpθt´1q ´ gpθ̃q ` ḡpθ̃q ` e

Thus, the bound on the single update might be derived as:

Er||vt||
2s “ E||gpθt´1q ´ gpθ̃q ` ḡpθ̃q ` e||2

“ E||pgpθt´1q ´ ḡpθ˚qq ` pḡpθ˚q ´ gpθ̃q ` ḡpθ̃q ` eq||2

ď 2E||pgpθt´1q ´ gpθ˚qq||2 ` 2E||gpθ̃q ´ gpθ˚q ´ pḡpθ̃q ´ ḡpθ˚qq ´ e||2

“ 2E||pgpθt´1q ´ gpθ˚qq||2 ` 2E||gpθ̃q ´ gpθ˚q ´ Ergpθ̃q ´ gpθ˚qs ´ e||2

“ 2E||pgpθt´1q ´ gpθ˚qq||2 ` 2E||gpθ̃q ´ gpθ˚q ´ Ergpθ̃q ´ gpθ˚qs||2

´ 2Exgpθ̃q ´ gpθ˚q ´ 4Ergpθ̃q ´ gpθ˚qs, ey ` 2E||e||2

ď 2E||pgpθt´1q ´ gpθ˚qq||2 ` 2E||gpθ̃q ´ gpθ˚q||2 ` 2E||e||2

“ 2wpθt´1q ` 2wpθ̃q ` 2E||e||2

ď 4fpθt´1q ` 4fpθ̃q ` 2E||e||2,

where first inequality uses E||A ` B||2 ď 2E||A||2 ` 2E||B||2, second inequality uses E||A ´

ErAs||2 ď E||A||2 and the third inequality uses the result of Step E.1.
Step E.3. During this step, we derive a bound on a vector norm after a single update:

E||θt ´ θ˚||2 “ E||θt´1 ´ θ˚ ` p´ηvtq||2

“ ||θt´1 ´ θ˚||2 ´ 2ηpθt´1 ´ θ˚qTEvt ` η2E||vt||
2

ď ||θt´1 ´ θ˚||2 ´ 2ηpθt´1 ´ θ˚qT ḡpθt´1q ` 4η2fpθt´1q ` 4η2fpθ̃q ` 2η2E||e||2

“ ||θt´1 ´ θ˚||2 ´ 2ηpθt´1 ´ θ˚qT∇fpθt´1q ´ 2ηpθt´1 ´ θ˚qT e

` 4η2fpθt´1q ` 4η2fpθ̃q ` 2η2E||e||2

Rearranging terms we obtain:

E||θt ´ θ˚||2 ` 2ηfpθt´1q ´ 4η2fpθt´1q

ď ||θt´1 ´ θ˚||2 ` 4η2fpθ̃q ´ 2ηpθt´1 ´ θ˚qT e ` 2η2E||e||2

ď ||θt´1 ´ θ˚||2 ` 4η2fpθ̃q ` 2η||θt´1 ´ θ˚|| ¨ ||e|| ` 2η2E||e||2

Step E.4. Now derive a bound on epoch update. We assume that quantity ||θt´1 ´ θ˚|| might be
bounded by constant Z. Similarly, we denote an error term from previous epoch as em´1. We use
the similar logic as during the proof of theorem 1. Since error term doesn’t change over the epoch,
thus, summing over the epoch we have:
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E||θm ´ θ˚||2 ` 2ηMEfpθ̃mq ´ 8η2MEfpθ̃mq ď

E||θ0 ´ θ˚||2 ` 8η2MEfpθ̃q ` 2MηZE||em´1|| ` 2η2ME||em´1||2

Rearranging terms we have the bound:

Efpθ̃mq ď p
1

λmin2ηMp1 ´ 4ηq
`

4η

1 ´ 4η
qEfpθ̃m´1q `

1

1 ´ 4η
pZE||em´1|| ` ηE||em´1||2q

To obtain convergence, we need to guarantee geometric convergence of first and second term in the
sum separately. The first term is dependent on inner loop updates, its convergence is analyzed in
Theorem 1. Here we show how to achieve a similar geometric convergence rate of the second term.
Since error term has 0 mean and it is finite sample case with replacement, expected squared norm
might be bounded by:

