
ISAGWR: Iterative Self-augmented Generation with Reviewer

Anonymous ACL submission

Abstract

Code generation plays a vital role in software001
development and has gained widespread at-002
tention. Some researchers prone to employ003
Retrieval-augmented Generation (RAG) and004
achieved impressive results. However, these005
methods ignore the real-world iterative code006
refining process as they solely reuse external007
retrieved code. To tackle this limitation, we008
propose a self-augmented generation method009
SAG, which iteratively constructs augmented010
datasets using Generator’s output. The Gener-011
ator refine its own code with the help of the012
datasets. Furthermore, inspired by the real-013
world role of programmer reviewers, we pro-014
pose an iterative generator-review architectural015
method ISAGWR based on the SAG datasets.016
As its core, a Reviewer module is employed017
to detect and handle errors. These feedback018
are then feed into Generator for better coding019
output. We conduct extensive experiments on020
five benchmarks, and the results show that IS-021
AGWR significantly surpasses all the baselines.022
The results also indicate that the SAG datasets023
and the Reviewer module respectively provides024
valuable insight to perform automatic data aug-025
mentation and integrate self-correct ability into026
a unified framework. 1027

1 Introduction028

Programmers often make considerable efforts to029

manually write code. Code generation (Yin and030

Neubig, 2018; Sun et al., 2019; Wang et al., 2021,031

2023) aims to automate this process and generate032

programming languages that meet specific natural033

language requirements.034

Inspired by the code reuse behavior of program-035

mers, some research (Hayati et al., 2018; Parvez036

et al., 2021; Lu et al., 2022; Shi et al., 2022; Li037

et al., 2023) have incorporated retrieval (Robert-038

son and Zaragoza, 2009; Karpukhin et al., 2020)039

1We will release the code after the double-blind review
period.

to enhance code generation, achieving promising 040

results by leveraging existing code snippets. These 041

Retrieval Augmented Generation methods (RAG) 042

teach models how to utilize relevant retrieved code 043

(see Figure 1 (a)). Typically, they adopt an data 044

augmentation technique (Shorten and Khoshgof- 045

taar, 2019), which concatenates the retrieved code 046

with the input requirements to create an augmented 047

training dataset (Song et al., 2016). 048

During the coding process, programmers not 049

only refer to external code, but also iteratively re- 050

fine their own code. However, the latter behavior is 051

ignored by existing RAG method. To remedy this 052

issue, we propose a novel Self-augmented Gen- 053

eration method, namely SAG, which automates 054

the iterative coding refine process (see Figure 1 055

(b)). SAG leverages the Generator’s output to con- 056

struct augmented datasets at each epoch. The SAG 057

datasets are then fed into the Generator to improve 058

its training effectiveness. As shown in Case 1 from 059

Figure 14 (a), compared to RAG, SAG can fix some 060

obvious errors through iterative refinement. 061

SAG also exits some limitations. As illustrated 062

in Case 2 form Figure 14 (b), the code error 063

"Mana.Colorless Mana(1)" repeatedly occurs in 064

each epoch. This issue deserves our attention and 065

should be addressed. In the real world, such re- 066

peated errors are often observed by a role of pro- 067

grammer reviewers, whose responsibility is to iden- 068

tify code errors and improve code quality. Enlight- 069

ened by this, we design a novel Review model and 070

add it into SAG. This forms our Iterative Self- 071

augmented Generation with Reviewer method, IS- 072

AGWR (see Figure 1 (c)). This method comprises 073

two key modules: Reviewer and Generator. The 074

former automates the code review process. The lat- 075

ter iteratively generate higher-quality code with the 076

help of reviewed code provided by the Reviewer. 077

As illustrated in Case 3 from Figure 14 (c), the 078

aforementioned repeated mistakes are successful 079

identified and masked by the Reviewer module, 080

1

Reviewer

 Yrev

Generator

Yn+1

regenerate

X

Generator

Yn+1

regenerate

Yn

Generator

Y

R
retrieved code generated code reviewed code

XX

(a)retrieval-augmented generation(RAG) (b)self-augmented generation(SAG) (c)iterative SAG with reviewer(ISAGWR)

Figure 1: Comparison of three generation methods. (a) RAG mimics programmer’s code reuse behavior. (b) SAG
emphasizes iterative behavior of a hard-working programmer repeatedly optimizing their own code after refering
the external code. (c) ISAGWR imitates the real-world code reviewer to check and ensure that the generated code
meets the requirements. A Reviewer module is added in SAG to build ISAGWR.

