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ABSTRACT

While dynamic systems can be modeled as sequence-to-sequence tasks by deep
learning using different network architectures like DNN, CNN, RNNs or neural
ODEs, the resulting models often provide poor understanding of the underlying
system properties. We propose a new recurrent network architecture, the Dynamic
Recurrent Network (DYRNN), where the computation function is based on the
discrete difference equations of basic linear system transfer functions known from
dynamic system identification. This results in a more explainable model, since
the learnt weights can provide insight on a system’s time dependent behaviour.
It also introduces the sequences’ sampling rate as an additional model parameter,
which can be leveraged, for example, for time series data augmentation and model
robustness checks. The network is trained using traditional gradient descent opti-
mization and can be used in combination with other state of the art neural network
layers. We show that our new layer type yields results comparable to or better than
other recurrent layer types on several system identification tasks.

1 INTRODUCTION

Dynamic systems occur in many different areas of life (Isermann & Münchhof (2011)). From biol-
ogy, engineering, medicine to economics and more: Often, if a system changes its state based on a
external input, this system can be viewed as a dynamic system. Dynamic system identification is the
process of modelling the system’s properties. Such models can be used, for example, for anomaly
detection, controller design or outcome prediction. For linear systems, this identification task is
already well understood and state of the art methods exist.

However, if a system exhibits non-linear behaviour, for example slip-stick-effects due to mechanical
friction, the applicability of these methods is limited. In this case different approaches implemented
in the state of the art range from white-box to black-box models. Generally, increasing system
complexity raises the need for more powerful and often less understandable model architectures
in order to produce satisfactory results: White box (based on differential equations or numerical
simulations of the physical system components), black box systems (like Gaussian processes, deep
neural networks, Support Vector Machines) and grey box models, which often employ a mix of
linear and non-linear building blocks.

One example of a tool used in engineering are Hammerstein-Wiener models which are a combination
of linear and (prior known) non-linear equations (shown in Figure 1). The linear model parameters
are determined based on the training data. The non-linear behaviour of models is modeled using
lookup tables or user defined non-linear functions.

In this work we present a new type of recurrent neural network layer called the Dynamic Recur-
rent Neural Network (DYRNN). It is designed for data based modelling of dynamic systems in a
sequence-to-sequence manner based on input (x(t)) and output (y(t)) data. With it, we intend to
bridge the gap between dynamic systems theory and recurrent neural networks. The layer’s internal
computation is based on elemental transfer blocks from linear system identification. By combining
it with non-linear neural networks, a Hammerstein-Wiener style model is emulated. This way, the
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model can offer additional knowledge about the examined system’s internal properties. Further-
more, while the model is trained on sampled data of one sampling rate it can be applied to data of
the same system at a different sampling rate. This can be used to check the robustness of the model
or to save time during training. We show that our network produces results which are better than or
comparable to other recurrent networks (RNN, LSTM, GRU) on three different problem datasets.
Since the layer can be implemented to be compatible to current deep learning frameworks, it can be
combined with state of the art neural network layers (like convolutional or fully connected layers)
and training techniques.

u(t) y(t)g(t)

Figure 1: Hammerstein-Wiener model. Static non-linearities before and after a linear differential
equation model g(t) can be used to model non-linear dynamic systems.

2 RELATED WORK

Dynamic system identification can be viewed as a sequence-to-sequence task of the modelling of a
systems’ output based on certain inputs. Isermann & Münchhof (2011), for example, list several
different tools like ARIMA processes for linear systems and multiple neural network architectures
for non-linear systems. Examples for the latter are locally recurrent locally feedforward networks
(LRGF), Multi Layer Perceptrons (MLP) and Radial Basis Function (RBF) networks of different
types of dynamics. These model structures are generalized, however, and as we will show, further
theoretical background on linear systems theory could be leveraged.

