Giving Feedback on Interactive Student Programs

with Meta-Exploration

Evan Zheran Liu*, Moritz Stephan®, Allen Nie, Chris Piech, Emma Brunskill, Chelsea Finn

Stanford University

Abstract

Developing interactive software, such as websites or games, is a particularly
engaging way to learn computer science. However, teaching and giving feedback
on such software is time-consuming — standard approaches require instructors
to manually grade student-implemented interactive programs. As a result, online
platforms that serve millions, like Code.org, are unable to provide any feedback
on assignments for implementing interactive programs, which critically hinders
students’ ability to learn. One approach toward automatic grading is to learn
an agent that interacts with a student’s program and explores states indicative
of errors via reinforcement learning. However, existing work on this approach
only provides binary feedback of whether a program is correct or not, while
students require finer-grained feedback on the specific errors in their programs
to understand their mistakes. In this work, we show that exploring to discover
errors can be cast as a meta-exploration problem. This enables us to construct a
principled objective for discovering errors and an algorithm for optimizing this
objective, which provides fine-grained feedback. We evaluate our approach on a
set of over 700K real anonymized student programs from a Code.org interactive
assignment. Our approach provides feedback with 94.3% accuracy, improving over
existing approaches by 17.7% and coming within 1.5% of human-level accuracy.

Project web page: https://ezliu.github.io/dreamgrader

1 Introduction

Feedback plays a critical role in
high-quality education, but can
require significant time and expertise
to provide [7]. We focus on one
area where providing feedback is
particularly burdensome: modern
computer science education, where
students are often tasked with devel-
oping interactive programs, such as
websites or games (e.g., see Figure|1).
While developing such programs
is highly engaging [35] and has
become ubiquitous in contemporary
classrooms [12], these programs
can include stochastic or creative
elements, so they cannot be graded
with traditional unit tests and must
instead be manually graded. However,
such manual grading is increasingly

) < !! Existing work (Nie et al, 21):
Coarse binary feedback

ot ! !Su°= The program is
- incorrect
(AL

This work: Fine-grained feedback

" w =0u°=’ The ball incorrectly
) bounces off the goal
-_ - &

Agent plays student program to find bugs Agent provides feedback

Figure 1: A learned Play-to-Grade agent for the Bounce program-
ming assignment. The agent tests what happens when the ball is hit
into the goal, and finds that the ball incorrectly bounces out instead
of scoring a point. Whereas prior work provides coarse feedback
of whether the program is correct or not, our goal is to provide
fine-grained feedback on the specific mistakes a student has made.

*Co-first authors. Correspondence to evanliu@cs.stanford.edu.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

infeasible with the growing demand for computer science education and rise of massive online
learning platforms. For example, one popular platform, Code.org has enrolled over 70M students [7].
As manually grading a submission can take up to 6 minutes, a single assignment creates decades
of grading labor. Consequently, platforms like Code.org cannot yet provide feedback about whether
an interactive assignment submission is correct or not, let alone more fine-grained feedback.

To alleviate this enormous grading burden, Nie et al. [30] introduce the Play-to-Grade paradigm for
automatically providing feedback by training a reinforcement learning agent to grade a program the
same way humans do: by interacting or playing with the program. The idea is for the agent to visit
states that reveal errors in the program, and then aggregate this information as feedback. Such an agent
is trained on a set of training programs labeled with feedback (e.g., provided by an instructor), and the
goal is to generalize to new student programs. Figureshows an example learned agent that tests what
happens when the ball is hit into the goal, exposing an error where the ball bounces off the goal instead
of entering and scoring a point. The state-of-the-art approach in this paradigm provides accurate
coarse feedback of whether the program is completely correct or not [30]. However, to understand
their mistakes, students usually require more specific feedback about what errors are in their programs.

Learning an agent to explore and discover the errors in a program to provide such fine-grained
feedback is challenging: Most errors cannot be discovered with simple random exploration, and
instead require targeted exploration, such as deliberately hitting the ball into the goal. In addition, the
agent must be able to adapt its exploration to different programs, which each behave differently and
may present unexpected obstacles, such as multiple balls. Our key technical insight is that learning
to discover errors connects with the meta-exploration problem in meta-reinforcement learning (meta-
RL). This insight enables us to leverage techniques from the meta-exploration literature to construct
and optimize a principled objective for producing fine-grained feedback. Specifically, we follow the
Play-to-Grade paradigm and assume access to 3,556 training programs, labeled with the errors in the
program. Then, we formulate the problem as maximizing the mutual information between states vis-
ited by our agent and the label. Finally, we use techniques from the DREAM meta-RL algorithm [25]]
to decompose this objective into shaped rewards that enable learning sophisticated exploration.

Overall, the main contribution of this work is to connect the Play-to-Grade paradigm with the
meta-RL literature, and consequently, to provide an effective method for providing fine-grained
feedback for interactive student programs, which we call DREAMGRADER. Additionally, we release
our code to propose automatic feedback as a new meta-RL testbed that fulfills an unmet need in
the community for a benchmark that is simultaneously readily accessible and directly impactful.
We evaluate our system on 711,274 anonymized student submissions of the Bounce assignment from
Code.org [30]. Trained on 3,556 programs, DREAMGRADER achieves an accuracy of 94.3%, which
improves over existing approaches by 17.7% and comes within 1.5% of human-level grading accuracy.
In addition, our approach can significantly reduce instructor grading burden: while manually grading
all student submissions would require 4 years of work, our system can grade the same set of programs
180x faster on a single GPU and can be parallelized for even faster grading over multiple GPUs.