then promoting the Generator to output correct081

code at the 2nd epoch. Our contributions of this082

work are summarized as follows:083

• We propose a code generation method SAG084

which automatically constructs augmented085

datasets with Generator’s output at each epoch.086

Due to its simplicity and no need for extra087

data, this method can be easily applied in other088

scenarios, such as RAG.089

• Based on SAG, We propose ISAGWR which090

incorporates a Reviewer module to facilitate091

iterative generation from detecting and mask-092

ing errors in Generator’s output. In this way,093

harmful errors in current code cannot influ-094

ence subsequent code generation.095

• All of existing code translation datasests pro-096

vide only one reference answer for the same097

task. To alleviate this limitation, we release a098

new code translation dataset AtCoder, which099

collected multiple high-quality coding solu-100

tions for the same task from AtCoder website.101

• We conduct extensive experiments on five102

benchmarks. The results show that ISAGWR103

outperforms all the baselines. Further study104

demonstrate the effectiveness of SAG datasets105

and the Reviewer module for benefiting high-106

quality code generation.107

2 Related Work108

Retrieval-augmented generation. Inspired by109

programmers’ code reuse behaviors, several studies110

have explored the RAG in code generation (Li et al.,111

2023), code summarization (Wei, 2019; Parvez112

et al., 2021; Shi et al., 2022), code completion113

(Lu et al., 2022; Zhang et al., 2023). In these fields, 114

there exists a challenge: the retrieved data might 115

be irrelevant. How to ensure it does not affect 116

the model generation. Some research (Shi et al., 117

2022) such as SKCODER (Li et al., 2023) introduce 118

Skeleton-based (Cai et al., 2018; Wu et al., 2018; 119

Wei, 2019; Zan et al., 2022) approach to extract rel- 120

evant part from the retrieved code. The SAG data 121

augmentation proposed in this work contribute to 122

solving this challenge, which we will discuss in 123

subsequent sections. 124

Iterative Generation. Like human beings, lan- 125

guage models do not always generate the best code 126

through the first try. Some methods iteratively gen- 127

erate revise feedback to help the models optimize 128

the outputs (Madaan et al., 2023), and some other 129

methods need additional reviewer datasets to train 130

a supervised reviewer (Schick et al., 2022; Welleck 131

et al., 2022). To better reuse the generated code, 132

some works just generate in a iterative style with- 133

out reviewer-like structure. (Zhang et al., 2023). 134

Pre-trained Model. Pre-trained models are trained 135

on data of code and fine-tuned on code generation 136

tasks specifically to enhance code generation per- 137

formance. Typically, code-based LLMs can be 138

categorized into three architectures. Encoder-only 139

model is mostly used in code comprehension like 140

masked language modeling or code retrieving, in- 141

cluding CodeBERT (Feng et al., 2020), GraphCode- 142

BERT (Guo et al., 2020), etc. Decoder-only model 143

is mainly used to predict following tokens based on 144

the input context like GPT series which including 145

CodeGPT (Lu et al., 2021)based on GPT-2 (Rad- 146

ford et al., 2019). Based on the fine-tuned GPT-Neo 147

(Black et al., 2021), PyCodeGPT (Zan et al., 2022) 148

generates codes by a user-defined generated sketch. 149

2

Encoder-decoder model can support both code com-150

prehension and generation tasks including CodeT5151

(Wang et al., 2021), or introduce text-code match-152

ing and contrastive learning to learn rich contextual153

representations like CodeT5+ (Wang et al., 2023),154

PLBART (Ahmad et al., 2021), SPT-Code (Niu155

et al., 2022), etc.156

3 Self-Augumented Generation (SAG)157

The training process of SAG is illustrated in Fig-158

ure 2. Implementation details are given as follows:159

Static RAG Dataset. We retain the static aug-160

mented training dataset used by RAG because it161

can help Generator convergence. RAG dataset con-162

catenates the retrieved code R and the input re-163

quirement X , which is denoted as X +R→ Y .164

Dynamic SAG Datasets. SAG Datasets are dynam-165

ically updated using the Generator’s output at each166

training epoch. Specifically, a queue Q is designed167

to maintain the datasets. At the n-th epoch, the168

dataset concatenates the generated code Y n and169

X , which is denoted as X + Y n → Y . Here,170

Y n = G(X). Then we push the dataset into Q.171

Note that the size of Q is limited to m to ensure172

that each epoch’s re-constructed training data has173

equal chance to be trained.174

Generator. Existing sequence to sequence models,175

such as CodeT5 and CodeT5+ (Wang et al., 2021,176

2023) can be employed as SAG’s Generator.177

4 Iterative SAG with Reviewer(ISAGWR)178

4.1 Background and Overview179

Real-world Reviewers find code errors, handle180