Generally, deep learning offers multiple neural network layer types that can be employed when
dealing with sequence-to-sequence problems, like fully connected (FC) networks, convolutional
networks (CNN) or recurrent networks. Recurrent networks are also known as sequential models
(like RNN, LSTM by Hochreiter & Schmidhuber (1997) and GRU by Cho et al. (2014)) and have
been used successfully for text based sequence-to-sequence problems like machine translation or
text processing. Wang (2017) demonstrates a concept of LSTM for dynamic system identification
by using several parallel LSTM layers which predict the systems behaviour based on its input and
prior predictions and their derivatives. A different approach of modelling dynamic systems are neu-
ral ordinary differential equations (ODEs) by Chen et al. (2018). These networks learn dy/dt of a
function f with y(t) = f(x(t)) and the resulting ODE model is used an numerical integrator/solver
(like Runge-Kutta) to compute y(t). This has the advantage of a varying sampling step size which
is determined by the solver, but these methods are agnostic of dynamic systems theory knowledge.
Similarly, Raissi et al. (2019) use deep learning to learn Partial Differential Equations (PDE) of
physical systems in a FC model combined with a numerical integrator. Furthermore, since the
evaluation of ODE/PDE models is done using a numerical integrator, the model is difficult to apply
in combination with other neural network layers like for example convolutional or recurrent layers.
In terms of sampling frequency of the measurement data, recurrent network architectures can only
be trained on one specific data frequency, and do not provide the functionality to generalize to other
sampling rates of the same system. In such a case one would have to resample the new data to the
frequency of the training set.

Explainability approaches for sequential models in text processing deduce which parts of the sen-
tences are relevant for the model’s prediction based on the activation of the internal gates (as shown
by e.g.Krakovna & Doshi-Velez (2016)). Interpretability of RNN/LSTM or GRU models for con-
tinuous measurement data has not been explored yet to our knowledge.

3 DYNAMIC RECURRENT NETWORK

The complexity of the modelling of dynamic systems does not only result from the potential non-
linearity, but also from the fact that the model has to keep track of the system’s current and past
states in order to predict the output based on new input. We intend to model a dynamic system in
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Figure 2: Example of sequence-to-sequence translation using a recurrent network layer. The layers
hidden state is used for the computation of the next timestep’s result.

a sequence-to-sequence task, which is why we chose a recurrent network architecture. Recurrent
neural networks can be seen as units which iterate over a given sequence and predict an output.
During this computation, a hidden state is computed which is leveraged for the prediction of the
next time step. Our network differs from other state of the art recurrent networks in its computation
function, which is derived from linear dynamic systems theory.

In the following we explain the theoretical background used in this work. Then we describe the
structure of our DYRNN. Finally, we show different advantages that result from this structure like
training and prediction at different signal sampling rates and interpretability of the models.

3.1 LAYER STRUCTURE

The background knowledge in this section is covered by Föllinger et al. (2016) and Yarlagadda
(2010). In dynamic systems theory a linear system with the external input u(t) and resulting system
output y(t) is expressed as the differential equation

y(t) + a1 · ẏ(t) + . . .+ an · y(n)(t) = b0 · u(t) + b1 · u̇(t) + . . .+ bn · u(n)(t). (1)

Therefore, a linear system acts as transformation of the input u(t) based to a convolution (∗) with
the system’s linear transfer function g(t) to produce the system output y(t) with

y(t) = u(t) ∗ g(t) =

∫
u(τ)g(t− τ)dτ. (2)

The transfer function g(t) is used in engineering for, amongst others, controller design, system
stability analysis or frequency response estimation. Larger, more complicated transfer functions can
be seen as several basic functions which are interconnected in a circuit type fashion in parallel or in
series (see Figure 3).

u(t) g(t) y(t)

u(t) g1(t) y(t)g2(t)

Figure 3: Examples for transfer function circuits. Linear systems are modeled by chaining together
several transfer functions.

Dynamic systems theory identifies five basic linear transfer functions from which all linear dynamic
systems can be modeled, which we use in the construction of the DYRNN: P, I, D, PT1 and PD.
For further information and and visualization see Appendix Section A). They have the following
functionalities:

• P: Proportional gain of the input, implemented as a multiplication with a constant

• I: Integrating component, meaning the step-wise summation of an input over time.

