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Abstract

It is widely accepted in the mode connectivity lit-
erature that when two neural networks are trained
similarly on the same data, they are connected
by a path through parameter space over which
test set accuracy is maintained. Under some cir-
cumstances, including transfer learning from pre-
trained models, these paths are presumed to be
linear. In contrast to existing results, we find that
among text classifiers (trained on MNLI, QQP,
and CoLA), some pairs of finetuned models have
large barriers of increasing loss on the linear paths
between them. On each task, we find distinct clus-
ters of models which are linearly connected on
the test loss surface, but are disconnected from
models outside the cluste—models that occupy
separate basins on the surface. By measuring per-
formance on existing diagnostic datasets, we find
that these clusters correspond to different gener-
alization strategies: one cluster behaves like a
bag of words model under domain shift, while an-
other cluster uses syntactic heuristics. Our work
demonstrates how the geometry of the loss sur-
face can guide models towards different heuristic
functions.

1. Introduction

Modern training methods are capable of discovering high-
performance parameters for neural networks on a variety
of tasks. Although models trained with similar procedures
tend to exhibit similar in-domain (ID) performance on these
tasks, they exhibit diverse decision boundaries (Benton et al.,
2021). In particular, models with similar performance often
differ when presented with examples that fall far from the
training data manifold (Somepalli et al., 2022).

In NLP, generalization behavior is usually characterized
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structurally through the use of diagnostic challenge sets.
Previous studies of model behavior on out-of-distribution
(OOD) linguistic structures show that finetuned models can
exhibit variation in compositional generalization and perfor-
mance on challenge sets (McCoy et al., 2020; Zhou et al.,
2020). For example, in natural language inference tasks,
some models seem to deploy strategies during OOD gen-
eralization that incorporate no position information at all
(McCoy et al., 2019). To the best of our knowledge, these
different generalization behaviors have never been linked to
the geometry of the loss surface. In order to explore how
barriers in the loss surface expose a model’s generalization
strategy, we consider the case of text classification. We
focus in particular on Natural Language Inference (NLI;
Williams et al., 2018; Consortium et al., 1996), as well as
paraphrase and grammatical acceptability tasks.

We find that NLI models tend to rely on one of two strate-
gies, both of which exhibit similar loss on the test set. We
characterize these strategies as, roughly, syntax-aware and
syntax-unaware. They fall into two respective basins; the
syntax-aware basin contains functions that tend to rely on
heuristics around the behavior of constituents, while func-
tions in the syntax-unaware basin rely on lexical bag-of-
words heuristics. We find that in NLI and paraphrase tasks,
models that perform similarly on the same challenge sets are
linearly connected without barriers on the ID loss surface,
but they tend to be disconnected from models with different
generalization behavior. Our code and models are public.'.
Our main contributions are:

* We develop a metric based on linear mode connectivity,
the convexity gap, and an accompanying method for clus-
tering models into basins. In contrast with existing work
in computer vision (Neyshabur et al., 2020), we find that
transfer learning can lead to different basins over different
finetuning runs.

* We align the basins to specific generalization behaviors.
In NLI, they correspond to a preference for either syntactic
or lexical overlap heuristics. On a paraphrase task, basins
likewise split on behavior under word order permutation.

* We confirm that these basins trap a portion of finetuning

'Code: https://github.com/aNOnWhyMooS/
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runs, which become increasingly disconnected from the
other models as they train. Based on this behavior, it may
be possible to predict heuristics from early connectivity.

2. Identifying generalization strategies

Finetuning on standard GLUE (Wang et al., 2018) datasets
often leads to models that perform similarly on in-domain
(ID) test sets (Sellam et al., 2021). To evaluate the functional
differences between these models, we need to evaluate their
generalization to diagnostic datasets. In this paper, we study
the variation of performance on these existing diagnostic
datasets. We will call models with poor performance on the
generalization set heuristic models while those with high
performance will be generalizing models. We study three
tasks with diagnostic sets: MNLI (Williams et al., 2018)
with the diagnostic set HANS (McCoy et al., 2019), QQP
(Wang et al., 2017) with PAWS-QQP (Zhang et al., 2019),
and CoLLA (Warstadt et al., 2018) with CoLA-OOQOD (the last
task is in Appendix A).