them and utilize the reviewed code for next coding181

iteration. To mimic this role, we design a Reviewer182

module and integrate it into SAG. This forms IS-183

AGWR.184

ISAGWR includes two modules: Reviewer and185

Generator (Figure 3). Technically, Generator G186

outputs improved code Y
(n+1)
gen based on reviewed187

code Y (n)
rev from the n-th iteration, which is denoted188

as G : (Y
(n)
rev , X) → Y

(n+1)
gen . Then, Reviewer R189

identifies potential errors in Y
(n+1)
gen with X , and190

mask them to output Y (n+1)
rev . This is denoted as191

R : (X,Y
(n+1)
gen) → Y

(n+1)
rev . By iterating in such192

a loop, the Reviewer module plays the role of a193

real-world code Reviewer, promoting ISAGWR to194

achieve high-quality code generation.195

 Yn YX
Input requirement Supervised CodeGenerated Code

Generator
+ Learn

Generator

Using generated code to construct
SAG training data at n-th epoch

 Y1 YX
 Y2 YX Push into the queue

Train the Generator

SAG Datasets Queue Q
 R YX

RAG Datasets

X Y
oringinal dataset

Figure 2: Training process of SAG. Compared to RAG
dataset, SAG datasets dynamically updated using the
output from the Generator. In each training epoch, both
kinds of datasets are used to train the Generator. Note
that Y n from different epochs have different code qual-
ity levels, ensuring diverse patterns in SAG datasets.
Therefore, the Generator can learn more effectively by
utilizing external code and its generated code.

4.2 Reviewer 196

Reviewer is the core module of ISAGWR and needs 197

to be meticulously designed. We mainly face two 198

challenges. First, how to detect and handle poten- 199

tial errors so as to assist the Generator in outputting 200

better code? Second, how to automatically collect 201

a high-quality dataset for the Reviewer? 202

Regarding the first challenge, we enable the 203

Reviewer to calculate the validness probability 204

for each token in the code. When the validness 205

probability is less than a threshold t, the token will 206

be judged as an error. Technically, Ygen is a list 207

of token (y1, y2, ..., yn), to review whether Ygen 208

meets X , we concatenate them into X ⊕ Ygen, and 209

then fed it into the Encoder as follows: 210

211

[X ′ ⊕ Y ′
gen] = Encoder(X ⊕ Ygen) (1) 212

213
Y ′
gen = (y′1, y

′
2, ..., y

′
n) (2) 214

Both Y ′
gen and X ′ are a list of vectors. Through 215

Encoder, each token yi is transformed into a 216

256-dim vector y′i. Then each y′i is input into the 217

256x1 linear layer with a sigmoid function: 218

219

pi = sigmoid(Wmy′i + bm) (3) 220

where Wm and bm are learnable parameters, the 221

output pi is the obtained validness probability for 222

token yi. Following that, we compare pi with t. 223

3

X

f :<Mask>

int x

def

<Mask>

ReviewerX

 Yrev

Generator

Ygen

Review

:fdef

def

 Yrev YgenX
Input requirement Generated CodeReviewed Code

+
Generator

Regenerate

f int x ：

Regenerate

Linear layer estimate the mask
probility for each token

 YrevYgenX
Input requirement Generated Code Reviewed Code

+
Reviewer

Review

Reviewer: encoder

Linear Layer

 Y1 YX
 Y2 YX

SAG Datasets Queue Q

 Y1 {1,0,1,...,1}X
 Y2 {0,1,1,...,0}X

{1,0,1,...,1}

{0,1,1,...,0}

=
=

LCS（ ） Y1 Y

Reviewer Dataset

LCS（ ） Y2 Y

using LCS supervised label

Figure 3: The Zoom-in view of REVIEWER from ISAGWR. The Reviewer contains a encoder and a linear layer
which aims to review the code generated by Generator. For example, here is a generated code Ygen : "def f int x :".
The encoder encodes it as "X ⊕ def f int x :". Each encoded vector is then fed into the linear layer to output
reviewed code Yrev in which potential errors "int x" are detected and masked. The right side of the figure illustrates
how to convert SAG datasets into Reviewer dataset.

If the former has a smaller value, yi will be marked.224

225

After identifying code errors, the next step is to226

handle them. We choose to mask them. Specif-227

ically, both a single marked token and consecu-228

tive marked tokens are replaced by a Mask token.229

Through these mask operations, we ultimately ob-230

tain the reviewed code Yrev, which are then used231

to support Generator training.232

Regarding the second challenge, we construct233

the Reviewer dataset based on the SAG datasets.234

Specifically, we employ the Longest Common235

Sub-sequence algorithm (LCS), which algorithm236

is shown in Appendix B, to annotate those Mask237

tokens as binary-classification supervised labels.238

Here, LCS helps the Reviewer extract the longest239

common tokens between the generated code and its240

corresponding supervised code. Common tokens241

are labeled as 1, while the remains are labeled as 0.242

Therefore the constructed Reviewer datasets have243

the form as X + Y n → D, where D is a list of244

supervised label.245

We train the Reviewer by minimizing the follow-246

ing loss function:247

Lrev = −
s∑

i=1

h∑
j=1

[I(Dij = 1) · log(Pij)

+ I(Dij = 0) · log(1− Pij)]