• D: Differential component acting as a high-pass filter
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(a) Design of DYRNN unit with five different
inner equations. This architecture results in
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(b) Resulting model when stacking DYRNN layers. Each of
the output channels would produce another five output chan-
nels for each connected sub-component.

Figure 4: Structure of DYRNN and how appending layers is performed.

• PT1: Proportional multiplication of input with time delay, used to model e.g. voltage in
capacitors in RC circuits. This function also acts as a low-pass filter

• PD: Proportional increase with a differential component

In the following equations K stands for a constant with influence on the output amplitude, while T
is a time constant which influences the speed of the system’s reaction. K and T act as the trainable
weights in a DYRNN layer. For usage in a recurrent layer, these differential equations are discretized
with – in our case – first degree forward Euler. This is common in many engineering applications,
and means replacing ẏ(t) with

ẏ(t) =
y(k)− y(k − 1)

∆t
. (3)

This results in discrete recurrence equations, with the sample number k and the time distance be-
tween samples ∆t. The respective equations of the basic transfer functions are as follows:

p(k) = KP · x(k) (4)

i(k) = i(k − 1) +
∆t

KI
· x(k) (5)

d(k) =
KD

∆t
· (x(k)− x(k − 1)) (6)

pt1(k) = pt1(k − 1) + (KPT1 · x(k)− pt1(k − 1)) · ∆t

∆t+ TPT1
(7)

pd(k) = KPD · (x(k) +
TPD

∆t
· (x(k)− x(k − 1))), (8)

with the input x(k) and all K,T > 0.

The equations above are implemented as the computation function of a recurrent network layer as
described in Appendix Section A.1. K and T in the equations become trainable weights of the layer,
while the hidden state consists of x(k − 1), i(k − 1) and pt(k − 1). In the following we refer to
these internal computations as subcomponents. We explore two different network variants in our
work: The DYRNN5 with all five known subcomponents and the DYRNN3 with just P, PD and
PT1. The reason for this is, that a D subcomponent can be approximated by PD and I by a PT. Since
integrators can also cause model instabilites, we explore both variants in our experiments.

We formulate one unit’s computations based on the number of input channels nic and the number
of outputs per subcomponent type noc. The number of output channels per layer nlayer amounts to
(subcomponent count)* noc = 3 * noc for DYRNN3 and 5*noc for DYRNN5 (see Figure 4a).

The fact that DYRNN can be implemented with an interface compatible with other recurrent net-
works allows the modelling of a systems properties by training in a sequence-to-sequence fashion
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using out of the box backpropagation through time, gradient descent and optimizer functions as im-
plemented in state of the art frameworks like Pytorch (by Paszke et al. (2019)) and Tensorflow (by
Martı́n Abadi et al. (2015)).

Since each input of the layer is connected to five basic components, stacking DYRNN layers results
in an increasing number of output channels, as shown in Figure 4b. In our experiments, we achieved
good results with two cascading DYRNN layers followed by a per-time step linear FC layer with
one neuron. This final layer can be enhanced using non-linear activation functions and more layer-
s/neurons, which would result in a similar structure to Hammerstein-Wiener models for modelling
of static non-linearities in the data. In case of noisy input data, for example due to sensor noise,
additional CNN layers could be used as well.

3.2 GENERALIZATION FOR DIFFERENT SIGNAL SAMPLING RATES

The new parameter ∆t means that a model can be used on datasets with a different sampling rates
by adjusting the ∆t when interacting with the model. This can be leveraged as a new means to
perform time series data augmentation. Training on different rates and testing on another sampling
rate can also provide insight about a model’s robustness. Additionally, training time can be reduced
by subsampling the dataset during training, and using the original sampling rate while inferencing
for greater prediction accuracy (see Figure 5).
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Figure 5: Example dataset y(k) = sin(x(k)) at different sampling rates. Keeping the amount of
samples the same, a larger sampling rate results in a larger range of covered time.