E||em||2 ď
N ´ nm

Nnm
S2 ď p1 ´

nm

N
q
S2

nm
ď

S2

nm

where S2 is a bound on update vector norm variance. If we want the error to be bounded by cρ2m,
we need the number of batch computations nm to satisfy the condition:

nm ě
S2

cρ2m

Satisfying this condition guarantees that the second term has geometric convergence:

1

1 ´ 4η
pZE||em´1|| ` ηE||em´1||2q ď

2

1 ´ 4η
maxpZ

?
c, ηcρqρm

It is only left to derive a bound S2 for on update vector norm sample variance:

1

N ´ 1

ÿ

s,s1

||gs,s1 pθq||2 ´ ||ḡpθq||2 ď

N

N ´ 1

1

N

ÿ

s,s1

||gs,s1 pθq||2 “
N

N ´ 1

1

N

ÿ

s,s1

||prps, s1q ` γϕps1qT θ ´ ϕpsqT θqϕpsq||2 ď

N

N ´ 1

1

N

ÿ

s,s1

2||rϕpsq||2 ` 4||γϕps1qT θϕpsq||2 ` 4||ϕpsqT θϕpsq||2 ď

N

N ´ 1
p2|rmax|2 ` 4γ2||θ||2 ` 4||θ||2q “

N

N ´ 1
p2|rmax|2 ` 8||θ||2q “ S2

F PROOF OF THEOREM 4

TD-SVRG algorithm for iid sampling case is described as Algorithm 3:

The proof of its convergence is very similar to E, the only difference is that now we derive expecta-
tion with respect to MDP instead of fixed dataset.
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Algorithm 3 TD-SVRG for iid sampling case
Parameters update frequency M and learning rate η
Initialize θ̃0.
Iterate: for m “ 1, 2, . . .

θ “ θ̃m´1,
choose batch size nm,
sample batch Dm of size nm,
compute µ “ 1

nm

ř

s,s1PDm gs,s1 pθq,
where gs,s1 pθq “ prps, s1q ` γϕps1qT θ ´ ϕpsqT θqϕpstq,
θ0 “ θ̃.
Iterate: for t “ 1, 2, . . . ,M

Randomly sample s, s1 and compute update vector
vt “ gs,s1 pθt´1q ´ gs,s1 pθ̃q ` µ,
Update parameters θt “ θt´1 ´ ηvt.

end
set θ̃m “ θt for randomly chosen t P p0, . . . ,M ´ 1q.

end

Step F.1. During the first step we use the bound obtained during the proof of theorem 1:

wpθq “ pθ ´ θ˚qTEs,s1 rpγϕps1q ´ ϕpsqqϕpsqTϕpsqpγϕps1q ´ ϕpsqqT spθ ´ θ˚q

“ pθ ´ θ˚qT
“

ÿ

s,s1

µπpsqP ps, s1qpγϕps1q ´ ϕpsqqϕT psqϕpsqpγϕps1q ´ ϕpsqqT
‰

pθ ´ θ˚q

ď pθ ´ θ˚qT
“

ÿ

s,s1

µπpsqP ps, s1qpγϕps1q ´ ϕpsqqpγϕps1q ´ ϕpsqqT
‰

pθ ´ θ˚q

“ pθ ´ θ˚qT
“

ÿ

s,s1

µπpsqP ps, s1qpγ2ϕps1qϕps1qT ´ γϕps1qϕpsqT q
‰

pθ ´ θ˚q ` fpθq

“ pθ ´ θ˚qT
ÿ

s,s1

µπpsqP ps, s1qpγ2ϕpsqϕpsqT ´ γϕpsqϕps1qT q
‰

pθ ´ θ˚q ` fpθq

ď 2fpθq,

(5)

first inequality uses Assumption 2, third equality uses the fact that µπ is a stationary distribution of
P (

ř

s1 γ2µπpsqP ps, s1qϕps1qϕps1qT “
ř

s1 γ2µπps1qϕps1qϕps1qT “
ř

s µπpsqγ2ϕpsqϕpsqT ). The
last inequality uses the fact that γ ă 1.

Step F.2. During this step we derive a bound on the squared norm of a single update Er||vt||
2s.

