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ABSTRACT

Neural network quantization is a promising compression technique to reduce
memory footprint and save energy consumption, potentially leading to real-time
inference. However, there is a performance gap between quantized and full-
precision models. To reduce it, existing quantization approaches require high-
precision INT32 or full-precision multiplication during inference for scaling or
dequantization. This introduces a noticeable cost in terms of memory, speed, and
required energy. To tackle these issues, we present F8Net, a novel quantization
framework consisting of only fixed-point 8-bit multiplication. To derive our method,
we first discuss the advantages of fixed-point multiplication with different formats
of fixed-point numbers and study the statistical behavior of the associated fixed-
point numbers. Second, based on the statistical and algorithmic analysis, we
apply different fixed-point formats for weights and activations of different layers.
We introduce a novel algorithm to automatically determine the right format for
each layer during training. Third, we analyze a previous quantization algorithm—
parameterized clipping activation (PACT)—and reformulate it using fixed-point
arithmetic. Finally, we unify the recently proposed method for quantization fine-
tuning and our fixed-point approach to show the potential of our method. We
verify F8Net on ImageNet for MobileNet V1/V2 and ResNet18/50. Our approach
achieves comparable and better performance, when compared not only to existing
quantization techniques with INT32 multiplication or floating-point arithmetic, but
also to the full-precision counterparts, achieving state-of-the-art performance.

1 INTRODUCTION

Real-time inference on resource-constrained and efficiency-demanding platforms has long been
desired and extensively studied in the last decades, resulting in significant improvement on the
trade-off between efficiency and accuracy (Han et al., 2015; Liu et al., 2018; Mei et al., 2019; Tanaka
et al., 2020; Ma et al., 2020; Mishra et al., 2020; Liang et al., 2021; Jin et al., 2021; Liu et al., 2021).
As a model compression technique, quantization is promising compared to other methods, such as
network pruning (Tanaka et al., 2020; Li et al., 2021; Ma et al., 2020; 2021a; Yuan et al., 2021) and
slimming (Liu et al., 2017; 2018), as it achieves a large compression ratio (Krishnamoorthi, 2018;
Nagel et al., 2021) and is computationally beneficial for integer-only hardware. The latter one is
especially important because many hardwares (e.g., most brands of DSPs (Ho, 2015; QCOM, 2019))
only support integer or fixed-point arithmetic for accelerated implementation and cannot deploy
models with floating-point operations. However, the drop in performance, such as classification
accuracy, caused by quantization errors, restricts wide applications of such methods (Zhu et al., 2016).

To address this challenge, many approaches have been proposed, which can be categorized into
simulated quantization, integer-only quantization, and fixed-point quantization (Gholami et al., 2021).
Fig. 1 shows a comparison between these implementations. For simulated quantization, previous
works propose to use trainable clipping-levels (Choi et al., 2018), together with scaling techniques
on activations (Jin et al., 2020b) and/or gradients (Esser et al., 2019), to facilitate training for the
quantized models. However, some operations in these works, such as batch normalization (BN),

∗Work done during an internship at Snap Inc. Code is available at https://github.com/snap-research/F8Net.
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(a) Full-precision.
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(b) Simulated quant.
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(c) Integer-only quant.
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Figure 1: Inspired by Gholami et al. (2021), we show the comparison of full-precision model
(presented in (a)) and different quantizations settings: (b) simulated quantization; (c) integer-only
quantization; and (d) fixed-point quantization. Note the combination of last two operations in integer-
only quantization is termed as dyadic scaling in literature (Yao et al., 2021).

are conducted with full-precision to stabilize training (Jin et al., 2020b; Esser et al., 2019), limiting
the practical application of integer-only hardware. Meanwhile, integer-only quantization, where the
model inference can be implemented with integer multiplication, addition, and bit shifting, has shown
significant progress in recent studies (Jacob et al., 2018; Yao et al., 2021; Kim et al., 2021). Albeit
floating-point operations are removed to enable models running on devices with limited support
of operation types, INT32 multiplication is still required for these methods. On the other hand,
fixed-point quantization, which also applies low-precision logic for arithmetic, does not require
INT32 multiplication or integer division. For example, to replace multiplication by bit shifting, Jain
et al. (2019) utilize trainable power-of-2 scale factors to quantize the model.

In this work, we adopt fixed-point quantization. Our work differs from previous efforts (Jain
et al., 2019) in three major aspects. First, to determine the minimum error quantization threshold,
we conduct statistical analysis on fixed-point numbers. Second, we unify parameterized clipping
activation (PACT) and fixed-point arithmetic to achieve high performance and high efficiency. Third,
we discuss and propose quantization fine-tuning methods for different models. We dub our method as
F8Net, as it consists in only Fixed-point 8-bit multiplication employed for Network quantization. We
thoroughly study the problem with fixed-point numbers, where only INT8 multiplication is involved,
without any INT32 multiplication, neither floating-point nor fixed-point types. Throughout this paper
we focus on 8-bit quantization, the most widely supported case for different devices and is typically
sufficient for efficiency and performance requirements. Our contribution can be elaborated as follows.

• We show 8-bit fixed-point number is able to represent a wide range of values with negligible
relative error, once the format is properly chosen (see Fig. 3 and Fig. 4). This critical characteristic
enables fixed-point numbers a much stronger representative capability than integer values.

