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Abstract

Recent advances in machine learning have largely benefited from the massive
accessible training data. However, large-scale data sharing has raised great privacy
concerns. In this work, we propose a novel privacy-preserving data Generative
model based on the PATE framework (G-PATE), aiming to train a scalable differ-
entially private data generator which preserves high generated data utility. Our
approach leverages generative adversarial nets to generate data, combined with
private aggregation among different discriminators to ensure strong privacy guaran-
tees. Compared to existing approaches, G-PATE significantly improves the use of
privacy budgets. In particular, we train a student data generator with an ensemble of
teacher discriminators and propose a novel private gradient aggregation mechanism
to ensure differential privacy on all information that flows from teacher discrimi-
nators to the student generator. In addition, with random projection and gradient
discretization, the proposed gradient aggregation mechanism is able to effectively
deal with high-dimensional gradient vectors. Theoretically, we prove that G-PATE
ensures differential privacy for the data generator. Empirically, we demonstrate the
superiority of G-PATE over prior work through extensive experiments. We show
that G-PATE is the first work being able to generate high-dimensional image data
with high data utility under limited privacy budgets (¢ < 1). Our code is available
athttps://github.com/AI-secure/G-PATE,

1 Introduction

Machine learning has been applied to a wide range of applications such as face recognition [30(|39|21}
22]], autonomous driving [26], and medical diagnoses [8!|120]. However, most learning methods rely
on the availability of large-scale training datasets containing sensitive information such as personal
photos or medical records. Therefore, such sensitive datasets are often hard to be shared due to privacy
concerns [40]. To handle this challenge, data providers sometimes release synthetic datasets produced
by generative models learned on the original data. Though recent studies show that generative
models such as generative adversarial networks (GAN) [14] can generate synthetic records that are
indistinguishable from the original data distribution, there is no theoretical guarantee on the privacy
protection. While privacy definitions such as differential privacy [9] and Rényi differential privacy
[27] provide rigorous privacy guarantee, applying them to synthetic data generation is nontrivial.

Recently, two approaches have been proposed to combine differential privacy with synthetic data gen-
eration: DP-GAN [35] and PATE-GAN [37]. DP-GAN modifies GAN by training the discriminator
using differentially private stochastic gradient descent. Though it achieves privacy guarantee due to
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the post processing property [10] of differential privacy, DP-GAN incurs significant utility loss on the
synthetic data, especially when the privacy budget is low. In contrast, PATE-GAN trains differentially
private GAN using Private Aggregation of Teacher Ensembles (PATE) [28]. Specifically, it trains a
set of teacher discriminators and a student discriminator. To ensure differential privacy, the student
discriminator is only trained on records that are produced by the generator and labeled by the teacher
discriminators. The key limitation of this approach is that it relies on the assumption that the generator
would be able to generate the entire real records space to bootstrap the training process. If most
of the synthetic records are labeled as fake by the teacher discriminators, the student discriminator
would be trained on a biased dataset and fail to learn the true data distribution. Consequently, this
trained generator would not be able to produce high-quality synthetic data. This problem does not
exist for traditional GAN, where the discriminator is always able to provide useful information to the
generator since they can access the real data records rather than the synthetic data only.

The main contribution of this paper is a new approach named G-PATE for training a differentially
private data generator by combining the generative model with PATE mechanism. Our approach is
based on the key observation that: It is not necessary to ensure differential privacy for the discrimina-
tor in order to train a differentially private generator. As long as we ensure differential privacy on
the information flow from the discriminator to the generator, it is sufficient to guarantee the privacy
property for the generator. To achieve this, we propose a private gradient aggregation mechanism to
ensure differential privacy on all the information that flows from the teacher discriminators to the
student generator. The aggregation mechanism applies random projection and gradient discretization
to reduce privacy budget consumed by each aggregation step and to increase model scalability. Com-
pared to PATE-GAN, our approach has three advantages. First, it improves the use of privacy budget
by only applying it to the part of the model that actually needs to be released for data generation.
Second, our discriminator can be trained on original data records since it does not need to satisfy
differential privacy. Finally, G-PATE preserves better utility on high-dimensional data given its more
efficient gradient aggregation mechanism.

Theoretically, we show that our algorithm ensures differential privacy for the generator. Empirically,
we conduct extensive experiments on the Kaggle credit dataset and image datasets. To the best of our
knowledge, this is the first work that is able to scale to high-dimensional face image dataset such
as CelebA while still preserving high data utility. The results show that our method significantly
outperforms all baselines including DP-GAN and PATE-GAN.

2 Related Work

Differential privacy [9] is a notion that ensures an algorithm outputs general information about its input
dataset without revealing individual information. So far, researchers have proposed different methods
to design differentially private statistical functions and machine learning models [2}|5} |1!125}|12].
Private aggregation of teacher ensembles (PATE) is proposed to train a differentially private classifier
using ensemble mechanisms. Scalable PATE [29] improves the utility of PATE with a Confident-
GNMax aggregator that only returns a result if it has high confidence in the consensus among teachers.
However, PATE and Scalable PATE are only applicable to categorical data (i.e., class labels) as shown
in prior work. Differentially private data generative models have also been proposed. Priview [31]
generates synthetic data based on marginal distributions of the original dataset, PrivBayes [38] trains
a differentially private Bayesian network, and MWEM [16] uses the multiplicative weights framework
to maintain and improve a distribution approximating a given data set with respect to a set of counting
queries. However, these approaches are not suitable for image datasets since the statistics they use
cannot well preserve the correlations between pixels in an image.