(4)248

249

where s denotes the size of the Reviewer dataset, 250

h denotes the length of Ygen which need to review. 251

I is an indicator function that outputs 1 when the 252

condition is true, 0 otherwise. P denotes the valid- 253

ness probability of the Reviewer and D denotes the 254

supervised label. 255

4.3 Generator and Complete Training Process 256

Generator adopted in ISAGWR is the same as SAG. 257

As introduced in subsection 4.1, we regenerate the 258

code Y
(n+1)
gen as follow. 259

Y (n+1)
gen = G(X ⊕ Y (n)

rev) (5) 260

The complete training process of ISAGWR in- 261

cludes Generator training and Reviewer training, 262

which are integrally given in Algorithm 1. 263

5 Experiments 264

Although we focus on code generation when de- 265

scribing ISAGWR, it can be easily applied to other 266

generation scenarios, such as code translation. Ac- 267

cordingly, the Reviewer module reviews translated 268

code. In this regard, we evaluate ISAGWR on code 269

generation and translation tasks. 270

5.1 Datasets 271

We adopt three public datasets and construct a new 272

AtCoder dataset for the experiments. The statistics 273

of the datasets are given in Table 1. 274

4

Dataset Training Validation Test
Code Generation

Hearthstone 533 66 66
Magic 11,969 664 664

AixBench-L 190,000 10,000 175
Code Translation

CodeXGLUE(trans) 10,300 500 1,000
AtCoder 564 36 57

Table 1: Statistics of the Datasets.

HearthStone and Magic (Ling et al., 2016). Both275

datasets automatically generate code for game276

cards. Each individual sample within these datasets277

comprises a semi-structural description accompa-278

nied by a human-authored program.279

AixBench-L (Li et al., 2023). It is an augmented280

function-level code generation benchmark based on281

AixBench, containing preprocessed popular Java282

projects without test data from GitHub.283

CodeXGLUE (Lu et al., 2021). This dataset col-284

lects both Java and C# codes from several public285

repos, including Lucene, POI, JGit and Antlr.286

AtCoder Dataset. We collect various versions of287

correct code in different languages for the same288

task from AtCoder. This is the first dataset to pro-289

vide multiple reference answers for the same cod-290

ing task. Details are given in Appendix C.291

5.2 Evaluation Metrics292

We employ Exact match (EM), BLEU4, Code-293

BLEU and Pass@1 as the evaluation metrics.294

Higher values suggest higher performance. More295

details of these metrics are given in Appendix D.296

EM assesses the accuracy of a model’s output by297

measuring whether it exactly matches a reference298

or expected answer.299

BLEU4 (Papineni et al., 2002) measures the simi-300

larity between a machine-generated text and one or301

more reference texts in the context of tasks.302

CodeBLEU score (Ren et al., 2020) is a variant of303

BLEU4, which considers syntactic and semantic304

matches based on the code structure.305

Pass@1 is an unit test metric which calculates the306

percentage of generated code that can pass the test.307

Value 1 stands for only 1 version of code is gener-308

ated for each task.309

5.3 Baselines310

We compare ISAGWR with CodeT5 (Wang et al.,311

2021), CodeT5+ (Wang et al., 2023), SkCoder (Li312

et al., 2023), CodeBERT (Feng et al., 2020), Graph-313

Algorithm 1 The training process of ISAGWR

Require:
#Ngen : The training epoch of Generator
#Nrev : The training epoch of Reviewer
#queue : SAG datasets queue for Generator
#G : Generator of the ISAGWR
#R : Reviewer of the ISAGWR
#D : Original Tranining dataset
#Drev : Tranining dataset of the Reviewer

Ensure: G, R
1: for i in range(Ngen) do
2: # Train the Generator
3: G. train (queue, D)
4: # SAG datasets queue for Generator
5: queue. enqueue ({X : G(X)} → Y)
6: If size (queue) > M :
7: queue. dequeue ()
8: # SAG datasets for Reviewer
9: Drev. insert ({X : G(X)} → Y)

10: end for
11: # Using LCS to tansform the SAG dataset
12: Drev= Transform(Drev)
13: for i in range(Nrev) do
14: # Train the Reviewer
15: R. train (Drev)
16: end for
17: return G, R

CodeBERT (Guo et al., 2020) and CodeGPT (Lu 314

et al., 2021). In addition, RNN and Transformer 315

are also selected as the baselines. 316

5.4 Retrieval 317

The retrieval adopted in our experiments is built 318

upon the DPR architecture (Karpukhin et al., 2020). 319

We use the training dataset as retrieval database, 320

and fintune the retrieval with Moco-based text-code 321

contrastive learning (He et al., 2019; Wang et al., 322

2023; Li et al., 2021). Please refer to Appendix A 323

for the details, . 324

5.5 Experiment-1: Effectiveness of SAG 325

In the first set of experiments, we compare SAG 326

with RAG to verify its effectiveness. Then, we 327

conduct further explorations to figure out whether 328

this improvement is achieved through its iterative 329

process or through its data augmentation method. 330

Specifically, for the latter, we try to answer the 331

question "do the SAG datasets essentially improve 332

code generation?". For fair comparisons, we re- 333

strict SAG from performing iterative generation 334

5

http://lucene.apache.org/
http://poi.apache.org/
https://github.com/eclipse/jgit/
https://github.com/antlr/
https://atcoder.jp

1 2 3 4 5 6 7 8
epoch

84.0

84.2

84.4

84.6

84.8

85.0

85.2

85.4
BL

EU
4

Magic
Hearthstone
CodeXGLUE

Figure 4: Results of SAG in terms of BLEU4.