• We propose a method to determine the fixed-point format, also known as fractional length, for
weights and activations using their variance. This is achieved by analyzing the statistical behaviors
of fixed-point values of different formats, especially those quantized from random variables with
normal distribution of different variances. The analysis reveals the relationship between relative
quantization error and variance, which further helps us build an approximated formula to determine
the fractional length from the variance.

• We develop a novel training algorithm for fixed-point models by unifying fixed-point quantization
and PACT (Choi et al., 2018). Besides, we show the impact of fractional length sharing for residual
blocks, which is also important to obtain good performance for quantized models.

• We validate our approach for various models, including MobileNet V1/V2 and ResNet18/50 on
ImageNet for image classification, and demonstrate better performance than existing methods that
resort to 32-bit multiplication. We also integrate the recent proposed fine-tuning method to train
quantized models from pre-trained full-precision models with ours for further verification.

2 RELATED WORK

Quantization is one of the most widely-used techniques for neural network compression (Courbariaux
et al., 2015; Han et al., 2015; Zhu et al., 2016; Zhou et al., 2016; 2017; Mishra et al., 2017; Park et al.,
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2017; Banner et al., 2018), with two types of training strategies: Post-Training Quantization directly
quantizes a pre-trained full-precision model (He & Cheng, 2018; Nagel et al., 2019; Fang et al.,
2020a;b; Garg et al., 2021); Quantization-Aware Training uses training data to optimize quantized
models for better performance (Gysel et al., 2018; Esser et al., 2019; Hubara et al., 2020; Tailor et al.,
2020). In this work, we focus on the latter one, which is explored in several directions. One area
uses uniform-precision quantization where the model shares the same precision (Zhou et al., 2018;
Wang et al., 2018; Choukroun et al., 2019; Gong et al., 2019; Langroudi et al., 2019; Jin et al., 2020a;
Bhalgat et al., 2020; Chen et al., 2020; Yang et al., 2020; Darvish Rouhani et al., 2020; Oh et al.,
2021). Another direction studies mixed-precision that determines bit-width for each layer through
search algorithms, aiming at better accuracy-efficiency trade-off (Dong et al., 2019; Wang et al.,
2019; Habi et al., 2020; Fu et al., 2020; 2021; Yang & Jin, 2020; Zhao et al., 2021a;b; Ma et al.,
2021b). There is also binarization network, which only applies 1-bit (Rastegari et al., 2016; Hubara
et al., 2016; Cai et al., 2017; Bulat et al., 2020; Guo et al., 2021). Despite the fact that quantization
helps reduce energy consumption and inference latency, it is usually accompanied by performance
degradation. To alleviate this problem, several methods are proposed.

One type of effort focuses on simulated quantization. The strategy is to leave some operations, e.g.,
BN, in full-precision for the stabilized training of quantized models (Choi et al., 2018; Esser et al.,
2019; Jin et al., 2020b). Nevertheless, these methods limit the application of the quantized models on
resource-demanding hardware, such as DSP, where full-precision arithmetic is not supported for accel-
erated computing (QCOM, 2019; Ho, 2015). To completely eliminate floating-point operations from
the quantized model, integer-only quantization techniques emulate the full-precision multiplication
by 32-bit integer multiplication followed by bit shifting (Jacob et al., 2018; Zhu et al., 2020; Wu et al.,
2020; Yao et al., 2021; Kim et al., 2021). However, the calculation of INT32 multiplication in these
works requires one more operation, which results in extra energy and higher latency (Gholami et al.,
2021). In parallel, recent work (Jain et al., 2019) proposes to restrict all scaling factors as power-of-2
values for all weights and activations, which belongs to fixed-point quantization methods (Lin et al.,
2016; Jain et al., 2019; Kim & Kim, 2021; Mitschke et al., 2019; Enderich et al., 2019b; Chen et al.,
2017; Enderich et al., 2019a; Zhang et al., 2020; Goyal et al., 2021). This enables the model to only
incorporate INT8 or even INT4 multiplications, followed by INT32 bit shifting. However, there still a
lack of a thorough study of the benefits of using fixed-point arithmetic. Also, the power-of-2 scaling
factors are directly determined from the training data without theoretical analysis and guidance. In
this work, we give an extensive analysis, especially on the potential and theoretical principle of using
fixed-point values for quantized models, and demonstrate that with proper analysis and design, a
model quantized with only INT8 multiplication involved is able to achieve comparable and even
better performance to the integer-only methods implemented with INT32 multiplication.

3 ANALYSIS OF FIXED-POINT REPRESENTATION

In this section, we first introduce the fixed-point multiplication (Smith et al., 1997; Tan & Jiang,
2018) and analyze the distribution of weight from different layers in a well-trained full-precision
model (Sec. 3.1). We then investigate the statistical property of fixed-point numbers, and demonstrate
the potential of approximating full-precision values by 8-bit fixed-point numbers with different
formats (Sec. 3.2). After that, we study the relationship between standard deviation of random
variables and the optimal fixed-point format with the smallest quantization error. Finally, we derive
an approximated formula relating the standard deviation and fixed-point format, which is verified
empirically and employed in our final algorithms (Sec. 3.3).