2 Related Works

Educational feedback. We consider the problem of automatically providing feedback, which plays
an important role in student learning and motivation [32]. Though we specifically focus on feedback,
other works also leverage machine learning for other aspects of education, including tracking what
students know [46}|8}|36], predicting student retention [9]|4//41!|3], and building intelligent tutoring
systems [1//31]. Work on automatically providing feedback for computer science assignments focuses
on two main approaches: analyzing either (i) the code or (ii) the behavior of a program. Methods that
analyze code provide feedback by passing the code through a neural network [37}6}|26}|51], or by
constructing syntax trees [43!|49], e.g., to predict useful next implementation steps [39/33]]. Analyzing
code works well for shorter programs (e.g., under 50 lines of code) and has even been deployed in
online courses [52]|. However, this approach struggles to scale to lengthier or more complex programs.
Hence, we instead opt for the second approach of analyzing program behavior, which conveniently
does not depend on program length, though it requires the program to be executable.

Arguably, the simplest method of analyzing program behavior is unit testing. Unit testing can
provide automatic feedback to some extent when the desired output of each input is known, but this
is typically not the case with interactive programs, such as websites or games. Instead, work on

automated testing can provide feedback by generating corner-case inputs that reveal errors via input
fuzzing [14], symbolic generation [21], or reinforcement learning exploration objectives [54}[15].
However, this line of work assumes that errors are easy to detect when revealed, while detecting
arevealed error itself can be challenging [30].

Consequently, Nie et al. [30]] propose the Play-to-Grade paradigm to both learn an agent to discover
states that reveal errors, and a model to detect and output the revealed errors. Our work builds upon
the Play-to-Grade paradigm, but differs from Nie et al. [30] in the provided feedback. While Nie
et al. [30]] only provide coarse binary feedback of whether a program is correct, we introduce a
new principled objective to provide fine-grained feedback of what specific errors are present to help
students understand their mistakes.

Meta-reinforcement learning. To provide fine-grained feedback, we connect the problem of
discovering errors with the meta-exploration problem in meta-RL. There is a rich literature of
approaches that learn to explore via meta-RL [16]/44/[38!140.|551|56L/19}1171120}125]. We specifically
leverage ideas from the DREAM algorithm [25] to construct a shaped reward function for learning
exploration. Our work has two key differences from prior meta-RL research. First, we introduce
a novel factorization of the DREAM objective that better generalizes to new programs. Second,
and more importantly, we focus on the problem of providing feedback on interactive programs.
This differs from a large body of meta-RL work that focuses on interesting, yet synthetic problems,
such as 2D and 3D maze navigation [10}[27}|56!25], simulated control problems [11}|38}|53]], and
alchemy [48]]. While meta-RL has been applied to realistic settings in robotics |29} 2} 42], such
application requires costly equipment. In contrast, this work provides a new meta-RL problem that is
both realistic and readily accessible.

3 The Fine-Grained Feedback Problem

We consider the problem of automatically providing feedback on programs. During training, we
assume access to a set of programs labeled with the errors made in the program (i.e., ground-truth
instructor feedback). During testing, the grading system is presented with a new student program
and must output feedback of what errors are in the program. To produce this feedback, the grading
system is allowed to interact with the program.

More formally, we consider a distribution over programs p(1), where each program p defines a
Markov decision process (MDP) p = (S, A, T,R) with states S, actions A, dynamics 7, and
rewards R. We assume that the instructor creates a rubric: an ordered list of K potential errors that

. . . . K
can occur in a program. Each program p is associated with a ground-truth label y € {0,1}** of
which errors are made in the program. The k" index v, denotes that the k™ error of the rubric is
present in the program pu.

During training, the grading system is given a set of IV labeled training programs {(u™,y™)}_,.

The goal is to learn a feedback function f that takes a program p and predicts the label § = f(u) to
maximize the expected grading accuracy Jgraqe(f) over test programs p with unobserved labels y:

K
Tarade (f) = Epump(p) [[1(Zﬂ[f(ﬂ)k = yk]‘|) (D
k=1

where Il is an indicator variable. Effectively, Jgrade measures the per-rubric item accuracy of predicting
the ground-truth label y. To predict the label y, the feedback function may optionally interact with
the MDP i defined by the program for any small number of episodes.

Bounce programming assignment. Though the methods we propose in this work generally apply
to any interactive programs with instructor-created rubrics and we include experiments on another
interactive assignment in Appendix we primarily focus on the Bounce programming assignment
from Code.org, a real online assignment that has been completed nearly a million times. As providing
feedback for interactive assignments is challenging, the assignment currently provides no feedback
whatsoever on Code.org, and instead relies on the student to discover their own mistakes by playing
their program. This assignment is illustrated in Figure Each student program defines an MDP,
where we use the state representation from Nie et al. [30]: each state consists of the (x, y)-coordinates
of the paddle and balls, as well as the (x, y)-velocities of the balls. There are three actions: moving the
paddle left or right, or keeping the paddle in the current position. In the dynamics of a correct program,

the ball bounces off the paddle and wall. When the ball hits the goal or floor, it disappears and launches
a new ball, which increments the player score and opponent score respectively. However, the student
code may define other erroneous dynamics, such as the ball passing through the paddle or bouncing
off the goal. The reward is +1 when the player score increments and —1 when the opponent score
increments. An episode terminates after 100 steps or if either the player or opponent score exceeds 30.

Our experiments use a dataset of 711,274 real anonymized student submissions to this assignment,
released by Nie et al. [30]. We use 0.5% of these programs for training, corresponding to N = 3,556
and uniformly sample from the remaining programs for testing.

