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Abstract

The key component of transformer architec-001
ture is the multi-head self-attention(MHA) and002
feed forward neural network (FFN). In this003
paper, we observe that, across many applica-004
tions, MHA component is nonsymmetric and005
FFN component is sparse within transformer006
architecture. Leveraging this observation, we007
propose a new method, AdaPrune, to utilize008
sparse regularization to conduct structure prun-009
ing in MHA and FFN modules. This method010
selects task-specific valuable heads in multi-011
head attention modules and effective blocks in012
feed forward layers during the fine-tuning stage,013
while maintaining the original performance of014
full transformer model. Extensive experiments015
show that AdaPrune can achieve competitive016
performance on these tasks while significantly017
reduce the computation cost.018

1 Introductions019

Transformer models (Vaswani et al., 2017) have020

proven its overwhelming performance among vari-021

ous natural language processing (NLP) problems022

such as neural machine translation (Liu et al.,023

2020; Ott et al., 2018), natural language under-024

standing (Devlin et al., 2019; Liu et al., 2019) and025

automatic speech recognition (Wang et al., 2020a).026

Despite becoming the fundamental architecture for027

many applications, transformer model is hard to028

deploy in practice due to the high computation cost.029

This is attributed to the multi-head self-attention030

module (MHA) and feed-forward neural network031

(FFN) inside the standard transformer architec-032

ture (Child et al., 2019; Wu et al., 2020). On the033

one hand, MHA has quadratic complexity in com-034

pute and memory with respect to sequence length035

of inputs (Vaswani et al., 2017). On the other hand,036

FFN contributes most of computation FLOPS as037

it normally consists of a large hidden dimensions038

(e.g. FFN contains more than 50% of parameters039

for GPT-3 model families (Brown et al., 2020)).040

0.5 0.6 0.7 0.8 0.9 1.0
Relative GFLOPs

0.92

0.94

0.96

0.98

1.00

Av
g 

Re
la

tiv
e 

Pe
rfo

rm
an

ce
Prune Methods

SimplePrune
AdaPrune

Figure 1: Trade-off illustration between performance
(Y-axis) and inference cost (X-axis) of Standard Prune
and AdaPrune for RoBERTa base model.

There are several lines of research work focusing 041

on improving the efficiency of transformer architec- 042

ture: (i) optimizing self-attention mechanism (Tay 043

et al., 2020) such as introducing sparsity (Child 044

et al., 2019) and low-rank projection (Wang et al., 045

2020b; Choromanski et al., 2020) into attention 046

computation; (ii) knowledge distillation from large 047

pre-trained transformer models to smaller counter- 048

part such as DistilBERT (Sanh et al., 2020); (iii) 049

mixed precision such as training and deploying 050

quantized model (Ott et al., 2019); (iv) model prun- 051

ing such as removing some heavy component of the 052

transformer model to speed up the inference (Fran- 053

kle and Carbin, 2019; Chen et al., 2020). 054

In this paper, we propose a new angle for im- 055

proving transformer efficiency. We first provide 056

an analysis across a range of NLP classification 057

and translation tasks, to show that, in the standard 058

transformer architecture, (i) if we define the self- 059

attention mechanism as a functional mapping, it is 060

nonsymmetrical across each layer and each heads. 061

(ii) feed forward neural network is extremely sparse. 062

In details, we observe that more than 97% tensors 063

from FFN is equal to or proximate to zero after the 064

activation. 065

Leveraging this observation, we proposed a new 066

1



1 2 3 4 5 6 7 8 9 101112
Heads

1
2

3
4

5
6

7
8

9
10

11
12

La
ye

r

1 2 3 4 5 6 7 8 9 101112
Heads

1
2

3
4

5
6

7
8

9
10

11
12

1 2 3 4 5 6 7 8 9 101112
Heads

1
2

3
4

5
6

7
8

9
10

11
12

1

2

3

4

Figure 2: From left to right, we plot the heatmap of spectral norm of Wq
i , Wk

i and Wv
i among 144 heads across

12 layers. The results are based on fine-tuned RoBERTa-base model in SST-2 benchmark.