Similarly with E we assume inexact computation of mean-path update µ “ ḡpθq `e. Thus the single
update vector becomes:

vt “ gpθt´1q ´ gpθ̃q ` ḡpθ̃q ` e

Norm of this vector is bounded by:
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Er||vt||
2s “ E||gpθt´1q ´ gpθ̃q ` ḡpθ̃q ` e||2

“ E||pgpθt´1q ´ ḡpθ˚qq ` pḡpθ˚q ´ gpθ̃q ` ḡpθ̃q ` eq||2

ď 2E||pgpθt´1q ´ gpθ˚qq||2 ` 2E||gpθ̃q ´ gpθ˚q ´ pḡpθ̃q ´ ḡpθ˚qq ´ e||2

“ 2E||pgpθt´1q ´ gpθ˚qq||2 ` 2E||gpθ̃q ´ gpθ˚q ´ Ergpθ̃q ´ gpθ˚qs ´ e||2

“ 2E||pgpθt´1q ´ gpθ˚qq||2 ` 2E||gpθ̃q ´ gpθ˚q ´ Ergpθ̃q ´ gpθ˚qs||2

´ 2Exgpθ̃q ´ gpθ˚q ´ 4Ergpθ̃q ´ gpθ˚qs, ey ` 2E||e||2

ď 2E||pgpθt´1q ´ gpθ˚qq||2 ` 2E||gpθ̃q ´ gpθ˚q||2 ` 2E||e||2

“ 2wpθt´1q ` 2wpθ̃q ` 2E||e||2

ď 4fpθt´1q ` 4fpθ̃q ` 2E||e||2

where first inequality uses E||A ` B||2 ď 2E||A||2 ` 2E||B||2, second inequality uses E||A ´

ErAs||2 ď E||A||2 and the third inequality uses the result of Step F.1.
Step F.3. Bound on a vector norm after a single update:

E||θt ´ θ˚||2 “ E||θt´1 ´ θ˚ ` p´ηvtq||2

“ ||θt´1 ´ θ˚||2 ´ 2ηpθt´1 ´ θ˚qTEvt ` η2E||vt||
2

ď ||θt´1 ´ θ˚||2 ´ 2ηpθt´1 ´ θ˚qT ḡpθt´1q ` 4η2fpθt´1q ` 4η2fpθ̃q ` 2η2E||e||2

“ ||θt´1 ´ θ˚||2 ´ 2ηpθt´1 ´ θ˚qT∇fpθt´1q ´ 2ηpθt´1 ´ θ˚qT e

` 4η2fpθt´1q ` 4η2fpθ̃q ` 2η2E||e||2

Rearranging terms we obtain:

E||θt ´ θ˚||2 ` 2ηfpθt´1q ´ 4η2fpθt´1q

ď ||θt´1 ´ θ˚||2 ` 4η2fpθ̃q ´ 2ηpθt´1 ´ θ˚qT e ` 2η2E||e||2

ď ||θt´1 ´ θ˚||2 ` 4η2fpθ̃q ` 2η||θt´1 ´ θ˚|| ¨ ||e|| ` 2η2E||e||2

Step F.4. Now derive a bound on epoch update. We assume that quantity ||θt´1 ´ θ˚|| might be
bounded by constant Z. Similarly, we denote an error term from previous epoch as em´1. We use
the similar logic as during the proof of Theorem 1. Since error term doesn’t change over the epoch,
thus, summing over the epoch we have:

E||θm ´ θ˚||2 ` 2ηMEfpθ̃mq ´ 8η2MEfpθ̃mq ď

E||θ0 ´ θ˚||2 ` 8η2MEfpθ̃q ` 2MηZE||em´1|| ` 2η2ME||em´1||2

Rearranging terms we have the bound:

Efpθ̃mq ď p
1

λmin2ηMp1 ´ 4ηq
`

4η

1 ´ 4η
qEfpθ̃m´1q `

1

1 ´ 4η
pZE||em´1|| ` ηE||em´1||2q

Similarly to C convergence for the first term might be obtained by setting learning rate η “ 1{8 and
number of inner loop iterations M “ 16{λmin. To guarantee convergence of the second term, we
need to bound E||em||2. In the infinite population with replacement case norm of the error vector is
bounded by:

E||em||2 ď
S2

nm
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where S2 is a bound update vector norm variance. If we want the error to be bounded by cρ2m, we
need the number of batch computations nm to satisfy the condition:

nm ě
S2

cρ2m

Satisfying this condition guarantees that the second term has geometric convergence:

1

1 ´ 4η
pZE||em´1|| ` ηE||em´1||2q ď

2

1 ´ 4η
maxpZ

?
c, ηcρqρm

Similarly to E, bound on sample variance S2 might be derived as follows:
ÿ

s,s1

µπpsqP ps, s1q||gs,s1 pθq||2 ´ ||ḡpθq||2 ď

ÿ

s,s1

µπpsqP ps, s1q||gs,s1 pθq||2 “
ÿ

s,s1

µπpsqP ps, s1qp||prps, s1q ` γϕps1qT θ ´ ϕpsqT θqϕpsq||2q ď

ÿ

s,s1

µπpsqP ps, s1qp2||rϕpsq||2 ` 4||γϕps1qT θϕpsq||2 ` 4||ϕpsqT θϕpsq||2q ď

p2|rmax|2 ` 4γ2||θ||2 ` 4||θ||2q “ p2|rmax|2 ` 8||θ||2q “ S2

G MARKOVIAN SAMPLING CASE ALGORITHM AND ANALYSIS.

Markovian sampling case is the hardest to analyse due to its dependence on MDP properties, which
makes establishing bounds on various quantities used during the proof much harder. Applying
gradient splitting view helps to improve over existing bounds but derived algorithm does not have
a nice property of constant learning rate. To deal with sample-to-sample dependencies with utilize
one more assumption often used in the literature:

Assumption 4. The considered MDP is irreducible and aperiodic and there exist constant m ą 0
and ρ P p0, 1q such that

sup
sPS

dTV pPpst P ¨|s0 “ sq, πq ď mρt,@t ě 0,

where dTV pP,Qq denotes the total-variation distance between the probability measures P and Q.

Another thing we need to employ is projection, which will help to set a bound on update vector v.
Following Bhandari et al. (2018) and Xu et al. (2020) after each iteration we project parameter vector
on a ball or radius R (denoted as ΠRpθq “ argminθ1:|θ1|ďR |θ ´ θ1|2. We assume that |θ ˚ | ď R,
choice of R which guarantees it might be found in Bhandari et al. (2018), Section 8.2. Adding
projection results in Algorithm 4.

Guarantees of convergence of Algorithm 4 are given in Theorem 5.

Theorem 5. Suppose Assumptions 1, 2, 4 hold, then output of Algorithm 4 will satisfy:

Erfpθ̃sqs ď p
3

4
qsfpθ0q `

8C

λminnm
` 4ηp2G2p4 ` 6τmixpηqq ` 9R2q,

where C “
4p1`pm´1qρq

p1´ρq
r4R2 ` r2maxs.

Proof. The proof is given in Appendix G.1.

Theorem 5 implies that if we choose s “ Oplogp1{ϵqq, nm “ Op1{pλminϵqq and η “ Opϵ{ logp1{ϵq

and M “ Op
logp1{ϵq

ϵλmin
q, total sample complexity to achieve accuracy of ϵ is:
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Algorithm 4 TD-SVRG with batching for Markovian sampling case
Parameters update frequency M , learning rate η, projection radius R and batch size nm

Initialize θ̃0.
Iterate: for m “ 1, 2, . . .

θ “ θ̃m´1,
sample trajectory Dm of length nm,
compute µ “ 1

nm

ř

s,s1PDm gs,s1 pθq,
where gs,s1 pθq “ prps, s1q ` γϕps1qT θ ´ ϕpsqT θqϕpstq,
θ0 “ θ̃.
Iterate: for t “ 1, 2, . . . ,M

Randomly sample s, s1 and compute update vector
vt “ gs,s1 pθt´1q ´ gs,s1 pθ̃q ` µ,
Update parameters θt “ ΠRpθt´1 ´ ηvtq.

end
set θ̃m “ θt for randomly chosen t P p0, . . . ,M ´ 1q.

end

Op
log2p1{ϵq

ϵλmin
q

In the most practical application his result is better than Op 1
ϵλ2

min
logp1{ϵqq, since logp1{ϵq{λmin ą 1

for practical values of ϵ and λmin.

G.1 PROOF OF THEOREM 5

In the Markovian sampling case, we cannot simply apply Lemma 1; due to high estimation bias
the bounds on fpθq and wpθq will not be derived based on current value of θ, but based on global
constraints on the updates guaranteed by applying projection.