Some recent work applies differential privacy to the training of GAN. DP-GAN [35] and DP-
CGAN [33] add Gaussian noise to the gradients of the discriminators during the training process. GS-
WGAN [6] reduces gradient sensitivity using the Wassertein distance and uses gradient sanitization
to ensure differential privacy for the generator. PATE-GAN |[37] trains a student discriminator
using an ensemble of teacher discriminators. DP-MERF[15] and PEARL [23] use differentially
private embedding to train generative models on the embedding space. Concretely, DP-MERF uses
random feature representations of kernel mean embeddings, and PEARL improves upon DP-MERF
by incorporating characteristic function that improves the generator’s learning capability. Both
DP-MERF and PEARL focus on generating a private embedding space on which the distance metric
between synthetic and real data is computed (though there are no results reported for high-dimensional
images). On the contrary, G-PATE focuses on generating DP high-dimensional data by improving
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Figure 1: Model Overview of G-PATE. The model contains three parts: a student data generator, a
differentially private gradient aggregator, and an ensemble of teacher discriminators.

the model structure and the private gradient aggregation step, which is orthogonal to the embedding
space optimization approaches as DP-MERF and PEARL.

3 Preliminaries

Differential Privacy. Differential privacy bounds the shift in the output distribution of a randomized
algorithm that could be caused by a small input perturbation. The following definition formally
describes this privacy guarantee.

Definition 1 ((<, §)-Differential Privacy). A randomized algorithm M with domain NI*! is (¢, §)-

differentially private if for all S C Range(M) and for any neighboring datasets D and D’, we have
Pr[M(D) € S] < exp(e) Pr]M(D’) € S] + 4.

Rényi Differential Privacy. Rényi differential privacy is a natural relaxation of differential privacy.
Defined below, its privacy guarantee is expressed in terms of Rényi divergence.

Definition 2 ((, €)-RDP). A randomized mechanism M is said to guarantee (), €)-RDP with A > 1
if for any neighboring datasets D and D’,

Dy (M(D)[IM (D)) =
Pr[M(D) =z] \*!
<}> ] <e.

L 10
A= 1 8T MO) I\ Pr M (D) = 2

(A, €)-RDP implies (&5, 6)-differential privacy for any given probability § > 0.
Theorem 1 (From RDP to DP). If a mechanism M guarantees (A, €)-RDP, then M guarantees

(e + 10571{5 ,8)-differential privacy for any § € (0, 1).

Compared to DP, RDP supports easier composition of multiple queries and clearer privacy guarantee
under Gaussian noise. Specifically, RDP could be easily composed by adding the privacy budget:
Theorem 2 (Composition of RDP). If a mechanism M consists of a sequence of My, ..., My, such
that for any i € [k], M; guarantees (X, e;)-RDP, then M guarantees (X, Zle €;)-RDP.

Suppose f is a real-valued function, and the Gaussian mechanism is defined as G, f(D) = f(D) +
N (0, 02) , where \/ (O, 02) is normally distributed random variable with standard deviation o and
mean 0. The Gaussian mechanism provides the following RDP guarantee:

Theorem 3 (RDP Guarantee for Gaussian Mechanism). If f has sensitivity 1, then the Gaussian
mechanism G [ satisfies ()\, A/ (202))—RDP.

4 G-PATE: A Scalable Data Generative Method

In this section, we present our method named G-PATE. An overview of the method is shown in
Figure Unlike PATE-GAN and DP-GAN, G-PATE ensures differential privacy for the information



flow from the discriminator to the generator. This improvement incurs less utility loss on the synthetic
samples, so it can generate synthetic samples for higher dimensional and more complex datasets.

G-PATE makes two major modifications on the training process of GAN. First, we replace the
discriminator in GAN with an ensemble of teacher discriminators trained on disjoint subsets of
the sensitive data. The teacher discriminators do not need to be published, thus can be trained
using non-private algorithms. In addition, we design a gradient aggregator to collect information
from teacher discriminators and combine them in a differentially private fashion. The output of the
aggregator is a gradient vector that guides the student generator to improve its synthetic samples.

Unlike PATE-GAN, G-PATE does not require any student discriminator. The teacher discriminators
are directly connected to the student generator. The gradient aggregator adds noise in the information
flow from the teacher discriminators to the student generator to ensure differential privacy. This way,
G-PATE uses privacy budget more efficiently and better approximates the real data distribution to
ensure high data utility.

4.1 Training the Student Generator Algorithm 1 - Training the Student Generator.

1: Input: batch size m, number of teacher models n, num-
G-PATE only ensures differential privacy ber of training iterations N, g{adlen? chpplng. constant ¢,
number of bins B, projected dimension k, noise parame-

for the generator. and ?HOWS the discrimi- ters o1 and o2, threshold 7', disjoint subsets of sensitive
nators to learn private information. data Si. S g
1 ) 2 7 b) n

To achieve better privacy budget efficiency,

for number of training iterations do
//Phase I: Pre-Processing
Sample m noise samples z1,Zz2,...,Zm

To ease privacy analysis, we decompose %5
4:
5:  Generate fake samples G(z1), G(22), . .., G(Zm)
6.
7
8

G-PATE into three parts: the teacher dis-
criminators, the student generator, and the
gradient aggregator. To prevent the propa-
gation of private information, the student
generator does not have direct access to any

for each synthetic image G(z;) do
//Phase II: Private computation and aggregation
for each teacher model ¢ do