Natural Language Inference NLI is a common testbed
for NLP models. This binary classification task poses a
challenge in modeling both syntax and semantics. The input
to an NLI model is a pair of sentences such as:

* Premise: The dog scared the cat.
* Hypothesis: The cat was scared by the dog.

Here, the label is positive or entailment, because the hypoth-
esis can be inferred from the premise. If the hypothesis were,
“The dog was scared by the cat”, the label would be nega-
tive or non-entailment. We use the MNLI (Williams et al.,
2018) corpus, and inspect loss surfaces on the “matched”
validation set.”

NLI models often “cheat” by relying on heuristics, such as
overlap between either individual lexical items or syntactic
constituents shared by the premise and hypothesis. If a
model relies on lexical overlap, both the entailed and non-
entailed examples above might be given positive labels,
because all three sentences contain “scared”, “dog”, and
“cat”. McCoy et al. (2019) responded to these shortcuts by
creating HANS, a challenge set of sentence pairs that violate
such heuristics:

* Lexical overlap (HANS-LO): Entails any hypothesis
containing the same words as the premise.

* Subsequence: Entails any hypothesis containing con-
tiguous sequences of words from the premise.

* Constituent: Entails any hypothesis containing syntactic
subtrees from the premise.

2 An unmatched validation set is also available, which includes
different sources and topics from the training set. The test set
labels are not public for MNLI or QQP, so we use the validation
set only.

Unless otherwise specified, we use the non-entailing HANS
subsets for measuring reliance on heuristics, so higher accu-
racy on HANS-LO indicates less reliance on lexical overlap.

Paraphrase Quora Question Pairs (QQP; Wang et al.,
2017) is a common paraphrase corpus. We use the PAWS-
QQP (Zhang et al., 2019) dataset as the diagnostic set for
identifying different generalization behaviors learnt by the
models. PAWS-QQP contains QQP sentence pairs in which
the words have been permuted in order to construct pairs
that can mean different things, even though the set of tokens
remains the same. In other words, PAWS-QQP contains
pairs that may violate a lexical overlap heuristic.

2.1. Experimental details

All models are initialized from bert-base-uncased
with a linear classification head and finetuned using
Google’s default hyperparameters. MNLI models are those
provided by McCoy et al. (2020).

3. Linear Mode Connectivity

Models discovered by SGD are generally connected by paths
over which the loss is maintained (Draxler et al., 2019;
Garipov et al., 2018). If we limit such paths to be lin-
ear, however, connectivity is no longer guaranteed. We
may still find, however, that two parameter settings 64
and 0, which achieve equal loss, can be connected by
linear interpolation (Nagarajan and Kolter, 2019; Goodfel-
low et al., 2015) without any increase in loss. In other
WOI'dS, loss 5(904; Xtrainaytrain) < ['(QA;Xtraim Krain) and
£(9a§ Xitrain, Krain) < A6(91’35 Xirain, Krain) in each parame-
ter setting 6, defined by a scalar 0 < o < 1:

0 = abs+ (1 — )i (1)

A number of results suggest that high performance is closely
tied to the linear mode connectivity of the models in ques-
tion (Frankle et al., 2020; Entezari et al., 2021; Neyshabur
et al., 2020). Our results complicate the narrative around
linear mode connectivity (Fig. 1). While we find that mod-
els with high performance on OOD data were indeed lin-
early connected to each other, models with low performance
were also linearly connected to each other. It seems that
the heuristic and generalizing models occupy two different
linear basins, with barriers in the ID loss surface between
models in each of these two basins.

