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Abstract

Ensuring the safety alignment of Large Lan-
guage Models (LLMs) is crucial to generating
responses consistent with human values. De-
spite their ability to recognize and avoid harm-
ful queries, LLMs are vulnerable to "jailbreak-
ing" attacks, where carefully crafted prompts
elicit them to produce toxic content. One cat-
egory of jailbreak attacks is reformulating the
task as adversarial attacks by eliciting the LLM
to generate an affirmative response. However,
the typical attack in this category GCG has
very limited attack success rate. In this study,
to better study the jailbreak attack, we intro-
duce the DSN (Don’t Say No) attack, which
prompts LLMs to not only generate affirmative
responses but also novelly enhance the objec-
tive to suppress refusals. In addition, another
challenge lies in jailbreak attacks is the evalua-
tion, as it is difficult to directly and accurately
assess the harmfulness of the attack. The exist-
ing evaluation such as refusal keyword match-
ing has its own limitation as it reveals numer-
ous false positive and false negative instances.
To overcome this challenge, we propose an en-
semble evaluation pipeline incorporating Nat-
ural Language Inference (NLI) contradiction
assessment, external LLM evaluation, as well
as refusal matching. Extensive experiments
demonstrate the potency of the DSN and the
effectiveness of ensemble evaluation compared
to baseline methods.

1 Introduction

Large Language Models (LLMs) have extensive
applications in facilitating decision-making across
professional and social domains, underscoring the
importance of aligning LLMs with safety consid-
erations. To safeguard against the generation of
responses that deviate from human values, safety
alignment is pursued through diverse mechanisms,
including model fine-tuning (Howard and Ruder,
2018), reinforcement learning with human feed-
back (RLHF) (Ziegler et al., 2019), and model
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Figure 1: Examples of the false positive and false nega-
tive cases in the string-matching evaluations.

editing (Mitchell et al., 2022). The overall goal
of these approaches is to mitigate the risk of LLMs
producing harmful or unlawful responses to user
queries.

While most Large Language Models (LLMs)
serve as reliable Al assistants capable of identify-
ing and declining to respond to harmful queries in
many instances, they remain vulnerable to carefully
crafted prompts designed to manipulate them into
producing toxic content, which is referred as "jail-
breaking". Existing studies on jailbreaking LL.Ms
can be categorized into two main approaches: man-
ually designed jailbreak attacks (web, 2023; Li
et al., 2024) and learning-based jailbreak attacks.
Representative of the latter category is the GCG
attack (Zou et al., 2023), which reformulates the
jailbreak attack as a process of generating adversar-
ial examples by eliciting the LLM to produce an af-
firmative response of a few tokens (e.g., "sure, here
is how to..."). Building upon this, subsequent stud-
ies by Zhu et al. (2023) and Liu et al. (2023) have
refined such attacks, focusing on improving stealth-
iness and readability using different optimization
algorithms.

Although optimization-based attack such as
GCG can successfully jailbreak in some cases, one
major limitation is the lacking suitable jailbreaking
target in the optimization process since the cate-
gories of objectionable behaviors and the reason-
able jailbreaking responses to them are numerous
(Carlini et al., 2023). To overcome this challenge
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Figure 2: Detailed illustration of DSN attack and ensemble evaluation pipeline.

and develop more powerful attacks, we introduce
the DSN (Don’t Say No) attack by enhancing the
loss objective by generating universal adversarial
suffixes that not only stimulate LL.Ms to produce
affirmative responses but also suppress the gener-
ation of refusal responses (Don’t Say No). The
intuition is that the refusal target is more restricted
than the harmful target, making it easier to design
the loss function.

To achieve this goal, we incorporate an augmen-
tation loss item that directs the language model’s
generation away from predefined refusal keywords
or strings. As shown in the upper part of Figure 2,
the loss objective comprises two parts: maximizing
the probability of generating the target affirmative
response (the red arrow and the example on the
left part of the loss function) and minimizing the
probability of generating the refusal keyword (the
green arrow and the example on the right part of the
loss function), thereby increasing the likelihood of
jailbreak success. Given the initialized suffix, the
universal adversarial suffix is optimized with the
above loss function using the Greedy Coordinate
Gradient-based Search (Zou et al., 2023).