R

information in any of the teacher discrim- Sample m data samples from S;

inators. Consequently, we cannot train the 10: Update the teacher discriminator D;

student generator by ascending its gradi- 11: Calculate the gradients AXJ@

ent based on loss of the discriminators. To 12: end for

solve this problem, we calculate the back- 13: AX; (Axgl); AxP; Ax;"))
propagated gradients on the fake record x 14: AxP™ « DPGradagg (AX;, ¢, B, ky o1, 03, T)

by asceqdipg ’s gra_dients_on the loss of 15: //Pfiase 1lI: Post-Processing
the discriminator. This gradient vector can 6: %5 — G(z5) + AxP™

. . X : 5 5 :
be viewed as an adversarla! pe.rtu.rbatlon 17-  end for J
on z that would cause the discriminator’s 1. Update the student generator G by descending its
loss on z to increase. Therefore, adding stochastic gradient on £¢ on (X1, X2, . .., %m)
the gradients to the generated fake record 19: end for
would teach the student generator how to
improve the fake record. In each training iteration, the student generator is updated in three steps:
(1) A teacher discriminator generates the backpropagated gradients for each record produced by
the student generator. (2) The gradient aggregator takes the gradients from all teacher models and
generates a differentially private aggregation of them. (3) The student generator updates its weights
based on the privately aggregated gradients. The process is formally presented in Algorithm

Backpropagating Gradients in the Discriminator. Let D be a teacher discriminator. Given a fake
record x, we use £ () to represent D’s loss on . In each training iteration, the weights of D are
updated by descending their stochastic gradients on Lp.

For each input fake record z, we generate a gradient vector Ax that guides the student generator on
improving its output. By applying the perturbation on its output, the student generator would get an
improved fake record £ = = + Az on which D has a higher loss. Therefore, Az is calculated as x’s
gradients on Lp:

oL D (a)

Az = e | (D

a=x

With the gradient vector Az, the student generator can be trained without direct access to the
discriminator’s loss.



Updating the Student Generator. A student generator GG learns to map a random input z to a fake
record z = ((z) so that x is indistinguishable from a real record by D. Given the gradient vector
Az, the teacher discriminators have higher loss on the perturbed fake record & = x + Ax compared
to the original fake record z. Therefore, the student generator learns to improve its fake records by
minimizing the mean squared error (MSE) between its output G(z) and the perturbed fake record .

La(z,2) = 2

Elie

A
Z(G(Zi) — )7,

where k is the number of synthetic records generated per training iteration. To ensure differential
privacy, instead of receiving the gradient vector from a single discriminator, we train the student
generator using a differentially private gradient aggregator that combines gradient vectors from
multiple teacher discriminators. Details are provided in Section

4.2 Differentially Private Gradient Aggregation for G-PATE

G-PATE consists of a student generator and an
ensemble of teacher discriminators trained on
disjoint subsets of the sensitive data. In each
training iteration, each teacher discriminator
generates a gradient vector Az that guides
the student generator on improving its output
records. Different from traditional GAN, in G-
PATE, the student generator does not have ac-
cess to the loss of any teacher discriminators,
and the gradient vector is the only information
propagated from the teacher discriminators to

Algorithm 2 - Differentially Private Gradient Ag-
gregator (DPGradAgg). This algorithm takes a list
of gradient vectors and returns a differentially private
aggregation.

1: Input: Concatenated gradient vectors from each
teacher model AX = (Ax™ ..., Ax™), gradi-
ent clipping constant ¢, number of bins B, projected
dimension k, noise parameters o and o2, threshold T’

2: ko < the dimension of Ax®

3: R < a ko X k random projection matrix with each

the student generator. Therefore, to achieve

component randomly drawn from N/ (0, 1)

4: AU + AXR
differential privacy, it suffices to add noise 5. gop each column u; of AU do
during the aggregation of the gradient vectors.  6:  Clip u; to (—c, ¢)
However, the aggregators used in PATE and 7. h <—prtilvle hlstogra-m of u; with B bins of width %
PATE-GAN are not suitable for aggregating 23 (?;fj = Confident-GNMax(h, 01,02, T)
adient vectors because they are only appli- -+ €Rdlor ‘ :

gr 1 Vi S' us y y pp 1 10: Auprlv — (Au}frlv; o Auprw)
cable to categorical data. Therefore, we pro- 11 AxP™ o AuPivRT k

. . . . DAX < Au
pose a differentially private gradient aggrega 12: Output: AxP"™

tor (DPGradAgg) based on PATE. With gradi-

ent discretization, we convert gradient aggregation into a voting problem and get the noisy aggregation
of teachers’ votes using PATE. Additionally, we use random projection to reduce the dimension of
vectors on which the aggregation is performed. The combination of these two approaches allows
G-PATE to generate synthetic samples with higher data utility, even for large scale image datasets,
which is hard to be achieved by PATE-GAN. The procedure is formally presented in Algorithm

Gradient Discretization. Since PATE is originally designed for aggregating the teacher models’
votes on the correct class label of an example, the aggregation mechanism in PATE only applies to
categorical data. Therefore, we design a three-step algorithm to apply PATE on continuous gradient
vectors. First, we discretize the gradient vector by creating a histogram and mapping each element
to the midpoint of the bin it belongs to. Then, instead of voting for the class labels as in PATE, a
teacher discriminator votes for k bins associated with k elements in its gradient vector. Finally, for
each dimension, we calculate the bin with most votes using the Confident-GNMax aggregator [29]
(Appendix[D). The aggregated gradient vector consists of the midpoints of the selected bins.

With gradient discretization, the teacher discriminators can directly communicate with the student
generator using the PATE mechanism. Since these teacher discriminators are trained on real data, they
can provide much better guidance to the generator compared to the student discriminator in PATE-
GAN, which is only trained on synthetic samples. Moreover, the Confident-GNMax aggregator
ensures that the student generator would only improve its output in the direction agreed by most of
the teacher discriminators.