3.1 ADVANTAGES OF FIXED-POINT ARITHMETIC

Fixed-point number is characterized by its format, which includes both the word length indicating
the whole bit-width of the number and the fractional length (FL) characterizing the range and
resolution of the represented values (Smith et al., 1997). Fixed-point arithmetic—especially fixed-
point multiplication—is widely utilized for applications in, e.g., digital signal processing (Smith
et al., 1997; Tan & Jiang, 2018). Compared with integer or floating-point multiplication, fixed-point
multiplication has two major characteristics: First, multiplying two fixed-point numbers is more
efficient than multiplying two floating-point numbers, especially on resource-constrained devices
such as DSP. Second, it is more powerful than its integer counterpart due to its versatility and the
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Figure 2: (a) Value range of effective weight (see Sec. 4.2) for a pre-trained full-precision (FP) model,
and (b) fractional lengths of each layer for a well-trained fixed-point model for MobileNet V2.
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Figure 3: Representing potential for 8-bit signed (a) and unsigned (b) fixed-point numbers with
different formats. The figures plot the relationship between relative quantization error and the standard
deviation for different fixed-point formats. Both are experimented on zero-mean Gaussian random
variables (R.V.), with ReLU applied on (b).

representative ability of fixed-point numbers (there can be tens of different implementations for
fixed-point multiplication but only one for integer and floating-point ones (Smith et al., 1997)). This
efficiency and versatility make fixed-point quantization a more appealing solution than integer-only
quantization. Specifically, as shown in Fig. 2a, the scales of weights from different layers in a
pre-trained full-precision model can vary in orders, ranging from less than 0.1 to nearly 4. Direct
quantization with only integers inevitably introduces considerable quantization error, unless more
precision and more operations are involved, such as using INT32 multiplication together with bit
shifting for scaling as shown in Fig. 1c. On the other hand, employing fixed-point numbers has the
potential to reduce quantization error without relying on high-precision multiplication, as weights and
activations from different layers have the extra degree of using different formats during quantization.
Indeed, as shown in Fig. 2b for a well-trained MobileNet V2 with 8-bit fixed-point numbers, the
fractional lengths for weights and activations vary from layer to layer. This raises the question of how
to determine the formats for each layer. In the following, we study this for 8-bit fixed-point models.

3.2 STATISTICAL ANALYSIS FOR FIXED-POINT FORMAT

For a predefined bit-width, integer, which is a special case of fixed-point numbers with zero fractional
length, has a predefined set of values that it can take, which severely constrains the potential of
integer-only quantization. On the other hand, fixed-point numbers, with an extra degree of freedom,
i.e., the fractional length, are able to represent a much wider range of full-precision values by selecting
the proper format, and thus they are more suitable for quantization. As an example, Fig. 3 shows the
relative quantization error with 8-bit fixed-point values using different formats for a set of random
variables, which are sampled from normal distributions (both signed and unsigned, with the latter
processed by ReLU before quantization) with zero-mean and different standard deviations σ (more
experimental details in Appx. 7.2). From the experiments, we make the following two observations.

Observation 1: Fixed-point numbers with different formats have different optimal representing
regions, and the minimum relative error and optimal standard deviation (annotated as a star) varies
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Figure 4: Determining optimal fractional length from standard deviation. (a) and (c) illustrate optimal
fractional length and minimum relative quantization error against standard deviation for signed and
unsigned 8-bit fixed-point quantization for Gaussian and rectified Gaussian random variables. (b) and
(d) show the relationship between threshold standard deviation and fractional length.

for different fractional lengths (Fig. 3). This is because the format controls the value magnitude and
the representation resolution (the least significant bit).

Observation 2: Larger fractional lengths are more robust to represent smaller numbers, while
smaller fractional lengths are more suitable for larger ones. For a given standard deviation, using
small fractional length has the risk of underflow, while large fractional length might cause overflow
issue. Specifically, integers (black curves in Fig. 4) are much more prone to underflow issues and
have large relative errors for small enough values to quantize.

3.3 CHOOSING OPTIMAL FIXED-POINT FORMAT

With the above observations, we are interested in answering two questions:

(1) Can we achieve a small fixed-point quantization error for a wide range of full-precision values by
always using the optimal fractional length corresponding to the smallest relative error?

To answer this, we first plot the smallest possible relative error amongst all the candidate fixed-point
formats against the standard deviation. As shown in red lines from Fig. 4a and Fig. 4c, for zero-mean
normal distribution, by always choosing the optimal fixed-point format, we are able to achieve a
relative quantization error smaller than 1% for standard deviation with a range of order of at least
around 3. For example, for signed quantization, the standard deviation can range from 0.1 to around
40 to achieve less than 1% error, and for unsigned quantization, the standard deviation can range from
0.1 to 100. The experiments verify our presumption that using fixed-point values with the optimal
formats is able to achieve negligible quantization error.

(2) Can we have a simple way to determine the optimal fractional length?