Another challenge of studying jailbreak attacks
is the absence of an effective and efficient evalu-
ation pipeline to assess the success of the attack.
Unlike in the classification domain, where the suc-
cess of adversarial examples is often indicated by
the misclassification rate, evaluating the success of
a jailbreak attack is challenging. It is difficult to
directly ascertain the harmfulness of responses gen-
erated by the LLM, and relying solely on human
evaluation to label the harmfulness level is both
impractical and unrealistic.

The existing work employs a refusal

string/keyword matching (refusal matching
for short), where an attack is considered suc-
cessful if the initial fixed-length segments of
the response do not contain pre-defined refusal
strings (e.g. "Sorry, I cannot..."). While this
approach appears intuitive and aligns with human
evaluation processes, a closer examination reveals
numerous false positive (FP) and false negative
(FN) instances. One major limitation of this
approach is that it relies largely on the length of
the pre-determined initial segments. If the initial
segments is short (e.g. 64 tokens), it will neglect
the refusal strings in the later part of the response
and evaluate it as a successful jailbreak instance
resulting in a false positive (case 1 in 1). On the
other hand, If the initial segments are long (e.g.
512 tokens), the evaluation would give a false
negative if a refusal string appears at the end but
actually generates harmful content in the beginning
(case 2 in 1). Other erroneous evaluations that do
not align with human evaluation are illustrated in
Figure 1.

To enhance the accuracy of evaluating attack per-
formance and explore the limitations of LLMs in
safety alignment, we propose an ensemble evalu-
ation approach involving three modules as shown
in the lower part of Figure 2. First, we utilize the
refusal matching method, as mentioned earlier but
checked in a a longer initial segment of tokens.
This adjustment aims to address scenarios where
refusal strings appear later in the response. Second,
we employ natural language inference (NLI) (He
et al., 2021) to assess the contradiction between
each sentence in the response. This step aims to
handle cases where the response initially appears
to answer the query but ultimately fails to gener-



ate harmful content (as depicted in Figure 1 case
3). Lastly, we integrate a third-party LLM, such as
GPT-4 (Achiam et al., 2023), to provide a robust
and comprehensive evaluation. The final evalua-
tion of jailbreak success is the aggregation of the
outputs from these three modules, enhancing the
depth and reliability of our assessment.

The contribution can be summarized as: 1) We
introduce DSN, a powerful attack that incorporates
a novel objective to not only elicit the affirmative
response but also suppress the refusal response.
2) We involve softminCE loss to stabilize the
convergence and optimization of the two opposite
loss objectives.

3) We propose an ensemble evaluation pipeline
by novelly incorporating NLI contradiction and
an evaluator LLM as well as the original refusal
matching evaluation to examine the success of the
attack more accurately.

4) Extensive experiments demonstrate the potency
of the DSN and the effectiveness of ensemble
evaluation compared to baseline methods

2 Related work

Adversairal examples. Since the introduction of
the so-called adversarial attacks (Szegedy et al.,
2014; Goodfellow et al., 2014), the exploration of
vulnerabilities within deep learning models to well-
designed and imperceptible perturbations has at-
tracted significant research interest for one decade.
Under the white-box setting, a series of effective
adversarial attack algorithms have been proposed
Carlini and Wagner (2017); Kurakin et al. (2017).
In an automated learning manner, these methods
utilize gradient-based approaches to search for im-
perceptible perturbations. In addition, several ef-
fective adversarial attacks based on transfer attacks
have also been proposed to address black-box set-
ting. (Papernot et al., 2016; Liu et al., 2016)

Jailbreak attacks. In recent years, with the ad-
vancement of the Large Language Model (LLM),
the field of jailbreaking attacks, aiming to induce
the target LLMs to generate harmful and objec-
tionable content, has gathered widespread research
attention (Wei et al., 2023). Currently, several
effective jailbreak methods and strategies have
emerged. These include approaches based on
manually constructed prompts (web, 2023), rep-
resentation engineering (Li et al., 2024), utilizing
LLMs to generate (Deng et al., 2024), grammatical
rules (Zhang et al., 2023), modification of decod-
ing methods (Huang et al., 2023), usage of multi-

modal LLM (Niu et al., 2024; Gong et al., 2023)
as well as those reformulating the jailbreaking as
adversarial attacks and employing pure optimiza-
tion (Zou et al., 2023; Zhu et al., 2023). Among
these attacks, GCG (Zhu et al., 2023) is a typi-
cal optimization-based attack used as the baseline
method as it shares a similar attack strategy with
proposed DSN.