Figure 3: Tensor distribution shift after GeLU/ReLU
activation in FFN. The left is based on fine-tuned
RoBERTa model on IMBD dataset and the right is based
on transformer model on WMT16 en-de translation task.

method to improve transformer efficiency, named067

as AdaPrune, which utilizes sparse regularization068

to conduct structured pruning. Our method con-069

sists of three steps as described in Section 3: fine-070

tuning with sparse regularization on in-domain task,071

prune model (not fine-tuned) based on component072

rank in MHA and FFN obtained from first step,073

and fine-tune pruned model on the same target074

task. We apply our methodology on pre-trained lan-075

guage model such as RoBERTa (Liu et al., 2019)076

and investigate the performance-efficiency trade077

off on GLUE benchmark. As shown in Fig. 1,078

AdaPrune provides average 2% improvement in079

GLUE benchmark compared to the simple struc-080

tured prune, which remove each heads and FFN081

blocks randomly. We believe this method is com-082

plementary and can be combined with the existing083

various transformer efficiency techniques.084

2 Motivation085

In this section, we will introduce the standard trans-086

former architecture and two important observations087

inside the multi-head attention and feed forward 088

neural network inside transformer. 089

2.1 Transformer Architecture 090

Each transformer layer (Vaswani et al., 2017) in- 091

cludes two important module: MHA and FFN. The 092

MHA can be described as 093

MHAi(Xi) = Concat[headi(Xi)]
H
i=1Wout, 094

095

headi = softmax

(
Wq

iXi(W
k
i Xi)

T

dk

)
Wv

iXi, 096

where Xi is the hidden representations in ith layer, 097

H is number of heads in each layer. The query, 098

key and value are produced via linear mapping 099

Wq
i ,W

k
i and Wv

i . The FFN is defined as 100

Yi = ReLU(Wfc1,iMHAi(Xi) + bfc1,i), 101

102
Ci = Wfc2,iYi + bfc2,i, 103

where Wfc1,i,Wfc2,i
′ ∈ Rd×dhidden . In the sequel, 104

we will omit the subscript i. 105

2.2 Sparsity and Non-symmetry 106

Existing work (Tsai et al., 2020) shows that MHA 107

and FFN are the most time consuming modules in 108

transformer architecture, which contributes more 109

than 95% FLOPS. Therefore, we investigate the 110

characteristics of MHA and FFN in each trans- 111

former layer to see if we can prune the architec- 112

ture into a compact size. In MHA, we define 113

the model parameters Wq
i , Wk

i and Wv
i as func- 114

tional mappings and investigate the distribution of 115

spectral norm across different heads and layers. 116

For example, we fine-tune RoBERTa model (Liu 117

et al., 2019) on the Stanford Sentiment Treebank 118
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Binary task (Socher et al., 2013). Then we ex-119