First, we analyse a single iteration on step t of epoch m, during which we apply the update vector
vt “ gtpθq ´ gtpθ̃q ` µpθ̃q. The update takes the form:

E||θt ´ θ˚||22 “ E||ΠRpθt´1 ` ηvtq ´ ΠRpθ˚q||22 ď E||θt´1 ´ θ˚ ` p´ηvtq||22 “

||θt´1 ´ θ˚||22 ` 2ηpθt´1 ´ θ˚qTErvts ` η2E||vt||
2
2 “

||θt´1 ´ θ˚||22 ` 2ηpθt´1 ´ θ˚qT pErgtpθt´1qs ´ Ergtpθ̃qs ` µpθ̃qq`

η2E||vt||
2
2,

(6)

where the expectation is taken with respect to s, s1 sampled during iteration t. Recall that under
Markovian sampling, Ergtpθt´1qs ‰ ḡpθt´1q and that for the expectation of the estimated mean-
path update we have Erµpθ̃q|sm´1s ‰ ḡpθ̃q, where sm´1 is the last state of epoch m ´ 1. To
tackle this issue, we follow the approach introduced in a previous works (Bhandari et al. (2018), Xu
et al. (2020)) and rewrite the expectation as a sum of mean-path update and error terms. Similar to
Bhandari et al. (2018), we denote the error term on a single update as ζ:

ζtpθq “ pθ ´ θ˚qT pgtpθq ´ ḡpθqq.

For an error term on the trajectory we follow Xu et al. (2020) and denote it as ξ:

ξmpθq “ pθ ´ θ˚qT pµpθq ´ ḡpθqq.

Applying this notation, 6 can be rewritten as:
E||θt ´ θ˚||22 ď||θt´1 ´ θ˚||22`

2ηpθt´1 ´ θ˚qT pErgt´1pθt´1qs ´ Ergtpθ̃qs ` µpθ̃qq ` η2E||vt||
2
2 “

||θt´1 ´ θ˚||22 ` 2η
“

pErζtpθt´1qs ` pθt´1 ´ θ˚qT ḡpθt´1qq´

pErζtpθ̃qs ´ pθt´1 ´ θ˚qT ḡpθ̃qq`

pErξpθ̃qs ´ pθt´1 ´ θ˚qT ḡpθ̃qq
‰

` η2E||vt||
2
2.

(7)
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Error terms can be bounded by slightly modified lemmas from the original papers. For ζpθq, we
apply a bound from Lemma 11 in Bhandari et al. (2018):

|Erζtpθqs| ď G2p4 ` 6τmixpηqqη. (8)

In the original lemma, a bound on Erζtpθqs is stated, however, in the proof a bound on absolute
value of the expectation is also derived.

For mean-path estimation error term, we use a modified version of Lemma 1 in Xu et al. (2020).
The proof of this lemma in the original paper starts by applying the inequality

aT b ď
k

2
||a||2 `

1

2k
||b||2

to the expression pθ ´ θ˚qT pµpθq ´ ḡpθqq, with k “ λA{2 (using the notation in Xu et al. (2020)).
For the purposes of our proof we use k “ λmin. Thus, we will have the expression:

Erξmpθqs ď
λmin

2
Er||θ ´ θ˚||22|sm´1s `

4p1 ` pm ´ 1qρq

λminp1 ´ ρqnm
r4R2 ` r2maxs “

λmin

2
Er||θ ´ θ˚||22|sm´1s `

C

λminnm
.

(9)

Also, note, that the term E||vt||
2
2 might be bounded as E||vt||

2
2 ď 18R2. Plugging 8 and 9 bounds

into 7 we obtain:

E||θt ´ θ˚||22 ď||θt´1 ´ θ˚||22 ´ 2ηfpθt´1q ` 4η2G2p4 ` 6τmixpηqq`

2ηp
λmin

2
||θ̃ ´ θ˚||22 `

C

λminnm
q ` 18η2R2.

Summing the inequality over the epoch and taking expectation with respect to all previous history,
we have:

2ηMErfpθ̃sqs ď||θ̃s´1 ´ θ˚||22 ` 2ηMp
λmin

2
||θ̃s´1 ´ θ˚||22 `

C

λminnm
q`

η2Mp4G2p4 ` 6τmixpηqq ` 18R2q.