To answer this, we plot the optimal fractional length from the statistics of the full-precision values
against the standard deviation, as shown in the blue lines in Fig. 4a and Fig. 4c. We find that the
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threshold σ value corresponding to the jumping point is almost equidistant on the log scale of the
standard deviation. This is expected as the representing region of different formats are differed
by a factor of 2’s exponents. Plotting the threshold standard deviation (on a log-scale) against the
corresponding optimal fractional length (Fig. 4b and Fig. 4d), we find their relationship is almost
linear, leading to the following semi-empirical approximating formulas to determine the optimal
fractional length FL∗ from the standard deviation (more discussion in Appendix 7.7):

Signed : FL∗ ≈ ⌊log2
40

σ
⌋, Unsigned : FL∗ ≈ ⌊log2

70

σ
⌋. (1)

In the following, unless specifically stated, we use (1) to determine the fractional length for both
weight and activation quantization. Note that we only calculate the standard deviation during training.

4 METHODS

In this section, we discuss our proposed training technique for neural network quantization with
fixed-point numbers, where the formats of weights and activations in each layer are determined based
on (1) during training. We first analyze how to unify PACT and fixed-point quantization (Sec. 4.1).
Then we show how to quantize weights and activations, especially updating for BN running statistics
and fractional lengths (Sec. 4.2). Finally, we discuss the necessity of relating scaling factors from
two adjacent layers to calculate the effective weights for quantization, especially for residual blocks
where some layers have several layers following them (Sec. 4.3).

4.1 UNIFYING PACT AND FIXED-POINT QUANTIZATION

To quantize a positive value x with unsigned fixed-point number of format (WL,FL), where WL
and FL denotes word length and fractional length for the fixed-point number, respectively, we have
the quantization function fix quant as:

fix quant(x) =
1

2FL
round

(
clip

(
x · 2FL, 0, 2WL − 1

))
, (2)

where clip is the clipping function, and 0 ≤ FL ≤ WL for unsigned fixed-point numbers. Note
that fixed-point quantization has two limitations: overflow, which is caused by clipping into its
representing region, and underflow, which is introduced by the rounding function. Both of these
introduce approximation errors. To minimize the error, we determine the optimal fractional length for
each layer based on the analysis in Sec. 3.3.

To achieve a better way to quantize a model using fixed-point numbers, we take a look at one of the
most successful quantization techniques, PACT (Choi et al., 2018), which clips on the full-precision
value with a learned clipping-level α before quantization:

PACT(x) =
α

M
round

(
M

α
clip (x, 0, α)

)
, (3)

where M is a pre-defined scale factor mapping the value from [0, 1] to [0,M ]. The formal similarity
between (2) and (3) inspires us to relate them with each other as (more details in the Appx. 7.3):

PACT(x) =
2FLα

2WL − 1
fix quant(

2WL − 1

2FLα
x), (4)

where we have set M = 2WL − 1, which is the typical setting. With this relationship, we can
implement PACT and train the clipping-level α implicitly with fixed-point quantization.

4.2 UPDATING BN AND FRACTIONAL LENGTH

Double Forward for BN Fusion. To quantize the whole model with only 8-bit fixed-point multi-
plication involved, we need to tackle the scaling factor from BN layer, including both the weight
and running variance. Specifically, we need to quantize the effective weight that fuses the weight
of convolution layers with the weight and running variance from BN (Jacob et al., 2018; Yao et al.,
2021). This raises the question of how to determine the running statistics during training. To solve
this problem, we apply forward computation twice. For the first forward, we apply the convolution
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using quantized input yet full-precision weight of the convolution layer, and use the output to update
the running statistics of BN. In this way, the effective weight to quantize is available. Note there is no
backpropagation for this step. For the second forward, we quantize the combined effective weight to
get the final output of the two layers of convolution and BN and do the backpropagation.

Updating Fractional Length. Different from existing work that directly trains the fractional
length (Jain et al., 2019), we define the fractional length for weight on-the-fly during training by
inferring from current value of weight, using (1). For the fractional length of activation, we use a
buffer to store and update the value with a momentum of 0.1, similar to how to update BN running
statistics. Once the fractional lengths are determined after training, we keep them fixed for inference.

4.3 RELATING SCALING FACTORS BETWEEN ADJACENT LAYERS

As shown in (4), there are still two extra factors during the quantization operation, which we denote
as a fix scaling factor ηfix:

ηfix =
2FLα

2WL − 1
. (5)

Now α is a trainable parameter with full-precision, which means the fix scaling factor is also in
full-precision. To eliminate undesired extra computation, we absorb it into the above-mentioned
effective weights for quantization (Sec. 4.2). However, the fix scaling factor occurs twice, one for
rescaling after quantization (ηfix) and the other for scaling before quantization (1/ηfix). To completely
absorb it, we need to relate two adjacent layers. In fact, for a mapping that includes convolution, BN,
and ReLU (more details are shown in Appx. 7.5), we apply PACT quantization to relate the activation
between two adjacent layers as:

q
(l+1)
i = fix quant


n(l)∑
j=1

γ
(l)
i

σ
(l)
i

η
(l)
fix

η
(l+1)
fix

W
(l)
ij

︸ ︷︷ ︸
Effective Weight

q
(l)
j +

1

η
(l+1)
fix

(
β
(l)
i − γ

(l)
i

σ
(l)
i

µ
(l)
i

)
︸ ︷︷ ︸

Effective Bias

 , (6)

where q is the fixed-point activation, W the full-precision weight of the convolution layer, i and j the
spatial indices, n the total number of multiplication, and the superscript (l) indicates the l-th block
consisting of convolution and BN. γ, β, σ, µ are the learned weight, bias, running standard deviation,
and running mean for the BN layer, respectively. Also, we set WL = 8 for all layers. As can be
seen from (6), to obtain the final effective weight for fixed-point quantization, for the l-th Conv-BN
block, we need to access the fix scaling factor, or equivalently, the clipping-level α and the activation
fractional length FL, from its following (l+1)-th block(s). To achieve this, we apply two techniques.