HANS performance during interpolation: It is clear
from Fig. 1 that, when interpolating between LO-heuristic
models, HANS-LO loss significantly improves further from
the end points. This finding implies that the heuristic basin
does contain more syntax-aware models. In contrast, the
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Figure 1. Loss during linear interpolation between pairs of models taken from the 5 top (gen.) and 5 bottom (heur.) in HANS-LO accuracy.
Heuristic models tend to be poorly connected to the rest of the surface, although they are well connected to each other. /N indicates
number of pairs. Position on the x-axis indicates the value of a during interpolation.

syntax-aware basin shows only a very slight improvement
in heuristic loss during interpolation, even though the im-
provement in broad coverage loss is more substantial than
in the position-unaware basin.

Connections over 2 dimensions: To understand the loss
topography better, we present planar views of these models
using code® from Benton et al. (2021). We see how, in the
plane covering the heuristic and generalizing models, a cen-
tral barrier intrudes on the linear connecting edge between
heuristic and generalizing models (Fig. 2). On the other
hand, the heuristic and generalizing models each occupy
separate planes that exhibit only a small central barrier. Vis-
ibly, this barrier is smallest for the perimeter composed of
generalizing models and largest for the mixed perimeter.

4. The Convexity Gap

One possibility we argue against is that the increasing loss
between models with different heuristics is actually an ef-
fect of sharper minima in the heuristic case. There is a
significant body of work on the controversial (Dinh et al.,
2017) association between wider minima and generalization
in models (Li et al., 2018; Keskar et al., 2017; Hochreiter
and Schmidhuber, 1997; Huang et al., 2020).

Instead, we find that clusters of linearly connected models
are far better predictors of generalization behavior than
optimum width is. To identify such clusters, we define a
metric based on linear mode connectivity, the convexity gap
(CQ), and use it to perform spectral clustering.

Entezari et al. (2021) define a barrier’s height on a linear

*https://github.com/g-benton/
loss—-surface-simplexes

path from 6 to 6 as (for « € [0, 1]):
BH(91,92) = sup[ﬁ(oﬁl + (1 — 01)92)—
(al(61) + (1 —a)L(62))] (2)

We define the convexity gap on a linear path from 6; to 65
as the maximum possible barrier height on any sub-segment
of the linear path joining 6 and 6. With v, 8 € [0, 1],

CG(6,,6,) = sup BH(v61 + (1 — 7)02, 801 + (1 — B)02)
v
3)

Our metric exposes stronger clustering patterns than ei-
ther area under the curve (AUC) or BH (evidence in Ap-
pendix E).

4.1. Clustering

The basins that form from this CG distance metric are
visible based on connected sets of models in the distance
heatmap (Fig. 4a). To quantify basin membership into a
prediction of HANS performance, we perform spectral clus-
tering, with the distances between points defined as CG-
distance on the ID loss surface. Using the difference be-
tween distances from each cluster centroid ||w — ¢4 and
|lw — c2]|, we see a significantly larger correlation with
HANS performance (Fig. 3a), compared to a baseline of the
model’s e-sharpness (Fig. 3b). Furthermore, a linear regres-
sion model offers significantly better performance based on
spectral clustering membership than on sharpness.

In Fig. 4b, we see the heuristic that defines the larger cluster:
constituent overlap. Models that perform well on constituent
overlap diagnostic sets tend to fall in the basin containing
models biased towards lexical overlap. This behavior char-
acterizes the two basins: the larger basin is syntax-aware
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Figure 2. Planar views of simplices connecting NLI models in the MNLI matched validation set loss surface. The points Go...2 and Ho.. .2
denote the generalized and heuristic models respectively.
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(tending to acquire heuristics that require awareness of con-
stituent structure), while the smaller basin is syntax-unaware
(acquiring heuristics that rely only on unordered sets of
words).*

4.1.1. QQP

On QQP, we similarly find strong differentiation between
distinct clusters of linearly connected models (Fig. 4c). As
in our procedure on NLI, we study the distance from the
centroids formed by spectral clustering with CG defining
the distance metric, and find cluster membership to be a
strong predictor of generalization on PAWS-QQP (Fig. 3c¢).