3.3 INTERPRETABILITY OF RESULTING MODELS

Based on our layer, it is possible to interpret the significance of a subcomponent towards the final
dataset as well as the properties of its influence. While the DYRNN layers learn the time depen-
dant system behaviour, a per-timestep fully connected network selects the relevant dynamics of the
model. The higher the FC’s learnt weight connected to a specific subunit, the more significant it is
for the modelling of the dynamic system (see Figure 6). As an example, assume a network of one
DYRNN5 layer and a fully connected (FC) layer as shown in Figure 6. Since the subcomponents
P, I and PT1 are weighted with 0.5, 1.5 and 0.8 as opposed to the D and PD with 0.1 and 0.2, the
modeled system mostly displays P, I and PT1 properties.

Additionally, we can analyse the model by evaluating its equation in the Laplace and the Fourier
domain. This means replacing the discrete subcomponents with their respective Laplace formulas
as described in the Appendix Section A, while keeping the structure of the network as well as the
trained values for K and T. This yields a new equation depending on the parameter s, which for the
example network above results in:

Y (s) = U(s)(0.5 +
1.5KI

s
+ 0.1sKD +

0.8KPT

(1 + sTPT )
+ 0.2KPD(1 + sTPD)) (9)

Y (s) = U(s)
0.1s3KDTPT + s2(0.1KD + ...) + s(1.5KITPT + ...) + 1.5KI

1.0s2TPT + 1.0s
(10)
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Figure 6: Interaction of one DYRNN layer and a FC network layer. Via the FC layer’s learnt weights,
it is possible to gain insight of the underlying system dynamics.

The Laplace form has the advantage that a convolution with the transfer function y(t) = u(t) ∗ g(t)
can be replaced with a multiplication with Y (s) = G(s) · U(s). It allows an engineer to analyse
the model for stability, and to visualize different kinds of information on the model, e.g. in a pole-
zero plot. The transfer function G(s) can be examined for system stability by replacing s with iω
(ω = 2π ∗ f , with f as the signal frequency) yields the Fourier from of the transfer function. This
can be used for frequency response and root locus analysis (Föllinger et al. (2016)), as we show in
our experiments.

The transformation of G(s) for our example network into the time domain yields the following
differential equation:

y′′(t)TPT + y′(t) = u′′′(t)0.1KDTPT + u′′(t)(0.1KD + · · · ) + u′(t)(1.5KITPT + · · · ) + u(t)1.5KI

(11)

Transforming larger networks – for example the one used in our experiments – works along the same
lines. Such extracted differential equations can further be leveraged to analyze the model.

4 EXPERIMENTS

We evaluated our network on three different datasets. The first is an electrical RC-circuit simulated
using Matlab Simulink, as shown in the Appendix in Figure 13. The other two datasets are from
the Database for Identification of Systems ”DaISy”, namely the Heating System De Moor B.L.R.
(b) and the Thermic Resistance De Moor B.L.R. (a)) datasets. In the following we will refer to the
datasets as Circuit, Heating and Thermic. In these experiments we focus on learning the correct
dynamics independent from the initial value of y(t). Therefore, we subtract the mean time offset of
the prediction sequence towards the label before the final evaluation with Mean Squared Error.
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Figure 7: Architecture used in our experiments.

The first goal of the experiments is to evaluate our models (DYRNN3 and DYRNN5) compared to
RNN, LSTM and GRU as implemented in Tensorflow. The network architecture is shown in Figure
7. The first part of the network is built in a cascaded fashion of two recurrent layers which are
concatenated with the original input. Its results are passed to a linear fully-connected layer with one
unit. The number of units in the other recurrent layers were chosen to result in a similar parameter
distribution to DYRNN5, as shown in Section A.2. For experiment a similar count of parameters
in the recurrent part of the network and the same layer constellations were used (see Table 4,5 and
6). Due to the design of the DYRNN5 network, its FC part contains more parameters than the other
networks.
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Additionally, a DYRNN5 model was trained for different sampling rates for the Circuit dataset to
examine its ability to generalize to other sampling rates. For this, the dataset was subsampled at
different frequencies using linear interpolation. The constellation of sampling rates in these three
runs are described in Table 1. All networks were trained with the Adam Optimizer by Kingma & Ba
(2014) and the Huber Loss function with standard parameters defined in Tensorflow. The amount of
training iterations was 3000 epochs. Evaluation of results is done on a separate testing dataset.