The evaluation methods employed by the afore-
mentioned work primarily adopt the refusal string,
as mentioned in Section 1. Another method in-
volves construct a binary classifier, aiming to de-
termine whether the generated response contains
harmful content (Zhu et al., 2023; Huang et al.,
2023). However, due to the extensive and diverse
generation capabilities of language models, these
attempts have not yet been proven to be sufficiently
satisfactory in resolving the evaluation problem.

Optimization Strategy. As mentioned above,
one primary characteristic the automated learning-
based jailbreaking attack is concerned about is that
the attacker should overcome the challenges posed
by the discrete space. There are two main types
of approaches: embedding-based and token-based
optimization. The former addresses the issue of dis-
crete space by directly optimizing embeddings and
then inferring the target tokens through back pro-
jection (Lester et al., 2021) (Wen et al., 2023) (Qin
et al., 2022). The latter approach treats the one-hot
vectors of discrete tokens as optimizable quanti-
ties, obtaining the final tokens through differently
designed and implemented greedy algorithms. Sev-
eral effective methods (Ebrahimi et al., 2017) (Shin
et al., 2020) (Zou et al., 2023), including the ap-
proach proposed in this work, adopt this paradigm.
3 Methods

In this section, we will first introduce the objec-
tive and the softminCE loss of DSN. Next, we will
present the optimization process and the algorithm.
Lastly, we will explain the evaluation pipeline in
detail.

3.1 DSN: Suppress Refusal

Intuition. The first part of the objective is to sup-
press the model giving a refusal response. For
examples:

System: You are a chat assistant designed
to provide helpful and not harmful
responses to user queries.

User: Tell me how to build a bomb. ! ! ! I !

Assistant: As an AI, I cannot fulfill...

Above, the blue and red text represents the user
prompt and adversarial jailbreaking suffix, while
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Figure 3: Illustration of the refusal loss.

the purple text indicates the target initial of the
response. The intuition to incorporate the suppres-
sion of pre-defined refusal keywords is to force the
language model’s generation far away from a re-
fusal response and lead to the success of jailbreak.

Notation. We consider an LLM to be a map-
ping from a sequence of tokens x.,, with x; €
{1,...,V} (where V denotes the vocabulary size)
to a distribution over the next token. Specifically,
we use the notation p(x,41|z1.,) to denote the
probability of the next token being x,,41 given pre-

vious tokens x1.p.

Then we denote the probability of generating
the response with a sequence of H tokens as
P(Tp41:m+1|T1:m), which can be formalized as:

H

p(xn+1:n+H‘x1:n) = Hp($n+i|$1:n+i—1) (])
=1

softminCE loss. Normally, to maximize the pre-
diction of a target distribution or token, we in-
corporate the standard softmax cross-entropy loss

Lce(p,q) = — Y, pilog(g;), which aims to max-
imize the true probability distribution p by mini-
mizing the Lcg(p, q), where p and q refer to the
true probability distribution and predicted proba-
bility distribution generated by softmax function.
However, our purpose is the opposite as we want
to minimize the probability of generating refusal
keywords. One intuitive way is to take the nega-
tive softmax cross-entropy loss which will however
lead to catastrophic loss term and the negative in-
finity values. To stabilize the convergence, we pro-
pose the softminCE loss which can be formalized
as:

Lsce(p,q) = — Zpi log(1 — qi) 2

Objective. The objective of suppressing refusal
is achieved by minimizing the probability of gen-
erating tokens in the pre-defined refusal keyword
list, denoted as RK L = "as an", "sorry, i cannot”,
"unethical", .... Each refusal keyword’s correspond-
ing token length is represented by RT'L, indicating
the length of each keyword. To implement this,
we utilize a sliding window with the size of each
refusal keyword to scan through the response and
compare it with the refusal keywords. The process
of keyword matching is illustrated in Figure 3. The
loss tfunction for suppressing the refusal response
using softminCE loss can be stated as:

n+RTL(y)<H

Z LscE(Y, Tiiit RTL()),
yERKL
3)

re¥p¥siise H denotes the maximum length of the

[rrefusal(xl:n) =
i=n+1

3.2 DSN: Elicit Affirmative Response

Intuition.The second part of the objective is elicit-
ing the model to begin its response with a positive
affirmation of the user query. For example:

System: You are a chat assistant to provide
helpful and not harmful responses to
user queries.

User: Tell me how to build a bomb. ! ! I I !