4.2. Generalization basins trap training trajectories

At this point we have aligned different basins with particular
generalization behaviors, but a skeptic may propose that
the smaller cluster contains models which have simply not
trained long enough. Under this conjecture, continuing to
train them would eventually place them in the larger, syntax-
aware cluster. We find that this is not the case, as shown
in Fig. 5. Marginal members of the smaller cluster, those
which fall closer to the cluster boundary, may drift towards
the larger cluster later in training. However, models that
are more central to the cluster actually become increasingly
solidified in their cluster membership later in training.

These results have two important implications. First, they
confirm that these basins constitute distinct local minima
which can trap optimization trajectories. Additionally, our
findings suggest that early on in training, we can detect
whether a final model will follow a particular heuristic. The
latter conclusion is crucial for any future work towards
practical methods of directing or detecting desirable gener-
alization strategies during training (Jastrzebski et al., 2021).

5. Conclusions

In one view of transfer learning, a pretrained model may
select a prior over generalization strategies by favoring a
particular basin. Neyshabur et al. (2020) found that models
initialized from the same pretrained weights are linearly con-
nected, suggesting that basin selection is a key component
of transfer learning. We find that a pretrained model may
not commit exclusively to a single basin, but instead favor
a small set of them. Furthermore, we find that linear con-
nectivity can indicate shared generalization strategies under
domain shift, as evidenced by results on NLI, paraphrase,
and linguistic acceptability tasks.

The split between generalization strategies can potentially

“It is not enough to declare one basin to be merely position
aware, as reliance on subsequence overlap is a poor predictor of
basin membership (Appendix D).

explain results from the bimodality of CoLA models (Mos-
bach et al., 2021) to wide variance on NLI diagnostic sets
(McCoy et al., 2020). Because weight averaging can find
parameter settings that fall on a barrier, we may even ex-
plain why weight averaging, which tends to perform well on
vision tasks, fails in text classifiers (Wortsman et al., 2022).
Future work that distinguishes generalization strategy basins
could improve the performance of such weight ensembling
methods.
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Linear Connectivity Reveals Generalization Strategies

A. Linguistic Acceptability

The Corpus of Linguistic Acceptability (CoLA; Warstadt
et al., 2018) is a set of acceptable and unacceptable English
sentences collected from the linguistics literature. Linguis-
tics has a longstanding practice of studying minimal changes
that render sentences ungrammatical; one CoLA example is
the pair of sentences “Betsy buttered the toast” (acceptable)
and “Betsy buttered at the toast” (unacceptable).

CoLA includes an ID val/test set, where the examples are
taken from the same linguistics papers that the training set
uses. However, it also includes an OOD diagnostic val/test
set. The diagnostic sets are taken from a different set of
linguistics papers, so in order for a model to perform well on
CoLA-OOD, it must transfer a general ability to recognize
unacceptable English sentences, rather than simply learning
the set of acceptability rules described in the ID sources.

A.1. Experimental details

We found that default settings on the HuggingFace (Wolf
et al., 2020) training script® resulted in more pronounced
barriers between models, compared to the Google script we
used for NLI and QQP.® Because our goal is to study the re-
lationship between barriers and generalization, we therefore
chose to use Huggingface for our CoLA analysis. Like in
our other experiments, we kept the default hyperparameters,
which differ slightly from the Google script. The CoLA
models were trained for 6 epochs with a learning rate of
2 x 107°, a batch size of 32 samples, and no weight decay.
This script uses the AdamW(Loshchilov and Hutter, 2017)
optimizer too, with a linear learning rate decay schedule but
no warm-up.

A.2. Clustering

In CoLA, there are very few barriers between finetuned
models. A single model out of the 48 finetuned accounted
for all substantial interpolation convexity gaps (Fig. 6a),
thus forming its own one-point cluster when using CG as a
distance metric for spectral clustering. This outlier model
outperformed all others on OOD generalization (Fig. 6b),
suggesting that CoL A is another task where models with
different generalization behavior are disconnected.

Shttps://github.com/huggingface/
transformers/blob/main/examples/flax/
text-classification/run_flax_glue.py

The major difference between scripts appears to be the lack of
different initializations of classification head between huggingface
runs. That is, different data order is the only source of SGD noise
in HuggingFace runs. However, it is likely that the presence or
absence of a second cluster during the sweep is due to random
chance, given that we see only a single model out of 48 falling into
the outlier cluster in these results.