Table 1: Amount of parameters per network layer and recurrent layer type.

Run Training set resampled at Prediction set resampled at

A 0.7 ∆torig 1.0 ∆torig
B 1.0 ∆torig 0.7 ∆torig
C 0.5 ∆torig, 1.0 ∆torig 0.7 ∆torig

After training the DYRNN models are transformed into Laplace transfer functions G(s) using Sympy
(Meurer et al. (2017)) and three different views of this function are generated: G(s) over s, the
frequency response |G(iω)| over ω and the root locus curve ofG(iω) over ω to compare the different
model dynamics per dataset.

5 RESULTS

After 10 runs each, the different recurrent networks’ performance on the testing set is shown in
Figure 8. Since an activation function in the FC layer was omitted, it amounts to a linear combination
of all channels from the cascaded part. Therefore, it can be assumed that a better performance of the
DYRNN stems from its computation functions. In this case a different network configuration and
more parameters may enable the other layer types to achieve better results.

Section A.3 in the Appendix shows the best and worst runs on the testing set for all datasets and
layer types as well as the transfer functions learnt by DYRNN3 rounded to two significant digits in
Section A.4. The transfer function analysis plots in Figures 10, 11 and 12 were generated for the
runs which performed best on the testing datasets.

On the Circuit dataset, both DYRNN5 and DYRNN3 perform consistently better than each of the
other recurrent networks. This is to be expected since an idealized capacitor acts as a PT1 element,
so the DYRNN is predestined for this modelling task. Nonetheless, all layer types perform well on
the dataset if training was successful. The RNN network, for example, was unable to fit the data in
a meaningful way on some runs (Appendix Figure 14). Figure 10 shows that G(s) for DYRNN5 has
more poles. This is to be expected because of the structure of the network, but can be an indicator for
instability in some frequency areas. G(s) of DYRNN3 follows the given plots better. The Frequency
responses of both DYRNN networks are similar to the actual system, but the root locus curve of
DYRNN5 differs significantly from the actual one: its starting point is far outside of the plotted
region.

On the Heating dataset, the GRU network performed slightly better than DYRNN3 and DYRNN5.
It is noticeable that, while the datasets is visually similar to a PT1 element, the DYRNN3 model
displays a similar frequency response plot and root locus curve in Figure 11 b) and c) as seen in the
actual model in the PT1 system in the Circuit dataset (Figure 10).

On the Thermic dataset, DYRNN3 performed similarly to GRU. The dataset consists of two inputs
and one output, yielding two transfer functions G1(s) and G2(s). These can be analysed separately
as shown in Figure 12 for DYRNN3. WhileG(s) over s is similar to the one in Circuit, the frequency
response and root locus of both G1(s) and G2(s) are very different from Circuit and Heating.

In total, DYRNN5 performed worse than DYRNN3 on the non-simulated datasets. We assume that
the reason for this is that Heating and Thermic do not have a strict zero-level at the start and the end
of the datasets’ input and output. That might enforce a more stable model.

Our results concerning resampling to different sampling rates (in 9) show that training for 0.7 ∆t and
predicting to 1.0 ∆t performs worse than the other two variants. From this, it can be concluded that
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the total amount of time covered by the training data is more important than the training at different
sampling rates for this dataset. It also shows that the model is able to extrapolate for each of the
different sampling rates to another. Our implementation, which allows the per-batch sampling rate
during training is computationally more expensive than the one which relies upon a fixed sampling
rate, so the inexpensive version is a possible alternative for larger datasets.
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Figure 8: Results on different evaluation datasets after 10 runs each using the same architecture with
varying layer types.

Table 2: MSE and Standard deviation of the different layer types on the experiment datasets.