Random Projection. Aggregation of high dimensional vectors is expensive in terms of privacy
budget because private voting needs to be performed on each dimension of the vectors. To save



privacy budget, we use random projection [3] to reduce the dimensionality of gradient vectors. Before
the aggregation, we generate a random projection matrix with each component randomly drawn from
a Gaussian distribution. We then project the gradient vector into a lower dimensional space using the
random projection matrix. After the aggregation, the aggregated gradient vector is projected back
to its original dimensions. Since the generation of random projection matrix is data-independent. It
does not consume any privacy budgets.

Random projection is shown to be especially effective on image datasets. Since different pixels of an
image are often highly correlated, the intrinsic dimension of an image is usually much lower than
the number of pixels [13]. Therefore, random projection maximizes the amount of information a
student generator can get from a single query to the Confident-GNMax aggregator, and makes it
possible for G-PATE to retain reasonable utility even on high dimensional data. Moreover, random
projection preserves similar squared Euclidean distance between high-dimensional vectors, therefore
is beneficial to privacy protection both theoretically and empirically [36].

5 Privacy Guarantees

In this section, we provide theoretical guarantees on the privacy properties for G-PATE. To start with,
we propose the following definition for a differentially private data generative model.

Definition 3 (Differentially Private Generative Model). Let G be a generative model that maps a set
of points Z in the noise space Z to a set of records X in the data space X'. Let D be the training
dataset of G and A : D +— G be the training algorithm. We say that G is a (e, d)-differentially private
data generative model if the training algorithm A is (&, §)-differentially private.

Deﬁnitionrelaxes the definition of a DP-GAN by focusing the protection only on the generative
model in a GAN. This relaxation saves privacy budget during training and improves the utility of the
model. Moreover, the relaxation does not compromise the privacy guarantee for the synthetic data.

Lemma 1. Let G be an (e, 0)-differentially private data generative model trained on a private
dataset D. For any Z € Z, the synthetic dataset X = G(Z) is (g, 0)-differentially private.

Proof Sketch. Lemma is a consequence of the post-processing property of differential privacy.
First, the random points Z are independent of the private dataset D. Second, one does not need
to query the discriminator during the data generation process. Therefore, the synthetic dataset is
generated by post-processing G and is guaranteed to be (¢, §)-differentially private.

Lemma shows that a differentially private generative model is able to support infinite number of
queries to the data generator and can be used to generate multiple synthetic datasets.

Next, we justify the privacy guarantee of the G-PATE method. The following lemma justifies RDP of
the gradient aggregator (Algorithm .

Lemma 2 (Rényi Differential Privacy of DPGradAgg). The output of the gradient aggregator
(DPGradAgg) proposed in Algorithm|2|satisfies ()\, Zl<j<k sj)—RDP, where A > 1 and ¢; is

the data-dependent RDP budget with order )\ for the Confident-GNMax aggregator on the j-th
projected dimension.

Proof Sketch. Lemma can be proved by combining the RDP guarantee of the Confident-GNMax
aggregator and the post-processing property of RDP. We first divide the input of DPGradAgg into two
categories. The first category contains data independent parameters, including the gradient clipping
constant ¢, the number of bins B, the projected dimension k, the noise parameters o1 and o2, and the
threshold T'. These parameters do not contain private information. The second category contains the
gradient vectors AX = (Ax™), ... Ax™), which are data-dependent and sensitive. Our privacy
analysis focuses on the computation on AX. With random projection and gradient discretization, we
convert AX into k histograms and pass the histograms into the Confident-GNMax aggregator. Since
Confident-GNMax satisfies data-dependent RDP [29], the privacy guarantee nicely propagates to
the output of DPGradAgg.

We analyze the RDP guarantee of DPGradAgg by composing the privacy budget consumed by the
Confident-GNMax aggregator on each projection dimension. Therefore, the Rényi differential
privacy budget of the training algorithm is a composition of the data-dependent Rényi differential
privacy budget of the Confident-GNMax aggregator over k dimensions. The data-dependent privacy



budget for each Confident-GNMax aggregation is dependent on o1, o2, and threshold 7" (Appendix
D). The remaining parameters (e.g. gradient clipping constant ¢, number of bins B) do not influence
the privacy guarantee.

The next theorem justifies RDP of the G-PATE training process.

Lemma 3 (Rényi Differential Privacy of G-PATE). Let A be the training algorithm for the student
generator (Algorithm with N training iterations and k projected dimensions. The data-dependent

Rényi differential privacy for A with order X > lise =Y ..y (El<j<k EW-) , where ¢; ; is the

data-dependent Rényi differential privacy for the Confident -GNMax aggregator in the i-th iteration
on the j-th projected dimension.

Proof Sketch. For the convenience of privacy analysis, we divide the each iteration in Algorithm
into three phases: pre-processing, private computation and aggregation, and post-processing. In the
pre-processing phase, the generator produces fake samples without accessing the private data. In the
private computation and aggregation phase, the teacher discriminators are updated based on private
data. Each teacher discriminator also generates a gradient vector. These vectors are aggregated
using the DPGradAgg algorithm. Based on Lemma|[2] the data-dependent RDP for this phase is
Zlg j<k Eij- In the post-processing phase, the student generator is updated using the privately-

aggregated gradient vector Ax;P"V. It satisfies RDP because of the post-processing property. Finally,
the RDP of Algorithmis composed over NV training iterations.

The next theorem provides a theoretical guarantee on the differential privacy of G-PATE.