Pre-estimating Fractional Length. As mentioned above, we determine the activation fractional
length from its standard deviation. Also, (5) indicates that the fix scaling factor relies on such
fractional length for each layer. However, in (6), we need the fix scaling factor from the next layer
to determine the effective weight under quantization, which we have not yet updated. Thus, when
calculating the effective weights during training, we use the activation fractional length stored in the
buffer, instead of the one for quantizing the input of the next layer.

Clipping-Level Sharing. As shown in Fig. 5, for residual blocks, some layers have two following
layers (which we also name as child layer). Since we need the fix scaling factor from the child layer
to calculate the effective weight for the parent (see (6)), inconsistent fix scaling factors between all
children layers will be a problem. To this end, we define one layer as master and force all its siblings
to share its clipping-level. In fact, the best way is to share both the clipping-level and the fractional
length among siblings, but we find sharing fractional length leads to considerable performance drop,
especially for deep models such as MobileNet V2 and ResNet50. This is because the fractional
lengths play two roles here: one is for the fix scaling factor, and the other is for the representing
region (or equivalently the clipping-level). Using different fractional lengths effectively enables
different clipping-levels (although only differ by a factor of power-of-2, see Appx. 7.6), which can
be beneficial because the activation scales might vary from layer to layer. Moreover, breaking the
constraint of sharing activation fractional length does not introduce much computational cost, as the
value only differs in storing format, and typically the values are stored in 32-bit, i.e., the accumulation
results are only quantized into 8-bit for multiplication. Note that when computing the effective weight
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(a) ResBlock with direct connection.
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(b) ResBlock with downsampling.

Figure 5: The illustration of residual connections. For a layer with several layers (named children
layers) directly following it, we choose one to be master, and all its sibling layers use the master
layer’s clipping level. On the other hand, since using different fractional length only cause bit shifting
or different fixed-point quantization formats, and the values are stored in 32-bit before quantized into
8-bit, we do not share the fractional formats to allow more degrees of freedom. The two figures show
the case of direct residual connection (a) and that with downsampling convolution layer (b).

of the parent layer, we only use the master child’s activation fractional length. For effective weight of
each child layer and fixed-point quantization on its input, we use its own fractional length.

5 EXPERIMENTS

Table 1: 8-bit quantization with conven-
tional training for ResNet18 and MobileNet
V1/V2b. Following Yao et al. (2021), we ab-
breviate Integer-Only Quantization as “Int”,
INT8-Multiplication-Only Quantization as
“8-bit”, the Baseline Accuracy as “BL”, and
Top-1 Accuracy as “Top-1”. All models are
for 8-bit weight and activation quantization.
For MobileNet V2, we are using MobileNet
V2b version as it is the most typical one.

(a) ResNet18
Method Int 8-bit BL Top-1

Baseline (FP) ✗ ✗ 70.3 70.3

RVQuant (Park et al., 2018) ✗ ✗ 69.9 70.0
PACT (Choi et al., 2018) ✗ ✗ 70.2 69.8
LSQ (Esser et al., 2019) ✗ ✗ 70.5 71.1
CPT (Fu et al., 2021) ✗ ✗ - 69.6
F8Net (ours) ✓ ✓ 70.3 71.1

(b) MobileNet V1
Method Int 8-bit BL Top-1

Baseline (FP) ✗ ✗ 72.4 72.4

PACT (Choi et al., 2018) ✗ ✗ 72.1 71.3
TQT (Jain et al., 2019) ✓ ✓ 71.1 71.1
SAT (Jin et al., 2020b) ✗ ✗ 71.7 72.6
F8Net (ours) ✓ ✓ 72.4 72.8

(c) MobileNet V2b
Method Int 8-bit BL Top-1

Baseline (FP) ✗ ✗ 72.7 72.7

PACT (Choi et al., 2018) ✗ ✗ 72.1 71.7
TQT (Jain et al., 2019) ✓ ✓ 71.7 71.8
SAT (Jin et al., 2020b) ✗ ✗ 71.8 72.5
F8Net (ours) ✓ ✓ 72.7 72.6

In this section, we present our results for various mod-
els on ImageNet (Deng et al., 2009) for classification
task and compare the results with previous works that
focus on quantization-aware training to verify the ef-
fectiveness of our method. We show the results for two
sets of training. First, we discuss the conventional train-
ing method following Jin et al. (2020b). Second, we
unify our method with one recent fine-tuning method
that quantizes full-precision models with high accu-
racy (Yao et al., 2021). More detailed experimental
settings are described in Appx. 7.1.