RNN LSTM GRU DYRNN3 DYRNN5

Circuit 4.4e-3±7.6e-3 3.8e-4 ±1.3e-4 1.3e-4 ± 9.2e-5 9.3e-6 ±7.4e-6 9.0e-6± 1.2e-5
Heating 3.6e-2 ± 2.8e-2 1.3e-2 ± 1.4e-2 3.7e-3± 1.9e-3 4.5e-3 ± 6.0e-4 4.4e-3± 3.1e-4
Thermic 5.0e-3 ± 1.7e-3 2.7e-3 ±2.2e-4 2.3e-3± 4.4e-4 2.3e-3± 6.3e-4 1.9e-2± 1.8e-2

A B C
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Experiment Version

Te
st

se
tM

SE

A B C

Mean Loss 1.43e-3 4.76e-06 5.63e-06
Loss Std.-dev. 1.4e-3 2.21e-06 7.11e-06

Figure 9: Results on the test set. A: 0.7∆torig → 1.0∆torig; B: 1.0∆torig → 0.7∆torig; C:
0.5∆torig, 1.0∆torig → 0.7∆torig
6 FUTURE WORK

We have shown a new type of recurrent layer designed for the modelling of dynamic systems. Based
on this, we see several potential areas for future work. One point that was not part of this work was
the in depth analysis of the learnt transfer functions, and how the transfer function is to be interpreted
in case of non-linear activation functions in the network. The plots shown of the transfer functions
are accessible and interpretable mainly for engineers. Another area of research would be on how to
make these results interpretable for scientists without an engineering background.
Our experiment showed competitive results on three datasets of system identification. A different
area of application can be model based reinforcement learning tasks, since the layers’ computation
blocks are also commonly used in control engineering.

7 CONCLUDING REMARKS

In this work we present a new recurrent network architecture which is based on dynamic systems
theory. We show that the learnt system dynamics can produce models which can extrapolate to dif-
ferent sampling rates in the data. Due to the specific meaning of the cells’ computation function, the
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(a) Transfer Function G(s) over s (b) Frequency Response (c) Root Locus Curve

Figure 10: Circuit model transfer function. Actual data could be computed since the resistance and
capacitance of the circuit are known.

(a) Transfer Function G(s) over s (b) Frequency Response (c) Root Locus Curve

Figure 11: Heating system transfer function for DYRNN3 and DYRNN5. Even though the models
are of similar performance, differences can be seen using this advanced visualization.

(a) Transfer Function G(s) over s (b) Frequency Response (c) Root Locus Curve

Figure 12: DYRNN3 results on the Thermic dataset. Since the system has two different inputs, the
model provides one transfer function each.

learnt model can be leveraged to gain insight on the underlying system dynamics and a differential
equation model of the system can be extracted.
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Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rath-
nayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam
Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka,
Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy:
symbolic computing in python. PeerJ Computer Science, 3:e103, January 2017. ISSN 2376-5992.
doi: 10.7717/peerj-cs.103. URL https://doi.org/10.7717/peerj-cs.103.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox, and
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A APPENDIX

BASE FUNCTIONS IN DYNAMICAL SYSTEMS THEORY

In dynamic systems theory, the basic elements are visualized using their response towards an input
unit step function σ(t) starting at t=0 with the amplitude of 1. In Table 3, we show a short summary
over the blocks used in our network layer. Blocks display a specific behaviour, which is visualized
by looking at the response towards the Unit step function.

A.1 IMPLEMENTATION DETAILS

Sequential models keep a hidden state while iterating over an input sequence, to encode information
necessary for the computation of the next step’s result.
There are two ways to implement the model: one where the sampling rate is kept constant between
batches and one where the sampling rate can be set per batch. While the first version can be imple-
mented using trivial matrix multiplication, the per-batch version is implemented as follows:

p(k) = u(k) ◦ |KP | (22)

i(k) = i(k − 1) +

(
i(k) • 1

∆t

)
◦ 1

|KI |
(23)

d(k) = (u(k)− u(k − 1)) • 1

∆t
◦ |KD| (24)

pt1(k) = pt1(k − 1) + (u(k) ◦ |KPT1| − pt1(k − 1)) ∗ 1
1

∆t ◦ |TPT1|+ 1
(25)

pd(k) =

(
u(k) + ((u(k)− u(k − 1)) • 1

∆t
) ∗ |TPD|

)
◦ |KPD|. (26)