0 4 8 12 16 20 24 28 32
Top-K Retrieved Data

80.5

81.0

81.5

82.0

82.5

83.0

83.5

84.0

BL
EU

Hearthstone

RAG+
RAG

Figure 5: The result of RAG and RAG+ evaluated by
metric BLEU4 on Hearthstone datasets.

and employ RAG’s retrieved dataset. This forms a335

new generation method RAG+. Therefore, the key336

to the answer is to compare RAG with RAG+.337

5.5.1 Experiment-1 Setup338

The training methods of RAG, RAG+, and SAG fol-339

low previous research. We train RAG+ 50 epochs340

with batch size 16 and learning rate 5e-5 on Hearth-341

stone. On the test dataset, we generate outputs342

using retrieved code from Top-1 to Top-32. Here343

Top-k is obtained from ranking the calculated sim-344

ilarities between the retrieved code and the input345

requirements. A smaller k means better retrieved346

results. Note that to perform a more accurate rank-347

ing, we use CodeBLEU to recalculate the similarity348

between retrieved code and the supervised code,349

and then re-rank them. For fairness, we take the350

average value of multiple experiments.351

5.5.2 Experiment-1 Results352

SAG vs RAG. As illustrated in Table 2, SAG outper-353

forms RAG for all the metrics on the three datasets.354

This demonstrate that taking both external retrieved355

code and Generator’s output code into account pro-356

motes code generation.357

Iterative process of SAG. From Figure 4, we find358

0 4 8 12 16 20 24 28 32
Top-K Retrieved Data

76.5

77.0

77.5

78.0

78.5

79.0

79.5

Co
de

BL
EU

Hearthstone

RAG+
RAG

Figure 6: The result of RAG and RAG+ evaluated by
metric CodeBLEU on Hearthstone datasets.

0.0 0.2 0.4 0.6 0.8 1.0
Quality

0.0

0.1

0.2

0.3

0.4

0.5

Ra
tio

RAG Dataset

0.0 0.2 0.4 0.6 0.8 1.0
Quality

0.0

0.1

0.2

0.3

0.4

0.5

Ra
tio

SAG Dataset

Figure 7: Statistic for two types datasets. Quality
is the CodeBLEU score between augmented code and
supervised code, which is divide averagely in 10 cate-
gories. Ratio is the probability density for the number
of sample in each category.

that the BLEU4 scores of SAG fluctuated in a small 359

range from 1st epoch to 8th epoch. A possible rea- 360

son is that the Generator has difficulties to identify 361

its own code errors, which limits the improvements 362

at each epoch. However, this iterative process can 363

not be overlooked. As illustrated in Case Study 1, 364

SAG can indeed fix some obvious errors through 365

this iterative process. 366

RAG vs RAG+. Figure 5 and Figure 6 respec- 367

tively shows the results of RAG and RAG+ on 368

BLEU4 and CodeBLEU metrics. We find that 369

RAG+ always significantly beats RAG. These re- 370

sults demonstrate that enhanced with SAG’s aug- 371

mented datasets, RAG+ facilitate the Generator to 372

effectively utilize external code. Another interest- 373

ing finding is that as the k increases, RAG+ exhibits 374

relatively stable performance, while RAG rapidly 375

oscillates and decreases. In other words, under 376

small-scale or low-quality retrieval code situation, 377

RAG+ can maintain much better and stable results 378

than RAG, indicating that the SAG datasets endows 379

RAG with robustness. 380

Analysis of SAG and RAG datasets. For further 381

exploration, we also analyze statistics on RAG and 382

6

Model Hearthstone (Python) Magic (Java) AixBench-L (Java)
EM BLEU4 CodeBLEU EM BLEU4 CodeBLEU Pass@1

RNN∗ 3.03 64.53 58.56 16.26 71.96 61.83 4.00
Transformer∗ 3.03 62.46 51.63 12.20 73.10 66.61 6.29
CodeBERT∗ 3.03 66.50 59.39 19.42 78.69 71.73 9.14

GraphCodeBERT∗ 3.03 66.32 58.87 27.41 82.33 74.76 10.86
CodeGPT 24.24 80.90 75.42 27.40 78.68 70.04 17.71