Possible errors in a student program Table 1: Possible event and consequence types of program errors.
take the form of “when event occurs,

t2)

. . Event Consequence
there is an incorrect consequence,
Ball hits paddle

where the list of all events and con- X Ball bounces / does not bounce

e 1 ; Ball hits wall Increments / does not increment player score
sequences is listed in Table[I] For Ball hits goal A play
example, Figure[T]illustrates the error ~ Ball hits floor < €rements / does not increment opponent score

- e Launches / does not launch a new ball

where the event is the ball hitting the ~ Paddle moves Moves the paddle
goal, and the consequence is that the ~__Program starts
ball incorrectly bounces off the goal, rather than entering the goal. For simplicity, we primarily
consider a representative rubric of K = § errors, spanning all event and consequence types, listed in
Appendix[A] though we include some experiments on all error types in Appendix[D]

Prior approach for program feedback. Accurately determining which errors are in a given program
is challenging, because it requires targeted exploration that adapts to variability in the programs.
Often, the presence of some errors makes it difficult to find other errors, such as multiple balls making
it difficult to determine which events change the score. Prior work by Nie et al. [30] sidesteps this
challenge by only providing coarse feedback of whether a program is correct or not, by determining
if a student program differs from a reference solution program. Such coarse feedback is much easier
to provide, as it often involves only finding the most obvious error, which can frequently be found
with relatively untargeted exploration. In the next section, we present a new approach that instead
targets exploration toward uncovering specific misconceptions to effectively provide fine-grained
feedback. We discuss how our approach differs from Nie et al. [30] in greater detail in Appendix

4 Automatically Providing Fine-Grained Feedback with DREAMGRADER

In this section, we detail our approach, DREAMGRADER, for automatically providing fine-grained
feedback to help students understand their mistakes. From a high level, DREAMGRADER learns two
components that together form the feedback function f:

(i) An exploration policy 7 that acts on a program p to produce a trajectory 7 = (Sg, ag, o, - - -)-

(ii) A feedback classifier g(y | 7) that defines a distribution over labels y given a trajectory 7.

The idea is to explore states that either indicate or rule out errors with the exploration policy, and then
summarize the discovered errors with the feedback classifier. To provide feedback on a new program
u, we first roll out the exploration policy 7 on the program to obtain a trajectory 7, and then obtain
the predicted label arg max, g(y | 7) by applying the feedback classifier. Under this parametrization
of the feedback function f, we can rewrite the expected grading accuracy objective in Equation as:

K
1 .
JpreamGraper (T, 9) = E/,Lf\zp('u,)ﬂ'wﬂ'([.l,) iz § [[arg mg'Xg(y | Tk = Yk | ()
k=1 i

where 7(u) denotes the distribution over trajectories from rolling out the policy 7 on the program .

After this rewriting of the objective, our approach is conceptually straightforward: we learn both
the exploration policy and classifier to maximize our rewritten objective. We can easily learn the
feedback classifier g by maximizing the probability of the correct label given a trajectory generated
by the exploration policy with standard supervised learning (i.e., cross-entropy loss), but learning
the exploration policy 7 is more challenging. Note that we could directly optimize our objective in
Equation by treating the inside of the expectation as a reward received at the end of the episode
and use this to learn the exploration policy 7 with reinforcement learning. However, this reward

Error type: Does hitting the ball into the goal increment the score?

— —
i (3 I
) ‘WU [" @ i i @ @ No information observed about error
050 I g(error | 7) = 0.12 P =0
J ‘ 1 il
/
,4(@ Error observed: Ball in goal does not increment the score
4‘@) glerror | 7) =1 A =212
|)} t
ol w |
Y / / J @ Ball enters goal again, but no additional info gained
__@) a-— - - {l g(error | 7) =1 =0

New ball launched

Figure 2: DREAMGRADER provides credit assignment for learning exploration by leveraging the feedback
classifier g(y | 7). Here, we consider the error “when the ball enters the goal, the player score does not
increment.” At ® and @, no information is observed that either rules out or indicates the error. Hence, no
exploration reward ;" is provided, and the classifier assigns 0.12 probability that the error is present, reflecting
the prior that 12% of the training programs have this error. At ®, the ball enters the goal, but does not score a
point and a new ball is launched. This indicates that the error is present, so the classifier updates, which creates
high exploration reward and credit assignment for learning exploration. At ®, the ball enters the goal again.
However, no additional information is gained, so the classifier does not change, and no reward is given. Overall,
this enables learning effective exploration that purposely hits the ball into the goal once.

signal makes credit assignment difficult for learning the exploration policy, since it is given at the
end of the episode, rather than at the states where the exploration policy discovers errors. Indeed, we
empirically find that learning from this reward signal struggles to adequately explore (Section|[3).

Hence, our goal is instead to construct a reward signal that helps assign credit for the exploration
policy and provides rewards at the states that indicate or rule out errors in the program. To do this, we
first propose an alternative objective that is sufficient to maximize the Play-to-Grade objective, but
can be decomposed into per-timestep rewards that correctly assign credit (Section 4. 1). Intuitively,
these rewards leverage the feedback classifier to provide high reward when an action leads to a state
that increases the classifier’s certainty about whether an error is present. Then, we detail practical
design choices for implementing this approach with neural networks (Section and conclude
by drawing a connection between learning to find errors and the meta-exploration problem, which
motivates our choice of alternative objective and its subsequent decomposition (Section.

4.1 Assigning Credit to Learn Exploration

We now obtain a reward signal to help assign credit for learning exploration. From a high level, we
first propose to maximize a mutual information objective that is sufficient to maximize our objective
JpreamGraper (7,) in Equation|2] We then rewrite our mutual information objective in terms of
per-timestep exploration rewards related to the information gain of the feedback classifier on the true
label y when it observes the transition (s;, a;, ;). This helps assign credit for learning the exploration
policy, as the transitions that either indicate or rule out errors in the program are exactly those that
have high information gain. Figureillustrates an example of the derived exploration rewards.