(27)
With u(t)’s dimensionality of [batch × sample × input channels] and ∆t(t) as [batch × sample ×
1] or ∆t as [batch × 1 × 1] , the multiplications expressed in Einstein’s sum formation (which can
be implemented as described in e.g. https://www.tensorflow.org/api docs/python/tf/einsum ) are: ◦
as ’bi, ij→ bij’, • as ’bi, b→ bi’ and ∗ as ’bij, bij→bij’, i.e. the Hadamard product operator. The
dimensions of the trainable parameters result to

KP ∈ Ric×oc

KI ∈ Ric×oc

KD ∈ Ric×oc

KPT1 ∈ Ric×oc, TPT1 ∈ Ric×oc

KPD ∈ Ric×oc, TPD ∈ Ric

given this setup. The weights of P,D,PT1 and PD were initialized in a random uniform distribution,
with a range [0.1, 0.2]. Its important to initialize I such that the first iteration does not become
unstable. For datasets with around 500 elements, the initialization used in the experiments was in
the range of [110.0∆t, 110.0∆t].

A.2 FURTHER EXPERIMENT DOCUMENTATION

We evaluated our network on three different datasets. One is our own dataset from a Matlab (MAT-
LAB (2018)) simulation as shown in Figure 13. The input of our model is the input voltage of the
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Table 3: Basic linear components, input σ(t) and system response y(t) . Step response
and differential equations of the used linear components.

System Unit Step Function Re-
sponse

General Block Output Func-
tion

Laplace Form

P

0 1

0

1

t

A
m

pl
itu

de y(t) = K · u(t) (12) Y (s) = K · U(s)
(13)

I

0 1

0

1

t

A
m

pl
itu

de ẏ(t) = K · u(t) (14) Y (S) = U(s)/s
(15)

D

0 1

0

1

t

A
m

pl
itu

de y(t) = K · u̇(t) (16) Y (s) = U(s) · s
(17)

PT1

0 1

0

1

t

A
m

pl
itu

de T · ẏ(t) + y(t) = K · u(t)
(18)

Y (s) = U(s)
K

(1 + T · s)
(19)

PD

0 1

0

1

t

A
m

pl
itu

de y(t) = K · (u̇(t) · T + u(t))
(20)

Y (s) = U(s) ·K · (1 + T · s)
(21)

circuit, while the output value is the voltage measured over the capacitor. The simulation’s sampling
rate is 0.005s. We simulated three time series for training, validation and testing with length of 2
seconds. The input consists of a square signal with randomly changing amplitudes from 0.5s to 1.5s.
The remainder of the time, the input voltage is 0V.

The other two are the ”Heat flow density through a two layer wall” (De Moor B.L.R. (a)) (in short
Thermic) and the ”Heating system” (De Moor B.L.R. (b)) (in short Heating) datasets from the DaISy
system identification benchmarks:

• Heating System Benchmark: Prediction of halogen lamp temperature based on input volt-
age

12
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Figure 13: Simulation used for the generation of experiment data. It contains a resistor of 2 Ω
and a capacitor of 0.1F. Input sequence is the source voltage, while output to predict is the voltage
measured over the capacitor.

• Two Walls Benchmark: Prediction of heat flow through two walls based on measurements
before and between the walls

After training, the models were evaluated on a testing set split from the complete dataset. The DaISy
Datasets do not have a zero-level starting interval like in our circuit dataset. For simplicity’s sake,
our chosen network architecture does not take the initial value of the output time series into account.
Therefore an offset could be seen in predictions on the testing set for all layer types. In a post
processing step this offset was computed using the median difference between prediction and label
data, and subtracted from the prediction prior to the final MSE evaluation.