Conventional training. We first apply our method
using conventional training (Choi et al., 2018; Esser
et al., 2019; Jin et al., 2020b; Fu et al., 2021), where
the quantized model is trained with the simplest set-
ting as those for full-precision model (more details in
Appx. 7.1). To verify the effectiveness of our method,
we perform experiments on several models including
ResNet18 and MobileNet V1/V2. As shown in Table 1,
our method achieves the state-of-the-art results for all
models. Additionally, we obtain comparable or even
better performance than the full-precision counterparts.

Compared with previous works on simulated quantiza-
tion (Choi et al., 2018; Park et al., 2018; Esser et al.,
2019; Jin et al., 2020b; Fu et al., 2021) that requires
full-precision rescaling after INT8 convolution, our
approach is not only more efficient but also achieves
better performance. On the other hand, compared with
previous fixed-point quantization (Jain et al., 2019),
our approach gives better results. This might partially
due to that our method is based on a more systematic
analysis, as explained above in Section 3.3.

To further understand the significance of our method, we plot the fractional lengths for weight and
activation for each layer. Illustrated in Fig. 2b for MobileNet V2, we find that the fractional lengths
for both weight and activation vary from layer to layer. Specifically, for weight quantization, since
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some layers have relatively large value range of effective weight, especially some depthwise layers,
small fractional length is necessary to avoid overflow issue. On the other hand, for layers with small
weight scale, large fractional length has more advantages to overcome the underflow problem. The
same conclusion also applies for the fractional length for activation. Indeed, for some early layers in
front of depthwise convolution layer, the activation fractional length needs to be small, yet for the
later-stages, larger fractional length is desired. This further verifies our finding that using different
fractional lengths for layers with the same parent is critical for good performance, because layers at
different depths might be siblings and requires different fractional lengths (see Fig. 5).

Table 2: 8-bit quantization with tiny fine-tuning
on well-trained full-precision model. Follow-
ing Yao et al. (2021), we abbreviate Integer-Only
Quantization as “Int”, INT8-Multiplication-Only
Quantization as “8-bit”, Layer-Wise Quantiza-
tion as “Layer”, the baseline accuracy as “BL”,
Top-1 Accuracy as “Top-1”, and Top-1 Accuracy
Drop with respect to the baseline as “Drop”. We
use two baselines for ResNet50, one from Py-
torchCV (Sémery, 2021) (Baseline #1) and another
from Nvidia (Nvidia, 2021) (Baseline #2), and we
use ResNet50b version. Note that the OMPQ (Ma
et al., 2021b) is mixed-precision quantization.

(a) ResNet18
Method Int 8-bit Layer BL Top-1 Drop

Baseline (FP) ✗ ✗ - 71.5 71.5 -

HAWQ-V3 (Yao et al., 2021) ✓ ✗ ✗ 71.5 71.6 0.1
HAWQ-V3 (Yao et al., 2021) ✓ ✗ ✓ 71.5 70.9 -0.6
OMPQ (Ma et al., 2021b) ✓ ✗ ✗ 73.1 72.3 -0.8
F8Net (ours) ✓ ✓ ✓ 73.1 72.4 -0.7

(b) ResNet50b
Method Int 8-bit Layer BL Top-1 Drop

Baseline #1 (FP) ✗ ✗ - 77.6 77.6 -

HAWQ-V3 (Yao et al., 2021) ✓ ✗ ✗ 77.6 77.5 -0.1
HAWQ-V3 (Yao et al., 2021) ✓ ✗ ✓ 77.6 77.1 -0.5
F8Net (ours) ✓ ✓ ✓ 77.6 77.6 0.0
Baseline #2 (FP) ✗ ✗ - 78.5 78.5 -

HAWQ-V3 (Yao et al., 2021) ✓ ✗ ✗ 78.5 78.1 -0.4
HAWQ-V3 (Yao et al., 2021) ✓ ✗ ✓ 78.5 76.7 -1.8
F8Net (ours) ✓ ✓ ✓ 78.5 78.1 -0.4

Tiny fine-tuning on full-precision model.
Recent work (Yao et al., 2021) focus on in-
vestigating the potential of neural network
quantization. To this end, they suggest to tiny
fine-tune on a well-pretrained full-precision
model with high accuracy. In this way, it
might help to avoid misleading conclusion
coming from improper comparison between
weak full-precision models with strong quan-
tized model. To further investigate the power
of our method and compare it with these ad-
vanced techniques, we also apply our method
and fine-tune on several full-precision mod-
els with high accuracy. Also, given the num-
ber of total fine-tuing steps is very small, we
apply grid search to determine the optimal
fractional lengths for this experiment. The
results are listed in Table 2, and we can find
that our method is able to achieve better per-
formance than previous method (Yao et al.,
2021), without time- and energy-consuming
high-precision multiplication (namely dyadic
scaling shown in Fig. 1c).

Our method reveals that the high-precision
rescaling, no matter implemented in full-
precision, or approximated or quantized with
INT32 multiplication followed by bit-shifting
(a.k.a. dyadic multiplication), is indeed un-
necessary and is not the key part for quantized model to have good performance. This is not
well-understood in previous literature. Specifically, we demonstrate that by properly choosing the
formats for weight and activation in each layer, we are able to achieve comparable and even better
performance with 8-bit fixed-point numbers, which can be implemented more efficiently on specific
hardwares such as DSP that only supports integer operation.