Objective. Intuitively, we want our exploration policy to visit states that either indicate or rule out
errors. We can formalize this intuition by maximizing the mutual information I(7;y) between the
trajectories 7 ~ T visited by the policy and the feedback label of the program gy, which causes the
policy to visit states that make the feedback label highly predictable. Importantly, maximizing this
objective is sufficient to maximize the expected grading accuracy JpreamGraper (7, g) in Equation
Let p(y | 7) be the true posterior over labels given trajectories 7 ~ 7 sampled from the policy.
Maximizing the mutual information I (7;y) produces trajectories that maximize the probability of
the label under the true posterior p(y | 7). Then, if the feedback classifier is learned to match
the true posterior g(y | 7) = p(y | 7) while I(7;y) is maximized, the expected grading accuracy
JpreamGraper (T, g) 1s also maximized.

Optimization. We can efficiently maximize our objective I(7;y) by maximizing a variational lower
bound [5] and decomposing the lower bound into a per-timestep reward that helps assign credit
for learning the exploration policy 7. Below, we derive this for the case of learning only a single
exploration policy 7 to uncover all errors, though we will later discuss how we can factorize this to

learn N exploration policies {m; } ¥ ; that each explore to uncover a single error type.

I(t;y) = Hy] — Hy | 7] 3)
= H[y} + E[LNP(H),TNW(/_L) [lng(y | T)] (4)
Hy]l + Epp(u), rmom(p) log g(y | 7)] (5)
T—1
= H[y] + By rrn () 1089y [50) + D 1¢7] ; (6)
t=0

where 7" = log g(y | 7.4+1) — log g(y | 7.+) and
T is the length of the trajectory 7 = (sg, ag, o, - - -, ST).

The inequality in (5) holds for replacing the true posterior p(y | 7) with any distribution, and
comes from expanding a telescoping series as done by DREAM [25], where 7.; = (sq, ag, 7o, - - - , St
denotes the the trajectory up to the " state.

*

This derivation provides a shaped reward function ;" for learning the exploration policy. Intuitively,
this reward captures how much new information the transition (s, as, ¢, s¢11) provides to the
feedback classifier g on what errors are in the program: The reward is high if observing this transition
either indicates an error (e.g., the ball enters the goal, but does not score a point) or rules out an error
(e.g., the ball enters the goal and scores a point), and is low otherwise.

Additionally, we now have a recipe for maximizing the mutual information I (7; y) to learn both the
policy 7 and feedback classifier g. Only the second term in @ depends on 7 and g. Hence, we can
maximize this lower bound on I(7;y) by maximizing the log-likelihood of the label with respect
to the feedback classifier Jreedvack (9) = Epmp(u),r~r(p) [10g 9(y | 7)], and maximizing the rewards

ry? = logg(y | Te+1) — log g(y | 7.+) with respect to the policy 7 via reinforcement learning.

Factorizing our objective. So far, our approach learns a single exploration policy that must uncover
all error types in the rubric. However, learning such a policy can be challenging, especially if
uncovering different error types requires visiting very different states. We instead propose to learn a
separate exploration policy 7y, for each error index of the rubric £k = 1, ..., K. We can accomplish
this by observing that maximizing the mutual information I((7y, ..., 7k);y) between K trajectories
T; ~ m; is also sufficient to maximize the expected grading accuracy. Furthermore, maximizing
the mutual information with each dimension of the label I(7;yx), where 7, ~ 7 for each k,
is sufficient to maximize the mutual information with the entire label I ((71,...,7x);y). We
therefore can derive exploration rewards for each term I(7y; yx) to learn each policy 7 with rewards
P = logg(yr | T4e1) — logg(yx | 7.¢). We find that this improves grading accuracy in our
experiments (Section and enables parallel training and testing for the K exploration policies.

4.2 A Practical Implementation

Overall, DREAMGRADER consists of a feedback

. . . . K
classifier g and K exploration policies {my}7., I Sample a training program j2 with Iabel g

vyhere the k™ policy 7y, tries to vi§it states ipdica— 2: Roll out policy to obtain trajectory 7 ~ (1)
tive of whether the k™" error type is present in the 3: Compute rewards with feedback classifier
program. We learn these components by repeatedly = log g(yk | Tis1) — log g(y | 7)

running training episodes for each policy 7; with 4: Update policy to maximize rewards 5 with RL
Algorithm We first sample a labeled training pro- 5: Update feedback classifier to max. log g(y | T)
gram and follow the policy on the program (lines 1-
2). Then, we maximize our mutual information objective by updating the policy with our exploration

rewards (lines 3—4), and by updating the classifier to maximize the log-likelihood of the label (line 5).

Algorithm 1 Training episode for policy 7,

In practice, we parametrize the exploration policies and feedback classifier as neural networks. Since
the exploration rewards ;" depend on the past and are non-Markov, we make each exploration
policy 7 recurrent: At timestep ¢, the policy mx(a; | (S0, 0,70, .-, St)) conditions on all past
states, actions, and observed rewards for each k. We parametrize each policy as a deep dueling double
Q-networks [281/50,|45]. Consequently, our policy updates in line 4 consist of placing the trajectory in
a replay buffer with rewards 7;"" and sampling from the replay buffer to perform Q-learning updates.
We parametrize each dimension of the feedback classifier g(yy, | 7) for k =1,..., K as a separate
neural network. We choose not to share parameters between the exploration policies and between

the dimensions of the feedback classifier for simplicity. However, we note that significant parameter
sharing is likely possible, as exploration policies for two different error types can be extremely
similar (e.g., two errors that involve hitting the ball into the goal). Automatically determining which
parameters to share could be an interesting direction for future work, as it is not known a priori which
error types are related to each other. See Appendixfor full architecture and model details.