CodeT5-base 28.79 81.28 77.02 29.82 81.57 75.85 15.42
SKCODER(CodeT5-base) 31.81 84.12 79.45 35.39 85.39 80.62 20.00

CodeT5+ 220M 30.30 81.95 77.81 33.43 82.30 77.43 17.71
RAG(CodeT5+ 220M) 30.30 82.65 78.31 34.19 83.32 78.24 17.71
SAG(CodeT5+ 220M) 31.81(+5.0%) 84.28(+2.8%) 79.63(+2.3%) 34.93(+4.5%) 84.79(+3.0%) 79.77(+3.0%) 19.43(+9.7%)

ISAGWR(CodeT5-base) 31.81(+5.0%) 84.44(+3.0%) 79.90(+2.7%) 35.39(+5.9%) 85.52(+3.9%) 80.64(+4.1%) 20.00(+12.9%)

ISAGWR(CodeT5+ 220M) 31.81(+5.0%) 84.91(+3.6%) 80.16 (+3.0%) 35.54(+6.3%) 85.80(+4.3%) 80.71(+4.2%) 20.00(+12.9%)

Table 2: Results for code generation task. Method name with "∗" indicates that its results are obtained from
previous works. The "()" next to the method name specifies the Generator. The improvement percentage compared
to CodeT5+ 220M are displayed in green. Note that the last three methods output the same EM results on the
Hearthstone dataset, this may attributes to the size of this dataset is too small.

Model CodeXGLUE(Java-to-C#) AtCoder(Cpp-to-Python) AtCoder(Java-to-Python)
EM BLEU4 CodeBLEU BLEU4 CodeBLEU BLEU4 CodeBLEU

CodeBERT 59.00 79.92 85.10 9.12 18.58 18.24 23.97
CodeT5-base 65.90 84.03 86.91 11.65 20.76 19.48 25.33

CodeT5+ 220M 66.20 84.25 87.36 12.83 21.61 20.89 26.25
SAG(CodeT5+ 220M) 67.10(+1.4%) 85.35(+1.3%) 88.23(+1.0%) 13.45(+4.8%) 22.50(+4.1%) 21.45(+2.7%) 27.01(+2.9%)

ISAGWR(CodeT5-base) 67.00(+1.2%) 85.27(+1.2%) 88.31(+1.1%) 13.52(+5.4%) 22.54(+4.3%) 21.15(+1.2%) 26.70(+1.7%)

ISAGWR(CodeT5+ 220M) 67.30(+1.7%) 85.52(+1.5%) 88.79(+1.6%) 13.88(+8.2%) 23.59(+9.2%) 22.13(+5.9%) 28.09(+7.0%)

Table 3: Results for code translation task. The improvement percentage compared to CodeT5+ 220M are displayed
in green. The "()" next to the method name specifies the Generator.