6 CONCLUSION

Previous works on neural network quantization typically rely on 32-bit multiplication, either in full-
precision or with INT32 multiplication followed by bit-shifting (termed dyadic multiplication). This
raises the question of whether high-precision multiplication is critical to guarantee high-performance
for quantized models, or whether it is possible to eliminate it to save cost. In this work, we study the
opportunities and challenges of quantizing neual networks with 8-bit only fixed-point multiplication,
via thorough statistical analysis and novel algorithm design. We validate our method on ResNet18/50
and MobileNet V1/V2 on ImageNet classification. With our method, we achieve the state-of-the-art
performance without 32-bit multiplication, and the quantized model is able to achieve comparable or
even better performance than their full-precision counterparts. Our method demonstrates that high-
precision multiplication, implemented with either floating-point or dyadic scaling, is not necessary
for model quantization to achieve good performance. One future direction is to perform an in-depth
statistical analysis of fixed-point numbers with smaller word-lengths for neural network quantization.
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7 APPENDIX

7.1 MORE EXPERIMENTAL DETAILS

More Details for Conventional Training. For conventional training method, we train the quantized
model initialized with a pre-trained full-precision one. The training of full-precision and quantized
models shares the same hyperparameters, including learning rate and its scheduler, weight decay,
number of epochs, optimizer, and batch size. For ResNet18 and MobileNet V1, we use an initial
learning rate of 0.05, and for MobileNet V2, it is 0.1. We find the value of learning rate, i.e., 0.1
and 0.05, does not have much impact on the final performance. Totally, 150 epochs of training are
conducted, with cosine learning rate scheduler without restart. The warmup strategy is adopted with
linear increasing (batchsize/256 × 0.05) (Goyal et al., 2017) during the first five epochs before
cosine learning rate scheduler. The input image is randomly cropped to 224 × 224 and randomly
flipped horizontally, and is kept as 8-bit unsigned fixed-point numbers with FL = 8 and without
standardization. For ResNet18 and MobileNet V1/V2, we use batch size of 2048 and run the
experiments on 8 A100 GPUs. The parameters are updated with SGD optimizer and Nesterov
momentum with a momentum weight of 0.9 without damping. The original structure of MobileNet
V2 uses ReLU6 as its activation. Since our unified PACT and the fixed-point quantization already has
clipping operation, and can be equivalently formulated with ReLU6 by rescaling weight or activation,
we eliminate ReLU6 in our implementation.

Discussion for Weight Decay. We set weight decay to 4× 10−5, and find the weight decay scheme
is critical for good performance, especially for the quantized model. We analyze weight decay for
different models as follows:

• For ResNet18, we apply weight decay on all layers, including convolution, fully-connected, and
BN layers.

• For MobileNet V1, previous methods only apply weight decay on conventional convolution and
fully-connected layers, but not on depthwise convolution and BN (Howard et al., 2017). We find
this leads to the overfitting problem, making some early convolution layers have large weights,
which is not friendly for quantization. We further observe that some channels of some depthwise
convolution layers have all zero inputs, due to some channels of previous layer become all negative
and ReLU is applied afterwards, making the running statistics of the corresponding channels in
the following BN layer almost zero. This breaks the regularization effect of BN (Luo et al., 2018).
Since each output channel only depends on one input channel for depthwise convolution layers,
the weights connecting them become uncontrolled, and the effective weights become large, leading
to an overfitting problem. Applying weight decay on the depthwise convolution and BN layers
helps to alleviate this problem, and the resulting effective weights become small.

• For MobileNet V2, we find overfitting plays the role of reducing the validation error (although
the training error is lower), and applying weight decay on depthwise convolution or BN weights
impairs the training procedure. The underlying reason might be related to the residual connecting
structure of this model (note MobileNet V1 does not use residual connection).

In summary, we apply weight decay on all layers, including depthwise convolution and BN layers
for ResNet18 and MobileNet V1, and do not apply weight decay on depthwise convolution and BN
layers for MobileNet V2.

More Details for Tiny Fine-tuning. For tiny fine-tuning on full-precision models, we follow the
same strategy proposed in Yao et al. (2021). Specifically, we use a constant learning rate of 10−4,
with 500 iterations of fine-tuning (or equivalently data ratio of around 0.05 with batch size of 128).
Different from (Yao et al., 2021), we find fixed BN is not helpful, and we allow it to update during
the whole fine-tuning step. As mentioned in Sec. 5, we apply grid search to determine the fractional
lengths for both weight and input, as the training cost is very small and applying grid search does
not introduce too much effort or training time. Also, since the original full-precision model uses the
normalized input, we also apply normalization on the images and quantize images with signed fixed-
point numbers (and format determined with grid search) before being fed into the first convolution
layer of the model.

15



Published as a conference paper at ICLR 2022

7.2 MORE DETAILS FOR STATISTICAL ANALYSIS

For the toy example in Fig. 3, we sample 10, 000 zero-mean Gaussian random variables with different
standard deviations, and apply ReLU activation for the rectified Gaussian variables with unsigned
quantization. The variables are then quantized with fixed-point quantization given in (2) and (9),
respectively. We calculate the relative quantization error and plot against the standard deviation for
each fixed-point format. Note that zero-mean is a reasonable simplifying assumption if we assume to
neglect the impact of bias in BN for analysis purposes.