tract weights from the MHA module as shown in120

Fig. 2. The heatmap reveals that, the spectral norm121

of Wq
i , Wk

i and Wv
i varies across different heads122

and different layers. We hypothesis that this phe-123

nomenon is due to different token distribution of124

input instances across different tasks. It provides125

the possibility to remove the task-specific heads126

with smaller spectral norm.127

Furthermore, we investigate the sparsity of the128

output from FFN across all layers. In short, there129

are two linear layers in each transformer layer Wfc1130

and Wfc2. Usually, activation (e.g. GeLU/ReLU)131

is applied to the output from Y. We explore the132

distribution shift in both classification task (GeLU133

is applied) and translation task (ReLU is applied).134

Fig. 3 illustrates the distribution change of the out-135

put from Wfc1 before and after activation. For136

example, in the translation task, we observe more137

than 97% values after ReLU activation are zero.138

This implies corresponding linear projections from139

Wfc1 for these negative outcome values are redun-140

dant and can be further removed.141

3 Methodologies142

In this section, we present the main algorithmic143

component of AdaPrune, a sparse regularization-144

based structure pruning strategy. It compresses the145

transformer architecture through attention heads146

pruning and block pruning in feed forward net-147

works, and takes three steps to compress the trans-148

former architecture. The main procedure is listed149

in Algorithm 1.150

Fine-tuning with Sparse Regularization: We151

first add sparse regularization to task loss (e.g.152

cross-entropy loss in clasification task) during the153

fine-tuning stage. Suppose we have L layers, the154

loss is defined as155

Loss = Ltask + λ

(
L∑
l=1

∥MHAl∥+ ∥FFNl∥

)
156

157

∥MHAl∥ =

H∑
i=1

∥Wq
i ∥+ ∥Wk

i ∥+ ∥Wv
i ∥158

In the above, sparse regularization is added across159

each layer and each head with a single scaling fac-160

tor λ. Note that we partition the matrix Wfc1 and161

Wfc2 of FFN into M ×N blocks, and calculate the162

norm of each block separately. Then the norm of163

Algorithm 1 AdaPrune
1: procedure ADAPRUNE(Dtrain, M )
2: MT = AdaTrain(Dtrain, M, λ)
3: Mpruned = Prune(MT , M, ϵm, ϵf )
4: for epoch in epochs do
5: for Xtraini , Ytraini in Dtrain do
6: pred = Mpruned(Xtraini)
7: loss = loss(pred, Ytraini)
8: Backpropagation(loss)
9: end for

10: end for
11: return Mpruned

T

12: end procedure

FFN in transformer layer l is defined as 164

∥FFNl∥ =
M∑
i=1

N∑
j=1

∥Wfc1,i,j∥+ ∥Wfc2,i,j∥ 165

Norm-based Pruning: After fine-tuning with 166

sparse regularization, we use the norm ∥Wq
i ∥ + 167

∥Wk
i ∥+ ∥Wv

i ∥ of each head as the proxy for head 168

importance, and remove the unimportant heads 169

based on the pre-defined norm threshold ϵm. Sim- 170

ilarly, importance of blocks in feed forward net- 171

works are calculated based on the norm of corre- 172

sponding blocks, and unimportant blocks are re- 173

moved based on threshold ϵf . As a result, we could 174

control the strength of pruning by simply tuning 175

the thresholds ϵm and ϵf . We will store the pruning 176

information in set MT . 177

Fine-tune Pruned Model: Based on head and 178

block index stored in MT , we will prune pre- 179

trained language model M to obtain a smaller pre- 180

trained language model Mpruned. Then we further 181

fine-tune the pruned model Mpruned on the same 182

target tasks. 183

4 Experiments 184

In our experiments, we use the RoBERTa-base 185

model (Liu et al., 2019) and evaluate proposed 186

method on various tasks with three pruning settings: 187

MHA pruning, FFN pruning and combination of 188

the MHA & FFN pruning. For each setting, we 189

have explored two pruning percentages (33% or 190

50%), which means that we remove 33% or 50% 191

parameters in the corresponding module. We eval- 192

uate the performance of AdaPrune in the GLUE 193

benchmark (Wang et al., 2019). We also compare 194

our proposed method with two baseline methods: 195
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Method IMDB SST-2 CoLA MNLI QNLI QQP STS AVG
(Acc) (Acc) (Acc) (Acc) (Acc) (Acc) (Pear./Sp.)