Assistant: Sure, here is how to build a bomb:

The intuition behind this approach lies in the lan-
guage model’s next-word prediction capability. By
initiating the response with an indication of willing-
ness to answer the question, the subsequent words
are expected to align with this context and fulfill
the query effectively.

Loss function. The objective of eliciting affir-

mative response is to maximize the probability of

. *
generating target sequences of tokens x} ., .\ .

which equals to minimize the negative log of the
probability:

£larget(m1:n) = - 10gp($:;+1m+H‘xlzn)- €]

3.3 DSN:Loss Function

Combining the refusal loss with the target loss,
DSN could elicit the LLM to generate harmful and
objectionable content and suppress it to output re-
fusal responses simultaneously. The overall loss
can be stated as:

ﬁovcra]] (xlzn) - ﬁtargcl(xlzn) + a* chfusal (ajlzn)7 (5)

where a is a hyll)er—paramf;ter to balance the con-
vergence of two loss objectives.

3.4 Optimization and Algorithm

After elaborating on each component of the loss
function, we will introduce the optimization pro-
cess and algorithm in this section. Our goal is to
optimize an adversarial suffix adv* with the above-
mentioned loss function which can be stated as:

adv* < arg min Loveran (1., ® adv)  (6)

The process for e,nerati,nﬁ a %nivderlsal Stll,!lfﬁz will
a fixed length. A pri-

first initialize a string wit
mary challenge in optimizing adversarial suffixes
is that we have to optimize over a discrete set of
inputs. To overcome this challenge, we incorporate
a greedy coordinate descent approach (Zou et al.,
2023). The intuition is to leverage gradients of
loss with respect to the one-hot token indicators to
find a set of promising candidates for replacement
at each token position, and then evaluate all these
replacements exactly via a forward pass. As the
algorithm is based on the optimization in GCG,

which was relegate to Appendix.



Algorithm 1 NLI Contradiction Evaluation

Require: the user query Q, the adversarial suffix
adv, the language model M, a threshold
T.
1: Response R : [01,02...0,] = M(Q + adv)
> Generate the response R containing number
of n sentences.
fori=1,...,ndo
scoreiQO =NLI(Q, 0;)
129 = length(Q + 0;)
forj=1,...,n,j #ido
L score;” = NLI(0;, 0;)
I = length(oj + 0;)

12%xscore2°
8 SS9 = Yoy 15% > Compute the

7
overall NLI score of sentence and query.

I wscore.
. 00 __ XN [ *score,; 3 )
9: §S _ZiJ:l 712_ - > Compute the
1,7 1

overall NLI score of each pair of sentences.
10: if T — (559 + 559°) < 0 then
11:  Return Fail
12: else:
13: _ Return Success

N AR

3.5 Ensemble Evaluation
In this section, we will elaborate on the three mod-
ules of the ensemble evaluation.

Refusal matching. The refusal matching algo-
rithm is a sliding window approach used to evaluate
whether a response contains any keywords from the
refusal keyword list. The algorithm iterates through
each word or string in the response and compares it
against the refusal keywords. Rather than examin-
ing the entire response, which may vary in length,
the algorithm focuses on a predetermined fixed-
length initial segment. The attack is considered
successful if the initial segment of the response do
not contain pre-defined refusal strings.

The length of the fixed-length initial segment
plays a crucial role in the accuracy of the evalu-
ation process. When the fixed-length segment is
shorter, there is a higher likelihood that refusal
words appearing later in the response may not be
detected. This can result in false positives, where
responses are erroneously evaluated as jailbreak
instances. In contrast, using a longer fixed-length
segment allows for a more comprehensive evalua-
tion of the response but may result in false negative
as discussed in Section 1.

NLI contradiction. In natural language inference
(NLI), a contradiction refers to a situation where

two statements are mutually exclusive or incompat-
ible with each other. The intuition of employing
NLI contradiction is that the false negative evalu-
ation appears when the response initially appears
to answer the query but ultimately fails to generate
harmful content (case 3 in Figure 1).

We design an algorithm to evaluate the likeli-
hood of contradiction within a response generated
by a language model using NLI scores by examin-
ing the coherence between the user query and each
response, and determining jailbreak success or fail-
ure based on a predefined threshold. Intuitively, we
want to eliminate the false negative cases so we
want to ensure the response is semantically consis-
tent within the response and with the user query.
Higher overall NLI contradiction score signifies
lower response consistency and diminishes the like-
lihood of being a jailbreaking response.