4.3 Play-to-Grade as Meta-Exploration

Our choice to optimize the mutual information objective I(7;y) and decompose this objective into
per-timestep rewards using techniques from the DREAM meta-RL algorithm stems from the fact that
the Play-to-Grade paradigm can be cast as a meta-exploration problem. Specifically, meta-RL aims
to learn agents that can quickly learn new tasks by leveraging prior experience on related tasks. The
standard few-shot meta-RL setting formalizes this by allowing the agent to train on several MDPs
(tasks). At time time, the agent is presented with a new MDP and is allowed to first explore the new
MDP for several episodes (i.e., the few shots) to gather information. Then, it must use the information
it gathered to solve the MDP and maximize returns on new episodes. Learning to efficiently spend
these allowed few exploration episodes to best solve the test MDP is the meta-exploration problem.

Our setting of providing feedback follows the exact same structure as few-shot meta-RL. In our
setting, we can view each student program as a new 1-step task of predicting the feedback label,
where the reward is the number of dimensions of the label that are correctly predicted. To predict this
label, the Play-to-Grade paradigm first explores the program for several episodes to discover states
indicative of errors, which corresponds to the few shots. The key challenge in this setting is exactly
how to best spend those few exploration episodes: i.e., to gather the information needed to predict
the label, which is exactly the meta-exploration problem. This bridge between identifying errors in
programs and meta-exploration suggests that techniques from each body of literature could mutually
benefit each other. Indeed, DREAMGRADER leverages ideas from DREAM and future work could
explore other techniques to transfer across the two areas. Additionally, this connection also offers a
new testbed for meta-exploration and meta-RL research. As discussed in Section while existing
meta-RL benchmarks tend to be either readily accessible or impactful and realistic, automatically
providing feedback simultaneously provides both, and we release code for a meta-RL wrapper of the
Bounce programming assignment to spur further research in this direction.

S Experiments

In our experiments, we aim to answer five main questions: (1) How does automated feedback grading
accuracy compare to human grading accuracy? (2) How does DREAMGRADER compare with Nie
et al. [30], the state-of-the art Play-to-Grade approach? (3) What are the effects of our proposed
factorization and derived exploration rewards on DREAMGRADER? (4) How much human labor is
saved by automating feedback? (5) Interactive programs can be particularly challenging to grade
because test programs can contain behaviors not seen during training — how well do automated
feedback systems generalize to such unseen behaviors? To answer these questions we consider the
dataset of 700K real anonymized Bounce student programs, described in Section

Below, we first establish the points of comparison to necessary answer these questions (Section.
Then, we evaluate these approaches to answer the first four questions (Section. Finally, we answer
question (5) by evaluating DREAMGRADER on variants of Bounce student programs that modify
the ball and paddle speeds, including speeds not seen during training (Section[3.3). Additionally,
in Appendix|D| we test if DREAMGRADER can scale to all error types and an additional interactive
assignment called Breakout, which is widely taught in university and highschool classrooms.

5.1 Points of Comparison

We compare with the following four approaches. Unless otherwise noted, we train 3 seeds of each
automated approach for 5M steps on N = 3,556 training programs, consisting of 0.5% of the dataset.

Human grading. To measure the grading accuracy of humans, we asked for volunteers to grade
Bounce programming assignments. We obtained 9 volunteers consisting of computer science under-
graduate and PhD students, 7 of whom had previously instructed or been a teaching assistant for a

computer science course. Each volunteer received training on the Bounce programming assignment
and then was asked to grade 6 randomly sampled Bounce programs. See Appendixfor details.

Nie et al. [30] extended to provide fine-grained feedback. We extend the original Play-to-Grade
approach, which provides binary feedback about whether a program is completely correct or not, to
provide fine-grained feedback. Specifically, Nie et al. [30] choose a small set of 10 training programs,
curated so that each program exhibits a single error, and together, they span all errors. Then, for each
training program, the approach learns (i) a distance function d(s, a) that takes a state-action tuple
(s,a), trained to be large for tuples from the buggy training program and small for tuples from a
correct reference implementation; and (ii) an exploration policy that learns to visit state-actions where
d(s,a) is large. To provide feedback to a new student program, the approach runs each exploration
policy on the program and outputs that the program has an error if any of the distance functions is
high for any of the tuples visited by the exploration policies.

We extend this approach to provide fine-grained feedback by following a similar set up. We follow
the original procedure to train a separate policy and distance function on K = 8 curated training
programs, where the £™ program exhibits only the k" error from the rubric we consider. Then, to
provide fine-grained feedback on a new program, we run each policy on the new program and predict
that the £™ error is present (i.e., §x = 1) if the k™ distance function is high on any state-action tuple.
We use code released by the authors without significant fine-tuning or modification. We emphasize
that this approach only uses 8 curated training programs, as opposed to the N = 3,556 randomly
sampled programs used by other automated approaches, as this approach is not designed to use more
training programs, and furthermore cannot feasibly scale to many more training programs, as it learns
a distance function and policy for every training program.

DREAMGRADER (direct max). To study the effect of our derived exploration rewards ", we
consider the approach of directly maximizing the DREAMGRADER objective in Equation described
at the beginning of Section This approach treats the inside of the expectation as end-of-episode
returns, and does not provide explicit credit assignment. This approach is equivalent to maximizing
the DREAMGRADER objective with the RL? meta-RL algorithm [10}[47].

DREAMGRADER (unfactorized). Finally, to study the effect of our proposed factorization scheme,
described at the end of Section |4.1] we consider a variant of DREAMGRADER where we do not
factorize the objective and instead only learn a single exploration policy to uncover all errors.