SAG datasets, the results are shown in Figure 7.383

Compared to RAG dataset, SAG datasets exhibit a384

more uniform distribution. The reason is that RAG385

solely uses the Top-1 code as its augmented code,386

resulting in relatively homogeneous code patterns.387

In contrast, SAG datasets utilize Generator’s output388

from different epochs, resulting in more diverse389

code patterns. This diverse characteristic ensures390

SAG’s robustness.391

In summary, we demonstrate the effectiveness392

and robustness of SAG for code generation. As its393

core, the SAG datasets are essentially helpful. Since394

SAG self-augments with Generators’ output and no395

extra data is necessary, it can be easily applied to396

enhance existing models, such as RAG.397

5.6 Experiment-2: Effectiveness of ISAGWR398

In the second set of experiments, we compare IS-399

AGWR with SAG, and also explore the iterative400

process of ISAGWR, to verify the advantanges of401

the Reviewer module. Then, we compare ISAGWR402

with other baselines to demonstrate its effctiveness.403

5.6.1 Experiment-2 Setup404

ISAGWR trains the Generator similar as SAG. We405

train the Reviewer module 20 epochs with a batch406

size 16 and learning rate 2e-5. 407

5.6.2 Experiment-2 Results 408

Table 2 and Table 3 present various metrics of base- 409

lines and our methods (SAG and ISAGWR). 410

ISAGWR vs SAG. (1) Code generation task (see 411

Table 2), ISAGWR succeeds in all the Generator 412

settings upon the three datasets compared to SAG; 413

(2) Code translation task (see Table 3), ISAGWR al- 414

ways outperforms SAG when employing the same 415

CodeT5+ Generator. These results not only demon- 416

strate the superiority of ISAGWR over SAG for both 417

generation tasks, but also verify the effectiveness 418

of the Reviewer module adopted in ISAGWR. 419

Iterative review process of ISAGWR. ISAGWR 420

achieves the best BLEU4 at the 3rd epoch on Magic 421

and CodeXGLUE datasets, and at the 4th epoch on 422

Hearthstone dataset (see Figure 8). As illustrated in 423

Case 2, the iteration process of SAG can not identify 424

some code errors that the Generator repeatedly out- 425

puts. This situation has largely changed since the 426

Reviewer module is involved in ISAGWR. In each 427

iteration, the Reviewer checks the output code of 428

the Generator and masks error tokens, and then the 429

Generator performs next-epoch training based on 430

the masked code. Therefore, with the iterative col- 431

7

laboration between the Generator and the Reviewer,432

ISAGWR can better identify and handle code er-433

rors, thus improving generation performance. Case434

3 also confirms this point.435

ISAGWR vs OTHER BASELINES . IS-436

AGWR(CodeT5+ 220M) achieves noticeable per-437

formance improvement over all baselines, showing438

its effectiveness in code generation and transla-439

tion. We attribute this superiority to its iterative440

generation-review strategy. Take a close look at441

some interesting findings: (1) Code generation442

task (see Table 2). For the AixBench-L dataset,443

compared to CodeT5+ 220M, ISAGWR(CodeT5+444

220M) obtains the best improvements on Pass@1445

(12.9%). A possible reason is that AixBench-L is446

a large-scale dataset, which can be used to build447

larger-scale SAG datasets, thereby promoting Gen-448

erator and Reviewer to refine code. (2) Code449

translation task (see Table 3). ISAGWR shows450

better improvements on AtCoder compared to re-451

sults on CodeXGLUE. One possible reason is that452

compared to AtCoder dataset, the results retrieved453

on CodeXGLUE have relatively lower relevance,454

which affects the retrieval quality.455

5.7 Experiment-3: Effect of queue size m456

In the third set of experiments, we vary queue size457

m (1, 2, 3,∞) of SAG datasets to explore its im-458

pact on performance. Due to limited space, we only459

report results on Hearthstone (see Figure 7). We460

find that the best performance is achieved at m = 3.461

In addition, we also explore the two extreme situ-462

ations: (1) when m =∞, ISAGWR performs the463

worst. The SAG dataset constructed at each epoch464

will be retained indefinitely. This will cause an465

issue of biasing augmented datasets, as the datasets466

constructed in early epochs will be trained more467

times than the later constructed datasets, leading468

to performance degradation. (2) when m = 1, IS-469

AGWR is ranked as the second worst. The SAG470

dataset created for each epoch will be removed471

from the queue after one epoch. Due to insufficient472

training for Generator, ISAGWR fails to achieve473

satisfactory results. Therefore, to strike a balance474

between unbiased datasets and sufficient training,475

it’s necessary to find a suitable m value within a476

reasonable range.477

6 Conclusion478

SAG is an augmented generation method proposed479

in this work. Different from RAG, SAG iteratively480

1 2 3 4 5 6 7 8
epoch

84.0
84.2
84.4
84.6
84.8
85.0
85.2
85.4
85.6
85.8

BL
EU

4

Magic
Hearthstone
CodeXGLUE

Figure 8: Results of ISAGWR in terms of BLEU4.

BLEU4 CodeBLEU
ISAGWR (m=3) 84.91 80.16

Data Augmentation
- Fixed Size Queue (m=1) 84.37 79.92
- Fixed Size Queue (m=2) 84.75 80.05
- Fixed Size Queue (m=4) 84.61 79.97
- Fixed Size Queue (m=∞) 84.32 79.88