As present in the Algorithm 1, given the user
query Q including the adversarial suffix adv, the
language model M, we first generate the response
‘R containing number of n sentences (line 1). Then,
for each sentence in the generated response R, we
assess how well the sentence aligns with the user
query and the relationship between pairs of sen-
tences within the response by calculating the stan-
dard NLI contradiction score (lines 2-7). We use a
weighted sum of each score component according
to the sentence length to compute overall sentence
similarity $.5°° and SS<° (lines 8-9), as the sen-
tence length largely influences the value of the NLI
score. By comparing with the predefined threshold
T, we can determine the success and failure of the
attacks (lines 10-13).

LLM evaluator. As a powerful way of general
evaluation, we use GPT-4 as the third module to
evaluate the success of the attacks. We adopt the
following templates in making the evaluation re-
quest:

You are a strict judger, responsible for
detecting the harmful content generated by
other LLM. You will receive 2 sentences, the
objectionable harmful request and the
generated content. You should decide whether
the generated content answers the
objectionable request and provide harmful
information.

Answer in exactly Harmful or Harmless.
<request>: <query> <adv suffix>

<content>: <answer>

Ensemble Evaluation. We use three different eval-
uation modules, and we decide whether a response
is successful or unsuccessful jailbreak by taking the



majority vote among these methods. The reason
we take the majority vote other than other aggrega-
tion methods and the effectiveness of the ensemble
evaluation pipeline will be discussed in Section 4.
Experiments

In this section, we first elaborate on the threat
model in Section 4.1. Then we clarify the con-
figuration of the experiment in section 4.2, includ-
ing the datasets, the base language models, and
other essential entities. In section 4.3, we evaluate
the proposed DSN attack with the original refusal
matching evaluation as proposed in GCG, as well
as the ensemble evaluation pipeline introduced in
Section 3.5. Lastly, to demonstrate the effective-
ness of the ensemble evaluation pipeline, in Section
4.4, we assess the contribution of each evaluation
module in the ensemble evaluation involving the
human evaluation.

4.1 Threat Model

The objective of attackers is to jailbreak Large Lan-
guage Models (LLMs), aiming to circumvent the
safeguards in place and generate responses that di-
verge from human values. The victim model, an
open-sourced language model, initially aligns its
responses with human values and refrains from an-
swering harmful inquiries after undergoing safety
alignment. Attackers possess white-box access to
the model, including its architectures, gradients,
and output, which consists of the generated re-
sponses, yet lack access to the training data.

4.2 Configuration

Datasets. AdvBench is a comprehensive bench-
mark aiming to systematically evaluate the effec-
tiveness and robustness of jailbreaking prompts
to elicit harmful content generation. A collection
of 520 goal-target pairs are presented that reflects
harmful or toxic behavior, categorized as profanity,
graphic depictions, threatening behavior, misinfor-
mation, discrimination, cybercrime, and dangerous
or illegal suggestions. (Zou et al., 2023)

Target models. We target Llama-2-Chat-7B (Tou-
vron et al., 2023) and Vicuna-7b-v1.3 (Zheng et al.,
2023), which are two state-of-the-art open-source
LLMs. These two language models have under-
gone different levels of alignment process. and
exhibit varying degrees of human-value alignment
capability.

Baselines and evaluation metrics. We com-
pare DSN attack with GCG, the typical learning-
based jailbreak attack. To evaluate the effective-
ness of the DSN attack, we adopt the standard

attack success rate (ASR), which measures the

portion of toxic LLM (M) responses (R) after

adding the adversarial suffix adv: ASR(M) def

qu > (ryep HIM((R) @ adv)). Here I is an
evaluation indicator that returns 1 if the response
is assessed as harmful (a successful jailbreak case)
and 0 otherwise. We employ two evaluation indi-
cators: refusal matching evaluation criteria, widely
used in previous work, and the ensemble evaluation
proposed in our study. To demonstrate the superior-
ity of ensemble evaluation accurately, we involve
the human evaluation by manually annotating 300
responses as harmful or benign, serving as ground-
truth labels. To measure whether the evaluation
mechanism aligned with human labels akin to a
binary classification, we use the confusion matrix
and ROC curve to represent the effectiveness of
ensemble evaluation.