7.3 DERIVATION FOR FIXED-POINT AND PACT RELATION

Here we derive the relationship between PACT and fixed-point quantization shown in (4). Specifically,
the PACT quantization in (3) can be formulated as follows for positive α:
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α

M
round
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M

α
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)
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For M = 2WL − 1, which is the typical setting for quantization, we have:

PACT(x) =
2FLα

2WL − 1

1

2FL
round

(
clip

(
2WL − 1

2FLα
x ∗ 2FL, 0, 2WL − 1

))
. (8)

Comparing with the expression for fixed-point quantization (2), we can immediately get (4).

7.4 DOUBLE SIDE QUANTIZATION FOR WEIGHT AND MOBILENET V2

In (2), we only give the formula for fixed-point quantization of unsigned case. For weight and
activation from some layer without following ReLU nonlinearity (such as some layers in MobileNet
V2), signed quantization is necessary, and the expression is similarly given as:

fix quant(x) =
1

2FL
round

(
clip

(
x · 2FL,−2WL−1 + 1, 2WL−1 − 1

))
, (9)

where clip is the clipping function, and 0 ≤ FL ≤ WL− 1.

7.5 DERIVATION OF EFFECTIVE WEIGHT

Here we derive the equation of effective weights relating two adjacent layers in Sec. 4.3. Specifically,
for a Conv-BN-ReLU block with conventional PACT quantization using input clipping, quantization
and dequantization, the general procedure can be described as
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, (10a)
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where x is the input before clipping, q̂ is the integer input after quantization, q̃ is the full-precision
input after dequantization, clip is the clipping function, α is the clipping-level, M = 2WL − 1 is
the scaling for quantization, Wij is weight from convolution layer, and γ, β, σ, µ are weight, bias,
running standard deviation, and running mean from BN layer, respectively, and i and j are spatial
indices. We first note that (10a), (10b) and (10c) can be combined as:
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where q is the fixed-point activation and we have used the relationship given by (4) and the definition
in (5). From this we can derive that:
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which is just (6).

7.6 PRIVATE FRACTIONAL LENGTHS ENABLING DIFFERENT CLIPPING-LEVELS

Here we analyze the effect of using private fractional lengths between sibling layers to indicate that
this effectively enables private clipping-levels for them. In fact, the original PACT quantization step
is given as

q̃ = PACT(x) (13a)
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round
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where we have omitted layer and spatial indices for simplification. Now if we use private fractional
lengths for sibling layers while require them to share the same clipping level, and use the master
child’s fractional length for calculating the effective weight in (6), denoting the fractional length of
the master layer as FLm, the above function becomes
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where α′ = 2FL
m−FLα. From this we see that using private fractional lengths effectively enables

different clipping-levels between sibling layers, and the cost is only some bit shifting.
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Figure 6: Fractional lengths of each layer for a well-trained fixed-point model for ResNet50.

Table 3: Analysis of the impact of the searching space for fractional length (ResNet50 on ImageNet).

Method Frac. Len. Range BL Top-1

Baseline (FP) - 77.6 77.6

F8Net (ours) 6, 7, 8 77.6 72.4
F8Net (ours) 0− 8 77.6 77.6

7.7 MORE DISCUSSION OF THE OPTIMAL FRACTIONAL LENGTH

Here we give some further discussion of using standard deviation to determine the optimal fractional
length. The main reason is that standard deviation is a more robust statistics than others, such
as dynamic range, and is an easily-estimated parameter for Gaussian distributed weights and pre-
activations. Considering depth-wise convolution layers that contain much fewer weights and inputs,
using robust statistics becomes essential as these layers might include weights or inputs with strange
behavior, e.g., the pre-activation values of some channels become all negative with large magnitude.
Therefore, the standard deviation is more suitable and robust than the dynamic range.

7.8 FRACTIONAL LENGTH FOR RESNET50

Here we provide more results of fractional lengths distribution in Fig. 6 for the well-trained ResNet50
with 8-bit fixed-point numbers finetuned from the Baseline #2 in Table 2b. As we can see, the
optimal fractional lengths are layer-dependent and their distribution is highly different from those in
MobileNet V2 (as shown in Fig. 2b). Specifically, for MobileNet V2, some layers have vanishing
weight fractional lengths and less than 4% of all layers have an activation fractional length less than
4, while for ResNet50, more than 88% of all layers have an activation fractional length that is less or
equal to 4.

7.9 ANALYZING SEARCHING SPACE OF FRACTIONAL LENGTHS

In the main paper, we adopt the largest possible searching space for the fractional lengths of 8-bit
fixed-point. As shown in Fig. 2b, many layers have a fractional length less than 4, either for input or
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weight. Here we study whether it is possible to use only fractional lengths between 6 and 8. To this
end, we finetune on ResNet50b using the Baseline #1. The results are listed in Table 3, from which
we find that restricting the fractional lengths between 6 to 8 significantly impacts the performance of
the final quantized model, as the top-1 accuracy drops from 77.6% to 72.4%.
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