The amount of units and parameters for all experiments are shown in the Tables 4, 5, 6.

Table 4: Amount of units per network layer and recurrent layer type for the the Circuit dataset.
Values in parentheses denote the parameter count of that layer.

Units (Param. Count) RNN LSTM GRU DYRNN5 DYRNN3

Units in first recurrent layer 3 (15) 2 (32) 2 (30) 1 output per
s.c. (7)

1 output per
s.c. (5)

Units in second recurrent layer 5 (45) 2 (40) 2 (36) 1 output per
s.c. (35)

1 output per
s.c. (15)

Number of parameters in FC layer 10 6 6 32 14
Number of parameters total 70 78 72 74 34

Table 5: Amount of units per network layer and recurrent layer type for the Heating System dataset.

Units (Param. Count) RNN LSTM GRU DYRNN5 DYRNN3

Units in first recurrent layer 3 (15) 2 (32) 2 (30) 2 output per
s.u. (14)

1 output per
s.u. (5)

Units in second recurrent layer 7 (77) 3 (72) 3 (63) 1 output per
s.u. (70)

1 output per
s.u. (15)

Number of parameters in FC layer 12 7 7 63 14
Number of parameters total 104 111 100 147 34
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Table 6: Amount of units per network layer and recurrent layer type for the Thermic Wall Res.
dataset.

Units (Param. Count) RNN LSTM GRU DYRNN5 DYRNN3

Units in first recurrent layer 3 (18) 2 (40) 2 (36) 1 output per
s.u. (14)

1 output per
s.u. (10)

Units in second recurrent layer 7 (77) 3 (72) 3 (63) 1 output per
s.u. (70)

1 output per
s.u. (30)

Number of parameters in FC layer 13 8 8 63 27
Number of parameters total 108 120 107 147 67

A.3 BEST AND WORST RESULTS ON DATASETS

The Figures 14, 15 and 16 show the best and worst testing results of all 10 runs per network type.
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Figure 14: Comparison of best and worst models on the Circuit dataset.
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Figure 15: Comparison of best and worst models on the Heating dataset.
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Figure 16: Comparison of best and worst models on the Thermic dataset.

A.4 RESULTING TRANSFER FUNCTIONS

Below the transfer functions of the best runs are documented. The transformation to differential
equations is trivial. Notice that due to the rounding to 2 significant digits, the differential equations
listed here are unlikely to yield accurate results. Additionally, simplification of these transfer
functions is possible if the poles and zeros of the function match, but this is outside of the scope of
this work. The transfer functions of the best runs of DYRNN3 are as follows:

Circuit:

G(s) =
9.2E − 10s6 − 3.2E − 7s5 + 3.6E − 5s4 − 0.0021s3 + 0.75s2 + 3.9s+ 5.0

1.6e− 5s4 + 0.03s3 + 0.3s2 + 0.98s+ 1.0
(28)

Heating:

G(s) =
−2.9E − 9s7 − 0.04s6 + 0.85s5 + 3.8s4 + 4.5s3 + 2.5s2 + 0.68s+ 0.073

3.6s5 + 14.0s4 + 14.0s3 + 6.2s2 + 1.3s+ 0.099
(29)

Thermic Resistance:

G(s) = G1(s) +G2(s) (30)
Y1(s) = X1(s) ·G1(s) (31)
Y2(s) = X2(s) ·G2(s) (32)

G1(s) =
−0.0025s6 + 0.12s5 − 2.1s4 + 31.0s3 + 40.0s2 + 7.9s− 1.8

2.3s4 + 13.0s3 + 16.0s2 + 7.3s+ 1.0
(33)

G2(s) =
2.2E − 8s6 + 0.0013s5 + 0.01s4 + 0.15s3 − 0.4s2 − 2.0s− 1.5

7.6E − 7s4 + 0.045s3 + 0.06s2 − 0.69s− 1.0
(34)

This sum of transfer functions can be used to simulate y(t) by first simulating y1(t) and y2(t)
separatly and then building the sum of the results.
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