5.2 Main Results

We compare the approaches Table 2: Accuracy, precision, recall and F1 of grading systems, averaged across
based on grading accuracy, the K = 8 errors of the rubric, with 1-standard deviation error bars.
precision, recall, and Fl1

Accuracy Precision Recall F1
scores averaged across the
: . Human 958+39% 950+132% 911+100% 919 +8.3%
8 error types in the rubric. preamGraper 043+ 13% 767 +58% 943+ 1.6% 84.6+ 1.5%

Table[2] summarizes the re- DREAMGRADER (unfactorized) 91.3+04% 729£05% 689+10% 708+07%
DREAMGRADER (direct max) ~ 84.8£22% 363+ 17% 37.8+97% 36.6+5.1%
sults. Overall, we find that e et a. 301 755+09% 249+£50% 217+7.1% 261 +£5.7%

DREAMGRADER achieves
the highest grading accuracy of the automated grading approaches, providing feedback with 17.7%
greater accuracy than Nie et al. [30]. Furthermore, DREAMGRADER comes within 1.5% of human-
level grading accuracy. DREAMGRADER achieves this by learning exploration behaviors that probe
each possible error event (see Appendix or https://ezliu.github.io/dreamgrader|for
visualizations of the learned behaviors).

Analysis. To further understand these results, we plot the training curves of the grading accuracy
on each error type in the rubric vs. the number of training steps of DREAMGRADER, as well as
the final grading accuracies of the other approaches in Figure The performance of variants of
DREAMGRADER underscores the importance of our design choices: DREAMGRADER (direct max)
achieves significantly lower accuracy than DREAMGRADER across all error types, indicating the
importance of our shaped exploration rewards ;" for learning effective exploration. Additionally,
while DREAMGRADER (unfactorized) achieves relatively high average accuracy, it still performs
worse than DREAMGRADER. This illustrates the difficulty of learning a single exploration policy
to uncover all errors, which is alleviated by our factorization.

Ball Bounces off Goal Goal Increments Opponent Score Wall Increments Opponent Score No New Ball after Goal

|
3
|
|

Average Accuracy
B

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Timesteps (1e3) Timesteps (1e3) Timesteps (1e3) Timesteps (1e3)
Missing Ball does not
Increment Opponent Score Incorrect Movement Paddle Increments Player Score No Ball at Start
Y R a————— R N T T e
S
0.9
I
5
S 08
<
@
@7
g |
g
<06
0.5
"0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Timesteps (1e3) Timesteps (1e3) Timesteps (1e3) Timesteps (1e3)
===+ Human DREAMGRADER DREAMGRADER (unfactorized) DREAMGRADER (direct max) Nie et al. (2021)

Figure 3: Average grading accuracy for each error type vs. number of training steps for DREAMGRADER with
1-stddev error bars. We plot the final grading accuracies of the other approaches as horizontal lines.

Additionally, we find that DREAMGRADER achieves human-level grading accuracy on 5 of the 8
error types, but relatively struggles on the 3 errors on the left of the top row of Figure which
leads to overall lower average grading accuracy. For the errors involving incrementing the opponent
score, we qualitatively find that DREAMGRADER most commonly struggles when there are multiple
balls, which makes it difficult to ascertain which events are causing the opponent score to increment.
Human grading was able to circumvent this issue, but humans required playing the program for up to
40 episodes, while we limited DREAMGRADER to a single episode per error type.

Reduction in human grading burden. We found that our grading volunteers required between 1-6
minutes to grade each program, averaging around 3 minutes. At this grading speed, grading all of
the 700K Code.org submissions would take close to 4 years of human labor. In contrast, automatic
grading with DREAMGRADER requires only 1 second per program on a single NVIDIA RTX 2080
GPU, which is 180x faster.

5.3 Generalizing to Unseen Behaviors

A key challenge in providing feedback for interactive programs is that student programs may include
behaviors not seen during training. To evaluate generalization to unseen behaviors, we consider vary-
ing the speeds of the ball and paddle. There are five possible settings for the ball and paddle speeds:
very slow, slow, normal, fast, and very fast. To test the ability of DREAMGRADER to generalize to un-
seen behaviors at test time, we train DREAMGRADER on programs where we hold out the normal ball
and paddle speeds, and then test DREAMGRADER on programs with the held out speeds. Specifically,
we use the same N = 3,556 training programs as before, but we uniformly randomize the ball and pad-
dle speeds independently to be one of the four non-held out speeds. Then we evaluate on test programs
with (1) held out ball and paddle speeds; (2) held out ball speed with random training paddle speed;
(3) held out paddle speed with random training ball speed; and (4) training ball and paddle speeds.

DREAMGRADER general- Table 3: DREAMGRADER’s results under held out ball and paddle speeds.
izes to unseen ball and DREAMGRADER generalizes to ball and paddle speeds not seen during training.

paddle speeds at test time. Both held out Held out ball speed Held out paddle speed No held out speed
Compared to the standard Accuracy 89.0 + 1.9% 89.7 + 1.7% 89.6 + 2.0% 89.3 + 1.8%
training in the prevj()us sec- Precision 40.0 + 1.0% 44.1 + 1.8% 46.2 + 1.3% 41.6 £2.1%

. Recall 88.2 +2.3% 89.3 + 1.5% 89.0 + 1.7% 85.5 + 2.4%
tion, where all ball and 55.0 £ 1.3% 59.1 + 1.9% 60.1 £ 0.8% 56.0 & 2.4%

paddles had the “normal”
speed, performance drops, as under faster balls, certain behaviors like hitting the ball into the
goal cannot be reliably achieved, and increasing the training data does not decrease the performance
drop. However, accuracy remains relatively high, and DREAMGRADER performs about the same on

test programs regardless of whether the ball and paddle speeds were seen during training or not. This
indicates some ability to generalize to unseen behaviors at test time. Table E]displays the full results.

6 Conclusion

In this work, we introduced DREAMGRADER, an automatic grading system for interactive programs
that provides fine-grained feedback at near human-level accuracy. The key insight behind our system
is connecting the problem of automatically discovering errors with the meta-exploration problem
in meta-RL, which yields important benefits for both sides. On the one hand, this connection offers
a powerful and previously unexplored toolkit to computer science education, and more generally,
to discovering errors in websites or other interactive programs. On the other hand, this connection
also opens impactful and readily accessible applications for meta-RL research, which has formerly
primarily focused on synthetic tasks due to the lack of more compelling accessible applications.