Standard Prune

H=8, D=3072 92.7 93.5 83.6 86.2 91.7 91.5 89.4/89.1 89.7
H=6, D=3072 91.9 93.2 82.2 85.7 90.9 91.4 88.8/88.5 89.1
H=12, D=2048 91.8 93.1 78.1 86.4 91.8 91.3 89.5/89.1 88.9
H=12, D=1536 91.2 92.1 73.6 85.0 90.1 91.1 89.6/89.3 87.8
H=8, D=2048 90.8 92.3 77.5 84.7 90.0 91.1 88.1/87.8 87.8
H=6, D=1536 89.3 90.6 71.5 83.0 87.4 90.6 83.7/83.8 85.0

AdaPrune

H=8, D=3072 93.0 95.1 83.9 86.8 92.1 91.6 89.8/89.5 90.2
H=6, D=3072 92.0 94.5 82.9 86.0 91.3 91.5 89.2/88.9 89.5
H=12, D=2048 92.9 94.5 83.2 87.2 92.6 91.8 89.6/89.4 90.1
H=12, D=1536 91.2 93.5 77.9 85.8 90.9 91.3 88.7/88.4 88.5
H=8, D=2048 91.3 93.8 80.7 86.0 91.6 91.6 86.4/86.2 88.5
H=6, D=1536 88.9 93.0 77.1 84.8 90.0 91.4 85.4/85.2 87.0

DistilBERT (Sanh et al., 2020) 92.8 91.3 51.3 82.2 89.2 88.5 84.5/85.0 83.1
RoBERTa (Liu et al., 2019) 93.7 95.1 83.1 87.5 93 91.9 91.3/90.9 90.8

Table 1: Results of the RoBERTa-base model with different pruning methods. The pruning configuration includes
the number of heads in MHA of each layer and the dimension of Wfc1 in the FFN. For example, H=12 heads
means there are 12 heads in each transformer layer and D=3072 indicate the two feed forward layers are of size
[768, 3072] and [3072, 768].

(i) Standard Prune: randomly remove the heads196

and FFN blocks; (ii) Distill BERT (Sanh et al.,197

2020): distill the pre-trained language model into198

a 6-layer transformer model. As shown in the ta-199

ble 1, our proposed method, AdaPrune performs200

consistently better than Standard Prunes Distill-201

BERT across all tasks with different pruning setup.202

For example, If we remove 33% FFN blocks, stan-203

dard pruning method shows 2.16% relative drop204

while our proposed method only shows 0.73% rel-205

ative drop on average. If we remove 33% heads in206

MHA, we observe 1.27% relative drop with Stan-207

dard Prune while our proposed method have only208

0.75% relative drop.209

Setup GFLOPs Time (ms) Savings
H=12, D=3072 96.6 809 /
H=8, D=3072 83.6 685 15.3%
H=6, D=3072 77.3 613 24.2%
H=12, D=2048 77.2 653 19.3%
H=12, D=1536 67.6 570 29.5%
H=8, D=2048 64.4 553 31.6%
H=6, D=1536 48.3 420 51.9%

Table 2: Summary of efficiency improvement with
different pruning configurations in MHA and FFN. The
first line is the baseline coming from the RoBERTa
base model without pruning. Since GFLOPs depend on
the size of the input feature, GFLOPs in the table are
calculated based on the input tensor with batch size as
1, sequence length as 512 and embedding size as 768.

Furthermore, we benchmark the efficiency im- 210

provement for the prune model. We harvest the 211

inference time based on Intel(R) Xeon(R) Platinum 212

8259CL CPU@2.50GHz for all kinds of parame- 213

ter settings used in experiments. For each pruning 214

setup, we pass the same test example with sequence 215

length 512 as input for models and take the aver- 216

age inference time on 50 runs. The Table 2 shows 217

the speed up varies from 15.36% to 48.09% with 218

different prune setup. 219

5 Conclusion 220

In this work, we study the AdaPrune strategy with 221

the goal of achieving both efficiency and effective- 222

ness. We start with analysis on MHA and FFN 223

modules to show our observation of weights dis- 224

tribution on these modules. Based on observation, 225

we find that heads in MHA have different weights 226

scale and we take that as indicator for importance. 227

Additionally, we find output value from FC1 are 228

cropped sharply at zero due to GeLU activation, 229

which implies the unnecessary calculation exists in 230

feed forward layers. Through experiments of ap- 231

plying AdaPrune to RoBERTa model, we prove the 232

decent performance of AdaPrune against Standard 233

Prune strategy. 234
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