Theorem 4 (Differential Privacy of G-PATE). Given a sensitive dataset D and parameters 0 < § < 1,

let G be the student generator trained by Algorithm There exists € > 0 and X\ > 1 so that G is a

(e+ 1055{5 ,0)-differentially private data generative model.

Theorem is the consequence of converting the Rényi differential privacy guarantee in Lemmato
differential privacy (Theorem [I).

6 Experimental Evaluation

We evaluate G-PATE against three state-of-the-art models: DP-GAN, PATE-GAN and GS-WGAN.
We first perform comparative analysis with baselines on the tabular and image datasets used in the
corresponding works, including the Kaggle credit tabular dataset and the grayscale image datasets
(MNIST and Fashion-MNIST). In addition, we evaluate G-PATE on the privacy-sensitive large-scale
high-dimensional face dataset CelebA.

6.1 Experimental Setup

Tabular Dataset. we use the same Kaggle credit card fraud detection dataset [7] (Kaggle Credit) as in
[37]. The dataset contains 284,807 samples representing transactions made by European cardholders’
credit cards in September 2013, and 492 (0.2%) of these samples are fraudulent transactions. Each
sample consists of 29 continuous features from a PCA transformation on the original features.

Image Datasets. To demonstrate the superiority of G-PATE to PATE-GAN on high dimensional
image datasets, we train G-PATE on MNIST, Fashion-MNIST [34], and the celebrity face datasets
CelebA [24]. MNIST and Fashion-MNIST consist of 60,000 training examples and 10,000 testing
examples. Each example is a 28 x 28 grayscale image, associated with a label from 10 classes. The
CelebA dataset contains 202,599 images aligned and cropped based on the human face. We create
three datasets: CelebA-Gender(S) is a binary classification dataset that uses the gender attributes as
the labels and resizes the images to 32 x 32 x 3; to demonstrate the scalability of G-PATE we also
create CelebA-Gender(L) with the same label while resizing the images to 64 x 64 x 3; CelebA-Hair
contains images as 64x64x3 with three hair color attributes (black/blonde/brown). We follow the
official training and testing partition as [24].

Implementation Details. For the Kaggle Credit dataset, both the generator and discriminator net-
works of G-PATE are fully connected neural network with the same architecture as PATE-GAN [37].
We use random projection with 5 projection dimensions during gradient aggregation. We use the
DCGAN [32] architecture on the image datasets. We set the projection dimensions to 10 during
gradient aggregation. More details are provided in Appendix E.



Table 1: Performance Comparison on the Tabular Dataset and Image Datasets. We compare G-PATE with
DP-GAN, PATE-GAN, GS-WGAN and vanilla DC-GAN. Vanilla DC-GAN has no privacy protection. The best
results are highlighted in bold. Table (a) presents AUROC of the classifier trained on synthetic data and tested
on real data. The performance satisfying (1, 10~°)-differential privacy is evaluated over 4 different classifiers:
logistic regression (LR), AdaBoost, bagging, and multi-layer perceptron (MLP).

(a) Data Utility (AUROC) on Kaggle (c) Data Utility (Accuracy) on Image Datasets. The table
Credit Tabular Dataset. presents the classification accuracy of CNN models trained on
the generated data and tested on real data evaluated under two

(];)f& Pé:g' (?:f\] G-PATE  private settings: ¢ = 10 and ¢ = 1 given § = 10™°.
LR 09430 | 0.8728 0.8720  0.9251
AdaBoost | 0.9416 | 0.8959  0.8809  0.8981 Dataset DC-GAN || & | DP-GAN PATE-GAN GS-WGAN  G-PATE
Bagging | 0.9379 | 0.8877 0.8657  0.8964
MLP 09444 | 08925 0.8787  0.9093 MNIST 09653 | 1 | 04036 04168 0.1432  0.5880

Average 0.9417 | 0.8872 0.8743  0.9072 (e ‘ ‘

10 || 0.8011  0.6667  0.8066  0.8092
0.8032 || 1 | 01053 04222  0.1661 05812

Fashion-

(b) Visual Quality Evaluation on Image  y\or

) . (e =00)

Datasets using Inception Score (IS). | 10 || 06098  0.6218 06579  0.6934
— — 08002 | 1] 05201 04448 06293  0.7016
eal - - - -

Dataset_| GAN  GaN wean mme OO (E=00)0 Tt Tosin0 T 05870 06326 07072

\
|
\
|
\
CelebA- ‘
\
|
\
|
|

.50 CelebA- N . B X
mNisT | 986 | | 190 119 100 360 08149 || 1 || 05330 06068  0.5901  0.6702
. . - . Gender(L) | (g = 00)
Fashion- | o ‘ 1 ‘ 103 169 100 341 | 10 ] 05211  0.6535 0.6136  0.6897
MNIST . .
101105 235 587 433 " qepa- ()7678 | 1 ]| 03447 03789 03375  0.4985
1 1.00 1.15 1.00 1.17 Hair
CelebA ‘ 1.88 ‘ ‘

100 116 100 137 H 10 || 03920  0.3900 03725 0.6217

Table 3: Visualization of Generated Instances by

Table 2: Data Utility (Accuracy) on Image Datasets G-PATE. Row 1 (real image), row 2 (¢ = 10, =

given Small Privacy Budgets. G-PATE and baselines 10™°) androw 3 (¢ = 1,5 = 10™°) each presents one

are evaluated following the same way as Table. given image from each class (the left 5 columns are MNIST

§=10"%andlowe < 1.0. images, and the right 5 columns are Fashion-MNIST
o MNIST \ Fashion-MNIST images).