While DREAMGRADER nears human-level grading accuracy, we caution against blindly replacing
instructor feedback with automated grading systems, such as DREAMGRADER, which can lead to
potentially negative educational and societal impacts without conscientious application. For example,
practitioners must ensure that automated feedback is equitable and not biased against certain classes
of solutions that may be correlated with socioeconomic status. One option to mitigate the risk of
potential negative consequences while still reducing instructor labor is to use automated feedback
systems to assist instructors similar to prior work [13], e.g., by querying the instructor on examples
where the system has low certainty, or presenting videos of exploration behavior from the system
for the instructor to provide the final feedback.

Finally, this work takes an important step to reduce teaching burden and improve education, but
we also acknowledge DREAMGRADER still has important limitations to overcome. Beyond the
remaining small accuracy gap between DREAMGRADER and human grading, DREAMGRADER also
requires a substantial amount of training data. While we only use 0.5% of the Bounce dataset for
training, it still amounts to 3,556 labeled training programs, and labeling this many programs can be
prohibitive for smaller-scale classrooms, though feasible for larger online platforms. We hope that
our release of Bounce as a meta-RL problem can help spur future work to overcome these limitations.

Reproducibility. Our code is publicly available at https://github.com/ezliu/dreamgrader),
which includes Bounce as a new meta-RL testbed.

Acknowledgments and Disclosure of Funding

We thank Kali Stover from the Institutional Review Board (IRB) and Ruth O’Hara and Tallie Wetzel
from the Student Data Oversight Committee (SDOC) for reviewing our process of asking humans to
grade programs. We thank our human graders: Annie Xie, Sahaana Suri, Cesar Lema, Olivia Lee,
Moritz Stephan, Kaien Yang, Maximilian Du, Patricia Strutz, and Govind Chada.

We thank Annie Xie and Sahaamble Suri for thwarting EL’s best attempts at procrastination, without
whom, this work would not have been completed in time.

EL is supported by a National Science Foundation Graduate Research Fellowship under Grant No.
DGE-1656518. CF is a Fellow in the CIFAR Learning in Machines and Brains Program. This work
was also supported in part by Google, Intel, and a Stanford Human-Centered Al Hoffman Yee grant.
Icons in this work were made by FreePik from FlatIcon.

References

[1] John R Anderson, C Franklin Boyle, Albert T Corbett, and Matthew W Lewis. Cognitive modeling and
intelligent tutoring. Artificial intelligence, 42(1):7-49, 1990.

[2] Karol Arndt, Murtaza Hazara, Ali Ghadirzadeh, and Ville Kyrki. Meta reinforcement learning for sim-
to-real domain adaptation. In International Conference on Robotics and Automation (ICRA), pages
2725-2731, 2020.

[3] Lovenoor Aulck, Nishant Velagapudi, Joshua Blumenstock, and Jevin West. Predicting student dropout in

higher education. arXiv preprint arXiv:1606.06364, 2016.

10

(4]

(5]

(6]

(71

(8]

(91

(10]

(1]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

[25]

Girish Balakrishnan and Derrick Coetzee. Predicting student retention in massive open online courses
using hidden markov models. Science, 53:57-58, 2013.

David Barber and Felix V Agakov. The IM algorithm: a variational approach to information maximization.
In Advances in neural information processing systems, 2003.

Sahil Bhatia and Rishabh Singh. Automated correction for syntax errors in programming assignments
using recurrent neural networks. arXiv preprint arXiv:1603.06129, 2016.

Code.org. Code.org. https://code.org/about, 2022.

Ryan SJ d Baker, Albert T Corbett, and Vincent Aleven. More accurate student modeling through contextual
estimation of slip and guess probabilities in bayesian knowledge tracing. In International conference on
intelligent tutoring systems, pages 406415, 2008.

Dursun Delen. Predicting student attrition with data mining methods. Journal of College Student Retention:
Research, Theory & Practice, 13(1):17-35, 2011.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL?: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning (ICML), 2017.

Jeffrey E Froyd, Phillip C Wankat, and Karl A Smith. Five major shifts in 100 years of engineering
education. Proceedings of the IEEE, 100(0):1344-1360, 2012.

Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip J Guo, and Robert C Miller. Overcode: Visualizing
variation in student solutions to programming problems at scale. In Conference on Human Factors in
Computing Systems (CHI), number 2, pages 1-35, 2015.

Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated whitebox fuzz testing. In NDSS,
volume 8, pages 151-166, 2008.

Camilo Gordillo, Joakim Bergdahl, Konrad Tollmar, and Linus Gisslén. Improving playtesting coverage
via curiosity driven reinforcement learning agents. arXiv preprint arXiv:2103.13798, 2021.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-reinforcement
learning of structured exploration strategies. In Advances in Neural Information Processing Systems
(NeurIPS), pages 5302-5311, 2018.

Swaminathan Gurumurthy, Sumit Kumar, and Katia Sycara. Mame: Model-agnostic meta-exploration.
arXiv preprint arXiv:1911.04024, 2019.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735-1780,
1997.

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega, Yee Whye Teh, and Nicolas
Heess. Meta reinforcement learning as task inference. arXiv preprint arXiv:1905.06424, 2019.

Pierre-Alexandre Kamienny, Matteo Pirotta, Alessandro Lazaric, Thibault Lavril, Nicolas Usunier, and
Ludovic Denoyer. Learning adaptive exploration strategies in dynamic environments through informed
policy regularization. arXiv preprint arXiv:2005.02934, 2020.

James C King. Symbolic execution and program testing. Communications of the ACM, 19(7):385-394,
1976.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), 2015.