Then we divide both sides by 2ηM and use ||θ̃s´1 ´ θ˚||22 ď 1{λminfpθ̃s´1q to obtain:

Erfpθ̃sqs ďp
1

2λminηM
`

1

2
qfpθ̃s´1q `

C

λminnm
`

ηp2G2p4 ` 6τmixpηqq ` 9R2q.

We choose η and M such that ηMλmin “ 2. We then apply this inequality to the value of the
function f in the first term in the right-hand side recursively, which yields the desired result:

Erfpθ̃sqs ď p
3

4
qsfpθ0q `

8C0

λminnm
` 4ηp2G2p4 ` 6τmixpηqq ` 9R2q

H DETAILS ON ALGORITHM IMPLEMENTATION

H.1 COMPARISON OF THEORETIC BATCH SIZES

In this subsection we compare the values of batch sizes which are theoretically required to guarantee
convergence. We compare batch sizes of three algorithms: TD-SVRG, PDSVRG (Du et al. (2017))
and VRTD (Xu et al. (2020)). Note that PDSVRG and VRTD are algorithms for different settings,
but for TD-SVRG the batch size value is the same: 16{λmin, thus, we compare two algorithms in
the same table. We compare the batch sizes required by algorithm for three MDPs: first with 50
state, 20 action and γ “ 0.8, second with 400 state, 10 actions and γ “ 0.95, third with 1000
states, 20 actions and γ “ 0.99, with actions choice probabilities generated from U r0, 1q. (similar
to one used for experiments in Subsections 7.1 and 7.2). Since a batch size is dependent on the
smallest eigenvalue of the matrix A, which is, in turn, is dependent on the dimensionality of the
feature vector, we do the comparison for different feature vector sizes: 5, 10, 20 and 40 randomly
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generated features + 1 constant feature for each state. We generate 10 datasets and environments for
each feature size. Our results are summarized in tables 2, 3 and 4

Table 2: Comparison of theory suggested batch sizes for MDP with 50 states, 20 actions and γ “ 0.8.
Values in the first row are feature vectors dimensionality. Value in other rows: bitch size of a
corresponded method (row 1). Values are average over 10 generated datasets and environments.

Method/Features 6 11 21 41

TD-SVRG 2339 6808 21553 4.51 ¨ 105

PD SVRG 1.52 ¨ 1016 3.09 ¨ 1019 1.85 ¨ 1023 1.41 ¨ 1036

VRTD 3.07 ¨ 106 2.13 ¨ 107 3.79 ¨ 108 165 ¨ 1011

Table 3: Comparison of theory suggested batch sizes for MDP with 400 states, 10 actions and
γ “ 0.95. Values in the first row are feature vectors dimensionality. Value in other rows: bitch size
of a corresponded method (row 1). Values are average over 10 generated datasets and environments.

Method/Features 6 11 21 41

TD-SVRG 3176 6942 18100 54688

PD SVRG 1.72 ¨ 1016 3.83 ¨ 1018 3.06 ¨ 1021 5.77 ¨ 1024

VRTD 5.41 ¨ 106 2.53 ¨ 107 1.63 ¨ 108 1.58 ¨ 109

Table 4: Comparison of theory suggested batch sizes for MDP with 1000 states, 20 actions and
γ “ 0.99. Values in the first row are feature vectors dimensionality. Value in other rows: bitch size
of a corresponded method (row 1). Values are average over 10 generated datasets and environments.

Method/Features 6 11 21 41

TD-SVRG 9206 16096 32723 79401

PD SVRG 7.38 ¨ 1018 9.64 ¨ 1020 5.14 ¨ 1023 4.97 ¨ 1026

VRTD 4.35 ¨ 107 1.34 ¨ 108 5.44 ¨ 108 1.45 ¨ 109

H.2 BATCHED SVRG PERFORMANCE

In this set of experiments we compare the performance of TD-SVRG and batched TD-SVRG in
finite-sample case. We generate 10 datasets of size 50000 from the similar MDP as in Section 7.1.
Algorithms also run with the same hyperparameters. Average results over 10 runs presented on
Figure 3 and show, that batched TD-SVRG saves a lot of computations during the earlier epochs,
which provides faster convergence.
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Figure 3: Average performance of TD-SVRG and batching TD-SVRG in finite sample case.
Datasets sampled from MDP environments. Left figure - performance in terms of logpfpθqq. Right
figure - performance in terms of logp|θ ´ θ˚|q.
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