DP- | PATE PATE 2
0.2 | 0.1104 | 02176 | 0.0972 | 0.2230 | 0.1021 | 0.1605 | 0.1000 | 0.1874 -
0.4 | 0.1524 | 02399 | 0.1029 | 0.2478 | 0.1302 | 0.2977 | 0.1001 | 0.3020 =1 K ﬂ *
0.6 | 0.1022 | 0.3484 | 0.1044 | 0.4184 | 0.0998 | 0.3698 | 0.1144 | 0.4283 0 A R AN F
0.8 | 03732 | 0.3571 | 0.1170 | 0.5377 | 0.1210 | 0.3659 | 0.1242 | 0.5258 LA - x
1.0 | 0.4046 | 0.4168 | 0.1432 | 0.5880 | 0.1053 | 0.4222 | 0.1661 | 0.5812 “ m
i ] A4

Evaluation Metrics. To compare the data utility of different data generators, we follow the standard
protocol [37}/6] and train a classifier on the synthetic data and test it on the real data to benchmark
the usefulness of the synthetic data for downstream tasks. Specifically, we report the AUROC of
the classifiers for the binary-class tabular dataset, and the classification accuracy trained on CNN
for the multi-class image datasets to measure the data utility. In addition, for image datasets, we
also evaluate the visual quality of the synthetic images using Inception Score (IS) [18] and Fréchet
inception distance (FID) [17]. More details can be found in Appendix [E]and[F|

6.2 Evaluation Results

Kaggle Credit. The Kaggle Credit dataset is highly unbalanced, so we take a two-step approach
to generate the unbalanced synthetic data. In the first step, we calculate a differentially private
estimation of the class distribution in the training dataset using the Laplacian mechanism [10] with
e = 0.01. In the second step, we train a a (0.99, 10~°)-differentially private data generator and
use it to generate data that follow the estimated class distribution. By the composition theorem of
differential privacy [10], the data generation mechanism is (1, 10~°)-differentially private.

To compare with PATE-GAN, we select 4 commonly used classifiers evaluated in [37] and report the
AUROC of the 4 classifiers trained on the corresponding synthetic data. We evaluate G-PATE under
the same experimental setup as PATE-GAN for € = 1. The results for baselines are following [37],
and we obtain a higher baseline performance for DC-GAN compared to the results reported in [37].

Tablepresents the data utility analysis based on AUROC between G-PATE and PATE-GAN on
Kaggle Credit dataset. G-PATE outperforms both PATE-GAN and DP-GAN and is close to the vanilla
DC-GAN which has no privacy protection. The high performance of G-PATE is partly due to the
relatively low dimensionality of the Kaggle Credit dataset and the abundance of training examples.
More experimental results on Kaggle Credit dataset are presented in Appendix A.



Table 4: Analysis on the Hyper-parameters. We performed comprehensive studies on the hyper-parameters
of G-PATE (the number of teachers, the projection dimensions, gradient clipping constant ¢, and the number of
bins B) for MNIST and Fashion-MNIST with ¢ = 1 and § = 10™°. “N/A” means “no projections”.
\ Projection Dimensions & \ # of Teachers n \ Gradient Clipping Constant ¢ \ # of bins B
| s 10 20 N/A | 2000 3000 4000 | Se4  le4  Se5  le5 | 5 10 20
MNIST | 0.4638 05880 0.5604 0.1141 | 0.4240 05218 0.5880 | 0.4754 0.5880 0.5505 0.4668 | 0.5880 0.5810 0.4706
Fashion | 05129 05812 05172 0.1268 | 0.3997 0.4874 05812 | 0.5140 0.5567 0.5812 0.5339 | 0.5575 0.5812  0.5400

Image Datsets. To understand G-PATE’s performance on image datasets, we evaluate the data utility
and visual quality of the generated images with G-PATE, PATE-GAN, DP-GAN, and GS-WGAN
on the MNIST, Fashion-MNIST, and CelebA datasets. The analysis is performed under two private
settings: e = 1,6 = 10 % and ¢ = 10,5 = 1072,

For the data utility, We report the classification accuracy of the synthetic data in Table G-PATE
outperforms baselines under both settings, and there is a more significant improvement for the setting
with a stronger privacy guarantee (i.e., € = 1). Specifically, we observe that on the Fashion-MNIST
dataset the synthetic records generated by DP-GAN under this setting are close to random noise,
while the model trained on G-PATE generated data retains an accuracy of 58.12%.

To demonstrate the scalability of our algorithm, we also conduct experiments on the high-dimensional
face dateset CelebA. The synthetic data generated by G-PATE is highly utility-preserving, while
DP-GAN can barely converge given the high-dimensionality of the data. Particularly, even with the
strict privacy budget € = 1, the accuracy of the generated data by G-PATE on CelebA-Gender(S)
is only around 10% lower than the vanilla DC-GAN. Moreover, although the dimensionality of
CelebA-Gender(L) is 4x larger than CelebA-Gender(S), the accuracy of both datasets is very close,
which again demonstrates the scalability of G-PATE.