Evan Zheran Liu, Milad Hashemi, Kevin Swersky, Parthasarathy Ranganathan, and Junwhan Ahn. An
imitation learning approach for cache replacement. arXiv preprint arXiv:2006.16239, 2020.

Evan Zheran Liu, Ramtin Keramati, Sudarshan Seshadri, Kelvin Guu, Panupong Pasupat, Emma Brunskill,
and Percy Liang. Learning abstract models for strategic exploration and fast reward transfer. arXiv preprint
arXiv:2007.05896, 2020.

Evan Zheran Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. Decoupling exploration and
exploitation for meta-reinforcement learning without sacrifices. In International Conference on Machine
Learning (ICML), 2021.

11

[26]

(27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

Ali Malik, Mike Wu, Vrinda Vasavada, Jinpeng Song, Madison Coots, John Mitchell, Noah Goodman, and
Chris Piech. Generative grading: Near human-level accuracy for automated feedback on richly structured
problems. arXiv preprint arXiv:1905.09916, 2019.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-learner.
arXiv preprint arXiv:1707.03141, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement learning.
arXiv preprint arXiv:1803.11347, 2018.

Allen Nie, Emma Brunskill, and Chris Piech. Play to grade: Testing coding games as classifying markov
decision process. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Hyacinth S Nwana. Intelligent tutoring systems: an overview. Artificial Intelligence Review, 4(4):251-277,
1990.

Eleanor O’Rourke, Christy Ballweber, and Zoran Popovii. Hint systems may negatively impact performance
in educational games. In Proceedings of the first ACM conference on Learning@ scale conference, pages
51-60, 2014.

Benjamin Paallen, Barbara Hammer, Thomas William Price, Tiffany Barnes, Sebastian Gross, and Niels
Pinkwart. The continuous hint factory-providing hints in vast and sparsely populated edit distance spaces.
arXiv preprint arXiv:1708.06564, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems (NeurIPS), 2019.

Jay A Pfaffman. Manipulating and measuring student engagement in computer-based instruction. PhD
thesis, Vanderbilt University, 2003 2003.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J Guibas, and
Jascha Sohl-Dickstein. Deep knowledge tracing. Advances in neural information processing systems, 28,
2015.

Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran Sahami, and Leonidas Guibas.
Learning program embeddings to propagate feedback on student code. In International conference on
machine Learning, pages 1093-1102, 2015.

Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. arXiv preprint arXiv:1903.08254, 2019.

Kelly Rivers and Kenneth R Koedinger. Data-driven hint generation in vast solution spaces: a self-
improving python programming tutor. International Journal of Artificial Intelligence in Education, 27(1):
37-64, 2017.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal meta-
policy search. arXiv preprint arXiv:1810.06784, 2018.

Daniel A Sass, Felicia Castro-Villarreal, Steve Wilkerson, Norma Guerra, and Jeremy Sullivan. A structural
model for predicting student retention. The Review of Higher Education, 42(1):103-135, 2018.

Gerrit Schoettler, Ashvin Nair, Juan Aparicio Ojea, Sergey Levine, and Eugen Solowjow. Meta-
reinforcement learning for robotic industrial insertion tasks. In International Conference on Intelligent
Robots and Systems (IROS), pages 9728-9735, 2020.

Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feedback generation for introduc-
tory programming assignments. In Proceedings of the 34th ACM SIGPLAN conference on Programming
language design and implementation, pages 15-26, 2013.

Bradly Stadie, Ge Yang, Rein Houthooft, Peter Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya
Sutskever. The importance of sampling inmeta-reinforcement learning. In Advances in Neural Information
Processing Systems (NeurIPS), pages 9280-9290, 2018.

12

[45]

[46]

[47]

(48]

[49]

[50]

[51]

(52]

(53]

[54]

[55]

[56]

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-learning. In
Association for the Advancement of Artificial Intelligence (AAAI), volume 16, pages 2094-2100, 2016.

Michael Villano. Probabilistic student models: Bayesian belief networks and knowledge space theory. In
International Conference on Intelligent Tutoring Systems, pages 491-498, 1992.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos, Charles
Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv preprint
arXiv:1611.05763, 2016.

Jane X Wang, Michael King, Nicolas Pierre Mickael Porcel, Zeb Kurth-Nelson, Tina Zhu, Charlie Deck,
Peter Choy, Mary Cassin, Malcolm Reynolds, H Francis Song, et al. Alchemy: A benchmark and analysis
toolkit for meta-reinforcement learning agents. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2), 2021.

Ke Wang, Benjamin Lin, Bjorn Rettig, Paul Pardi, and Rishabh Singh. Data-driven feedback generator for
online programing courses. In Proceedings of the Fourth (2017) ACM Conference on Learning@ Scale,
pages 257-260, 2017.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas. Dueling
network architectures for deep reinforcement learning. In International Conference on Machine Learning
(ICML), 2016.

Mike Wu, Milan Mosse, Noah Goodman, and Chris Piech. Zero shot learning for code education: Rubric
sampling with deep learning inference. In Association for the Advancement of Artificial Intelligence (AAAI),
volume 33, pages 782-790, 2019.

Mike Wu, Noah Goodman, Chris Piech, and Chelsea Finn. Prototransformer: A meta-learning approach to
providing student feedback. arXiv preprint arXiv:2107.14035, 2021.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan C. Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In
Conference on Robot Learning (CoRL), 2019.

Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang Liu, Ruimin Shen,
Yingfeng Chen, and Changjie Fan. Wuji: Automatic online combat game testing using evolutionary deep
reinforcement learning. In Automated Software Engineering (ASE), pages 772784, 2019.

Wenxuan Zhou, Lerrel Pinto, and Abhinav Gupta. Environment probing interaction policies. arXiv preprint
arXiv:1907.11740, 2019.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and

Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep RL via meta-learning. arXiv
preprint arXiv:1910.08348, 2019.

13