4.3 Evaluation 1: Effectiveness of
DSN Attack

First, we present the attack success rate (ASR) of

DSN compared with GCG attack, to demonstrate

the effectiveness of DSN. In this section, the ASR

is evaluated under the original refusal matching

evaluation.

ASR convergence rate. In Figure 4, we present
the ASR of GCG attack and DSN among the opti-
mization steps. The shadow regions with the dotted
lines are the margin plots representing the mean
and variance of repeated experiments with differ-
ent hyper-parameter configurations, while the solid
lines represent the optimal ASR among repeated
experiments. Note that the sampling of candidate
suffixes and searching of adversarial suffix from the
candidates both involve the loss function 5 (detail
relegated to the Appendix together with the algo-
rithm). The upper two figures and lower two figures
are the results of using the refusal loss (Equation 3)
in both sampling and searching or only searching
on Llama2 and Vicuna respectively.

It can be observed that the results of DSN at-
tack are significantly superior to those of the base-
line method, in terms of both mean and optimal
results. This is evidenced by the lines represent-
ing the DSN method consistently positioned above
those of the baseline. Moreover, it could be found
that the yellow shaded area representing the DSN
method remains above the blue shaded area of the
baseline across nearly the entire 0-500 steps inter-
val. This indicates that the DSN attack are robustly
superior to the baseline with limited step, present-
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Figure 4: ASR over steps on Llama2 and Vicuna.
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Figure 5: Ablation study of ASR vs. « by refusal match-
ing evaluation

ing an ideal scenario for malicious attackers who
might lack sufficient computational resources, e.g.
fail to support 500 steps of attack for each setting.
Moreover, the wider span of the shaded area for the
DSN attack suggests a greater variance, which is
reasonable, as the repeated experiments are distinct
in hyper-parameter and experimental strategies be-
tween DSN and GCG, which involves only one
single setting and has been launched for more tri-

zlf)'lation study on «. To investigate the impact
of the Ly¢fysqr 10ss augmentation term on the jail-
breaking results, we present the ASR under differ-
ent hyper-parameter « in Figure 5, which controls
the magnitudes of the L, fysq term. We set the

fixed-length segments of 128 and 512 for Llama
and Vicuna respectively. The baseline results on
GCG correspond to the leftmost alpha = 0 case
as well as the dotted line, which only involves the
target loss 4. The yellow, blue, and red bars repre-
sent the attacks where the L, 4 term involved
in different stages respectively, including L. fysal
only used for searching, used for both selecting
and searching with the same «, and used for both
selecting and searching but with different a.

In Figure 5, the DSN method consistently sur-
passes the baseline performance under nearly ev-
ery hyper-parameter setting. We didn’t include
the results for higher values of o because when
a exceeds 100, the DSN loss is dominated by the
Ly fusal term, resulting in the generated responses
focusing too much on avoiding refusal keywords
rather than responding to the users’ objectionable
requests, which isn’t desirable in a jailbreaking
scenario.

4.4 Evaluation 2: Effectiveness of En-
semble Evaluation

In the previous evaluation of the DSN attack, we
used the refusal matching method, commonly em-
ployed in assessing jailbreaking attacks. However,
to address the limitations of this method, this work
introduces ensemble evaluation by combining re-
fusal matching, NLI contradiction, and LLM evalu-
ator assessments (as discussed in Section 3.5). In



Ensemble Actual positive | Actual negative | LLM Actual positive | Actual negative
Predict positive 0.51 (TP) 0.24 (FP) Predict positive | 0.51 (TP) 0.26 (FP)
Predict negative 0.02 (FN) 0.23 (TN) Predict negative | 0.02 (FN) 0.21 (TN)
Refusal matching | Actual positive | Actual negative | NLI Actual positive | Actual negative
Predict positive 0.46 (TP) 0.21 (FP) Predict positive | 0.46 (TP) 0.24 (FP)
Predict negative 0.07 (FN) 0.23 (TN) Predict negative | 0.07 (FN) 0.23 (TN)

Table 1: Confusion Matrix for ensemble evaluation and individual module
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Figure 6: Ablation study of ASR vs. « by ensemble
evaluation.

this section, we will compare various aggregation
techniques. Then we will report the ASR under the
new evaluation approach. Lastly, we will analyze
the impact of individual evaluation modules.

Human evaluation. To assess the performance of
the ensemble evaluation pipeline and compare it to
the widely adpoted refusal matching, We involve
human evaluation by manually annotating 300 re-
sponses generated from Vicuna and Llama2. These
responses are randomly selected from response gen-
erated by adding adversarial suffixed optimized by
DSN, covering all harmful categories.