To better understand different generative models, we evaluate the visual quality of the generated
image data, though it is not the main focus of the differentially private data generator. In particular,
we visualize the generated DP images in Table We also provide an quantitative analysis based on
Inception Score for G-PATE and baselines in Table G-PATE can consistently generate better
images than baselines when € = 1, for which GS-WGAN does not converge, which demonstrates
the superiority of G-PATE. When ¢ = 10, G-PATE achieves the best performance on the high-
dimensional face dataset CelebA. Although GS-WGAN has better visual quality on MNIST and
Fashion-MNIST when € = 10, G-PATE has the best data utility across different settings and datasets,
which suggests that the data utility and visual quality are two orthogonal metrics, and it would be an
interesting future direction to improve the visual quality. More evaluation details and evaluation of
Fréchet inception distance (FID) can be found in Appendix

Analysis on the Hyper-parameters. We perform comprehensive ablation studies on the number of
teachers and the the projection dimensions to gain better understanding about G-PATE. As shown
in Table G-PATE benefits from having more teacher discriminators. Under the same privacy
guarantee, the number of noisy votes (o7 and o2) remains the same, so the output of the noisy voting
algorithm is more likely to be correct, and the model would get better performance. However, this
benefit diminishes as the training set for each teacher model gets smaller with the increasing number
of teachers, and 4000 teachers have already achieved satisfiable results. Table[d]also demonstrates
the effectiveness of the random projection method, which improves the classification accuracy by
around 47%. With larger projection dimensions, the privacy consumption increases rapidly as we are
accessing more private data. But if the projection dimension is too small, useful information can be
lost during projection. We find the best trade-off when projection dimension equals to 10. G-PATE
achieves better performance given samller bins (< 10). With larger bins, the teachers attain a lower
agreement rate, leading to worse performance.

Analysis under Limited Privacy Budgets. We conduct another set of ablation studies given limited
privacy budgets. From Tableand Figure we can observe that G-PATE starts to converge even
under small € on both MNIST and Fashion-MNIST datasets. The utility stably increases when the
privacy budgets increase. Among different small ¢, G-PATE achieves significantly higher accuracy
than baselines. In particular, the accuracy of G-PATE under ¢ = 0.6 is four times higher than
DP-GAN, which indicates that G-PATE is able to generate differentially private data with high utility
under low privacy budgets.
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Figure 2: Data Utility (Accuracy) on Image Datasets given Small Privacy Budgets. The accuracy of G-
PATE and baseline models is plotted under tight privacy budget § = 107°, ¢ < 1.0. G-PATE consistently
outperforms the baseline models even under limited privacy budgets.

Agreement of Teachers. In the gradient aggregation step, G-PATE relies on the agreement of teacher
models to select the gradient direction. When there is a high agreement rate among teacher models,
the gradient aggregator is more robust to noise and more likely to select a gradient direction that
preserves higher utility. Intuitively, because the training partitions of teacher models come from the
same dataset, we expect the teacher models to learn similar real data distribution. As a consequence,
the gradients generated by the teacher models are expected to be similar. Empirically, we evaluate the
agreement rate of teacher models on MNIST with 4000 teacher models and € = 1. On average, the
gradient aggregator achieves 60.35% agreement rate for teacher votes on the most agreed direction,
and 39.11% on the second agreed direction, which suggests that teacher models have high agreement
rates on the top agreement directions.

Evaluation under a Data-Independent Privacy Budget. We evaluated the performance of G-PATE
on MNIST with a data-independent privacy analysis. We followed the same evaluation process in
Table |Ic|and replaced the privacy analysis with the data-independent privacy bound [29]. When
€ = 1, the utility (i.e., classification accuracy) of G-PATE on MNIST is 0.5483, outperforming the
existing baselines by a large margin, which demonstrates that G-PATE still achieves the highest data
utility with data-independent privacy cost.

Ablation Study on the Use of PATE. To understand how the PATE framework contributes to
the advantage of G-PATE, we trained a DP-GAN model with gradient discretization and random
projection applied to DPSGD on the MNIST dataset under ¢ = 1 and € = 10. The model achieves the
classification accuracy of 0.2026 (¢ = 1) and 0.5602 (¢ = 10) respectively. The results demonstrate
that the PATE framework contributes significantly to G-PATE’s utility advantage. First, with the PATE
framework, G-PATE only needs to add noise to one layer of projected gradients between the teacher
discriminators and the student generator, so the dimension of the noise equals the data dimension after
projection. On the contrary, DP-GAN adds noise to all the gradients of the model, so the dimension
of the noise equals to the model dimension. Since the data dimension is usually significantly lower
than the model dimension, the PATE framework helps G-PATE to reduce the amount of noise needed
to achieve the same privacy guarantee, and therefore preserves better utility. Second, in G-PATE,
we have 4000 teachers to vote over the projected gradients and choose the most agreed gradient
direction to update the model, which eliminates the noise from the random projection, saves privacy
cost, and ensures high utility of the gradients due to the high consensus of teacher discriminators. In
comparison, DP-GAN does not have teacher models, and thus the quantized gradients with random
projection can contain a lot of noise during aggregation, yielding worse performance.

7 Conclusion

We propose G-PATE, a novel approach for training a differentially private data generator for high-
dimensional data. G-PATE is enabled by a novel differentially private gradient aggregation mechanism
combined with random projection. It significantly outperforms prior work on both image and non-
image datasets in terms of preserving data utility for generated datasets. Beyond the high utility
compared with the state-of-the-art differentially private data generative models under similar setting,
G-PATE is also able to preserve high data utility even given small privacy budgets.

10



Acknowledgement

This work was performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and LLNL LDRD
Program Project No. 20-ER-014 (LLNL-CONF-805494), the NSF grant No.1910100, NSF CNS
20-46726 CAR, and the Amazon Research Award.

References

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, 1. Mironov, K. Talwar, and L. Zhang. Deep
learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 308-318. ACM, 2016.

[2] R. Bassily, A. Smith, and A. Thakurta. Private empirical risk minimization: Efficient algorithms
and tight error bounds. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual
Symposium on, pages 464—473. IEEE, 2014.

[3] E. Bingham and H. Mannila. Random projection in dimensionality reduction: applications to
image and text data. In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 245-250. ACM, 2001.