B. A Notion of Convex Basins

From the interpolation plots(Figures 1, 2), it seems that
the loss surface over low dimensional subspaces(accessible
via SGD) of parameter space is composed of multiple, ap-
proximately convex, valleys. To formalize this, we define a
notion of relaxed convex basin in the parameter space.

Defintion .1. For resolution € > 0, we define an e-convex
basin as a convex set S, such that, for any set of points
wy, Wa, ..., Wi € S and any set of coefficients oy . .., > 0
where Y, oy = 1, a relaxed form of Jensen’s inequality
holds:

E(Z akwk) <e+ Z akﬁ(wk) 4)
k=1 k=1

C. Theoretical result on convexity gaps

Theorem C.1. An e-convex basin will have CG (w1, ws) <
€ for every pair of models w1, wo on its surface.

Proof. Recall the definition of convexity gap as the maxi-
mum value of the barrier height of any segment 64, 65 along
the interpolation between w; and we from Equation 3:

CG(wi,wz) = sup BH(ywi + (1 —v)ws,

v,8€[0,1] (5)
Bwr + (1 = B)ws)

As we are in an e-basin, the defining inequality from Equa-
tion 4 holds V6, 65 € e—convex basin :

LO b)) < e+ arl(Ok) (6)
k=1 k=1

Applying this for n = 2:

[,(Oélgl + (1 — 041)92) - (041[,(01)—1-(1 — ()41)[:((92)) <e
V01,05 € e-basin
(7N

-0.040 pearsonr = 0.367

0035

L0.030

0.025

0.020

0.015

9
e}
=
2
S
Q
<
3
=
3

.
.
. m
s
Py
EE Y]
.o
*
.

MCC on CoLA-OOD

0.010

0.005 ®  cluster0

0000 . cluster-1

a0 00

T
(@ (b)
Figure 6. (a) CG heatmap on CoLA models, sorted by OOD val-

idation. (b) A scatter-plot of cluster membership versus perfor-
mance on CoLA-OOD dev set.
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Hence the supremum of the quantity on LHS is also < e.
Seeing the definition of BH from Equation 2, we immedi-

ately see that:
BH(Ql, 02) <e V91,02 € e-basin (8)

As CG is the supremum of BH over elements within the
e—convex basin only, we have:

CG(wy,wy) <€ Ywi, we € e-basin 9)

O

D. HANS performance on subsequence
heuristics

Models that perform poorly on subsequence heuristics tend
to fall in the bag-of-words basin. However, the clusters are
less pronounced than for either constituent or lexical overlap
heuristics (Fig. 7).
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Figure 7. CG for model pairs, sorted by increasing performance
on HANS-subsequence.

E. Alternative barrier measurements

In Fig. 8 we show NLI model clustering using the origi-
nal barrier height metric (Equation 2) from Entezari et al.
(2021). We can see that the Pearson’s correlation coefficient
is —0.49, which is far lower in magnitude than correlation
in the CG-metric space.

We also show the results for another metric, viz. area under
the interpolation curve (AUC), in Fig. 9. Although this
shows the same pearson’s correlation coefficient, the clusters
are much less crisp in the heatmap. In order to compute
AUC, we add together the area between each point on the
curve and the lowest point in the entire curve.

Finally, we consider the effect of Euclidean distance
(Fig. 10). The clustering effect is extremely strong and
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Figure 8. Relationship between BH on the MNLI validation loss
surface and HANS-LO accuracy.
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Figure 9. Relationship between AUC on the MNLI validation loss
surface and HANS-LO accuracy.

predictive of generalization behavior. It is worth consider-
ing the possibility that basins trap the models in a way that
forces them to have larger Euclidean distances, but those
Euclidean distances are the property that most determines
the generalization strategy of the model.
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Figure 10. Relationship between Euclidean distance on the QQP
validation loss surface and PAWS-QQP accuracy.