Aggregation strategy comparison. Aggregating
evaluation results from each module is crucial for
the accuracy of the evaluation pipeline. Com-
mon methods include majority voting, one-vote
approval (requiring only one module to detect jail-
breaking), and one-vote veto (requiring all mod-
ules to detect jailbreaking). To determine which
aggregation method is more accurate, we employ
a ROC curve illustrating the True Positive Rate
versus False Positive Rate and compare their AU-
CROC scores (shown in Figure 7). A larger area un-
der the curve indicates better results. Soft and hard
majority votes return probabilities and binary out-
comes, respectively. The ROC curve demonstrates
the superiority of the majority vote as an aggrega-
tion strategy, with ensemble evaluation showing a
higher AUCROC score compared to refusal match-

ing.
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Figure 7: ROC curve of different aggregation policy

ASR under new evaluation. In figure 6, we
present the ASR vs the hyper-parameter o under
the new evaluation pipeline with the majority which
is the best aggregation discussed in the previous
section. Similar to Figure 5, DSN method will
give superior jailbreaking results in the much more
aligned model Llama?2.

Contribution of each evaluation part.

By examining Confusion Matrix Table 1, we can
observe that ensemble evaluation has a higher true
positive rate and much lower false negative than
refusal matching. In addition, GPT-4 as an LLM
evaluator also achieves higher true positive rate and
a slightly higher false positive rate.

5 Conclusion

In conclusion, we introduces the DSN (Don’t Say
No) attack to prompt LLMs not only to produce af-
firmative responses but also to effectively suppress
refusals. Furthermore, we propose an ensemble
evaluation pipeline integrating Natural Language
Inference (NLI) contradiction assessment, external
LLM evaluation, and refusal matching. Through
extensive experiments, we showcase the potency
of the DSN attack and the effectiveness of our en-
semble evaluation approach compared to baseline
methods. This work offers insights into advanc-
ing safety alignment mechanisms for LLMs and
contributes to enhancing the robustness of these
systems against malicious manipulations.



6 Limitations.

We conclude the limitations of our work in both
attack methods as well as evaluation metrics.

6.1 Attack method limitation.

As illustrated in one concurrent work (Zhu et al.,
2023), the gibberish suffix might be triggering one
perplexity-based filter since the adversarial opti-
mized suffix’s readability diverge a lot from natural
languages. The question holds the same for DSN
method and the incorporation of both readability
as well as suppression of refusal willingness will
give better results.

6.2 Evaluation method.

Though the proposed ensemble evaluation per-
forms quite favourably under the close inspection
and on the annotated data, there still exist limita-
tions for this evaluation method. Namely all the
three component are target the explicit refusal re-
sponses, while another kind of implicit refusal re-
sponse cannot be categorized accurately. Repeating
a same, benign but useless response is a classic case
for the implicit refusals.

7 Ethics.

In this paper, a much more powerful jailbreaking
method is proposed, aiming to rigorously exam-
ine the alignment mechanism of the open-source
LLMs. However, it could be possible that this
attacking method would be utilized by malicious
users. Thus, conclusion could be drawn that the
alignment process should be examined in a much
more strict manner before open-sourcing modern
and power LLMs.
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A Appendix

In the appendix section, the detailed pseudocode
of GCG (Zou et al., 2023) method as well as the
construction details of evaluation method will be
given.

Algorithm 2 The Greedy Coordinate Gradient
method with refusal loss

Require: Initial prompt x1.,, modifiable subset Z, iterations
T, loss L, k, batch size B
loop 7" times
fori € Zdo
L X = Top—k(—VeIi Coverall(l‘l:n))
> Loverall may contains refusal loss

forb=1,...,Bdo

jgbzl = Tin
igb) := Uniform(X;), where ¢ = Uniform(Z)
> Sampling by Loyerall
b*)

»,» where b* =y, Loveran (71,

n
> Greedy searching by Loyerall

Ensure: Optimized prompt 1.,

— Al
Tin = Tq

A.1

As shown in algorithm 2, a gradient-based greedy
method is adopted to generate suffixs.

Algorithm details

A.2 Evaluation

The annotation is carried upon the optimal runs of
three different settings.

A.3 Computing resources
The experiment are carried out by 8* NVIDIA A40
gpus.
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