[4] L. Breiman. Bagging predictors. Machine learning, 24(2):123-140, 1996.

[5] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Differentially private empirical risk mini-
mization. Journal of Machine Learning Research, 12(Mar):1069—-1109, 2011.

[6] D. Chen, T. Orekondy, and M. Fritz. Gs-wgan: A gradient-sanitized approach for learning
differentially private generators. arXiv preprint arXiv:2006.08265, 2020.

[7] A. Dal Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi. Calibrating probability with
undersampling for unbalanced classification. In 2015 IEEE Symposium Series on Computational
Intelligence, pages 159-166. IEEE, 2015.

[8] M. de Bruijne. Machine learning approaches in medical image analysis: From detection to
diagnosis, 2016.

[9] C.Dwork. Differential privacy: A survey of results. In International Conference on Theory and
Applications of Models of Computation, pages 1-19. Springer, 2008.

[10] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Foundations and
Trends® in Theoretical Computer Science, 9(3—4):211-407, 2014.

[11] Y. Freund, R. E. Schapire, et al. Experiments with a new boosting algorithm. In icml, volume 96,
pages 148—156. Citeseer, 1996.

[12] A. Friedman and A. Schuster. Data mining with differential privacy. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
493-502. ACM, 2010.

[13] S. Gong, V. N. Boddeti, and A. K. Jain. On the intrinsic dimensionality of face representation.
CoRR, abs/1803.09672, 2018.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems,
pages 2672-2680, 2014.

[15] F. Harder, K. Adamczewski, and M. Park. Dp-merf: Differentially private mean embeddings
with randomfeatures for practical privacy-preserving data generation. In International Confer-
ence on Artificial Intelligence and Statistics, pages 1819-1827. PMLR, 2021.

[16] M. Hardt, K. Ligett, and F. McSherry. A simple and practical algorithm for differentially private
data release. arXiv preprint arXiv:1012.4763, 2010.

11



[17] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. arXiv preprint arXiv:1706.08500,
2017.

[18] A. Khetan and S. Oh. Achieving budget-optimality with adaptive schemes in crowdsourcing.
In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 29, pages 4844-4852. Curran Associates, Inc., 2016.

[19] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[20] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D. I. Fotiadis. Machine learn-
ing applications in cancer prognosis and prediction. Computational and structural biotechnology
Jjournal, 13:8-17, 2015.

[21] H.Li, L. Li, X. Xu, X. Zhang, S. Yang, and B. Li. Nonlinear projection based gradient estimation
for query efficient blackbox attacks. In International Conference on Artificial Intelligence and
Statistics, pages 3142-3150. PMLR, 2021.

[22] H.Li, X. Xu, X. Zhang, S. Yang, and B. Li. Qeba: Query-efficient boundary-based blackbox at-
tack. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 1221-1230, 2020.

[23] S. P. Liew, T. Takahashi, and M. Ueno. Pearl: Data synthesis via private embeddings and
adversarial reconstruction learning. arXiv preprint arXiv:2106.04590, 2021.

[24] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings
of International Conference on Computer Vision (ICCV), December 2015.

[25] F. McSherry and K. Talwar. Mechanism design via differential privacy. In Foundations of
Computer Science, 2007. FOCS’07. 48th Annual IEEE Symposium on, pages 94—103. IEEE,
2007.

[26] M. Menze and A. Geiger. Object scene flow for autonomous vehicles. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 3061-3070, 2015.

[27] 1. Mironov. Renyi differential privacy. In Computer Security Foundations Symposium (CSF),
2017 IEEE 30th, pages 263-275. IEEE, 2017.

[28] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow, and K. Talwar. Semi-supervised knowl-
edge transfer for deep learning from private training data. In International Conference on
Learning Representations, 2017.

[29] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and U. Erlingsson. Scalable
private learning with PATE. In International Conference on Learning Representations, 2018.

[30] O. M. Parkhi, A. Vedaldi, A. Zisserman, et al. Deep face recognition. In bmvc, volume 1,
page 6, 2015.

[31] W. Qardaji, W. Yang, and N. Li. Priview: practical differentially private release of marginal
contingency tables. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data, pages 1435-1446. ACM, 2014.

[32] A.Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[33] R. Torkzadehmahani, P. Kairouz, and B. Paten. Dp-cgan: Differentially private synthetic data
and label generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pages 0-0, 2019.

[34] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[35] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou. Differentially private generative adversarial
network. arXiv preprint arXiv:1802.06739, 2018.

12



[36] C. Xu, J. Ren, Y. Zhang, Z. Qin, and K. Ren. Dppro: Differentially private high-dimensional
data release via random projection. IEEE Transactions on Information Forensics and Security,
12(12):3081-3093, 2017.

[37] J. Yoon, J. Jordon, and M. van der Schaar. PATE-GAN: Generating synthetic data with
differential privacy guarantees. In International Conference on Learning Representations, 2019.

[38] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao. Privbayes: Private data
release via bayesian networks. ACM Transactions on Database Systems (TODS), 42(4):25,
2017.

[39] J. Zhang, L. Li, H. Li, X. Zhang, S. Yang, and B. Li. Progressive-scale boundary blackbox
attack via projective gradient estimation. arXiv preprint arXiv:2106.06056, 2021.

[40] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song. The secret revealer: Generative model-
inversion attacks against deep neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 253-261, 2020.

ChecKklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section where we
discuss improving the visual quality is an interesting future direction.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] See
supplementary materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 6.1 about the experiment setup.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? We report the best test accuracy.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [IN/A]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A|

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13