Table 4: Results s on Hearthstone. m denotes the size
of SAG datasets queue

reuse the Generator’s output to build augmented 481

datasets. This SAG datasets are then used to train 482

the Generator for better output. Furthermore, en- 483

lightened by the real-world code reviewer role, we 484

design a Reviewer module and integrate it into 485

SAG, which forms an iterative generator-review ar- 486

chitectural method ISAGWR. In each epoch, the 487

Reviewer module identifies and eliminates error 488

tokens based on the SAG datasets. After that, the 489

reviewed code is feed into the Generator to ensure 490

high-quality code generation. Extensive experi- 491

ments verify that ISAGWR can effectively perform 492

generation task with the help of Reviewer module 493

and SAG datasets as well as outperform all the base- 494

lines. We also believe that the AtCoder Dataset we 495

collected will facilitates relevant researches. 496

Limitations 497

The limitations of this paper are as follows: 498

Time Complexity. Constructing SAG datasets re- 499

quires model generation at each epoch. Especially 500

if the training dataset is too large, this can lead a 501

bottleneck in terms of time complexity. In addition, 502

iterative generation inevitably increases the cost 503

of model inference. We will explore the trade-off 504

between time complexity and performance in our 505

future work. 506

Limitation of the Reviewer module. Although the 507

proposed Reviewer module identifies and masks 508

8

potential errors, it cannot correct them. We defer it509

as our future work.510

The size of the model’s parameters. This work511

focuses on validating the effectiveness of ISAGWR512

in small-parameter models. Due to the resource513

constraints, we does not investigate larger model514

parameters. Future research will explore this area.515

Ethical Statement516

This research provides methods for generating and517

iteratively refining source code based on natural518

language descriptions. As with all AI techniques519

related to code, there exists potential for dual use520

and misuse. Our methods should only be applied521

to legal and ethical domains.522

All datasets used in this paper are available pub-523

licly or were collected with appropriate permis-524

sions. The collection of the AtCoder dataset has525

already been approved.526

All experiments in this work were conducted527

using public datasets.528

References529

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi530
Ray, and Kai-Wei Chang. 2021. Unified pre-training531
for program understanding and generation. ArXiv,532
abs/2103.06333.533

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik534
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-535
jishirzi. 2019. Mathqa: Towards interpretable math536
word problem solving with operation-based for-537
malisms. ArXiv, abs/1905.13319.538

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and539
Stella Biderman. 2021. Gpt-neo: Large scale autore-540
gressive language modeling with mesh-tensorflow.541

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,542
Trevor Cai, Eliza Rutherford, Katie Millican, George543
van den Driessche, Jean-Baptiste Lespiau, Bogdan544
Damoc, Aidan Clark, Diego de Las Casas, Aurelia545
Guy, Jacob Menick, Roman Ring, T. W. Hennigan,546
Saffron Huang, Lorenzo Maggiore, Chris Jones, Al-547
bin Cassirer, Andy Brock, Michela Paganini, Geof-548
frey Irving, Oriol Vinyals, Simon Osindero, Karen549
Simonyan, Jack W. Rae, Erich Elsen, and L. Sifre.550
2021. Improving language models by retrieving from551
trillions of tokens. In International Conference on552
Machine Learning.553

Deng Cai, Yan Wang, Victoria Bi, Zhaopeng Tu, Xi-554
aojiang Liu, Wai Lam, and Shuming Shi. 2018.555
Skeleton-to-response: Dialogue generation guided556
by retrieval memory. ArXiv, abs/1809.05296.557

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit- 558
ing factual knowledge in language models. In Con- 559
ference on Empirical Methods in Natural Language 560
Processing. 561

Xin Cheng, Di Luo, Xiuying Chen, Lemao Liu, 562
Dongyan Zhao, and Rui Yan. 2023. Lift yourself 563
up: Retrieval-augmented text generation with self 564
memory. ArXiv, abs/2305.02437. 565

Colin B. Clement, Dawn Drain, Jonathan Timcheck, 566
Alexey Svyatkovskiy, and Neel Sundaresan. 2020. 567
Pymt5: Multi-mode translation of natural language 568
and python code with transformers. In Conference on 569
Empirical Methods in Natural Language Processing. 570

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 571
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 572
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code- 573
bert: A pre-trained model for programming and natu- 574
ral languages. ArXiv, abs/2002.08155. 575

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida I. 576
Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen 577
tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. 578
Incoder: A generative model for code infilling and 579
synthesis. ArXiv, abs/2204.05999. 580

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu 581
Tang, Shujie Liu, Long Zhou, Nan Duan, Jian Yin, 582
Daxin Jiang, and M. Zhou. 2020. Graphcodebert: 583
Pre-training code representations with data flow. 584
ArXiv, abs/2009.08366. 585

Shirley Anugrah Hayati, Raphaël Olivier, Pravalika Av- 586
varu, Pengcheng Yin, Anthony Tomasic, and Graham 587
Neubig. 2018. Retrieval-based neural code genera- 588
tion. ArXiv, abs/1808.10025. 589

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and 590
Ross B. Girshick. 2019. Momentum contrast for 591
unsupervised visual representation learning. 2020 592
IEEE/CVF Conference on Computer Vision and Pat- 593
tern Recognition (CVPR), pages 9726–9735. 594

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se- 595
bastian Riedel, Piotr Bojanowski, Armand Joulin, 596
and Edouard Grave. 2021. Unsupervised dense in- 597
formation retrieval with contrastive learning. Trans. 598
Mach. Learn. Res., 2022. 599

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick 600
Lewis, Ledell Yu Wu, Sergey Edunov, Danqi Chen, 601
and Wen tau Yih. 2020. Dense passage retrieval for 602
open-domain question answering. In Conference on 603
Empirical Methods in Natural Language Processing. 604

Jungo Kasai, Keisuke Sakaguchi, Yoichi Takahashi, 605
Ronan Le Bras, Akari Asai, Xinyan Velocity Yu, 606
Dragomir R. Radev, Noah A. Smith, Yejin Choi, and 607
Kentaro Inui. 2022. Realtime qa: What’s the answer 608
right now? ArXiv, abs/2207.13332. 609

Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish 610
Chandra. 2020. Code prediction by feeding trees to 611
transformers. 2021 IEEE/ACM 43rd International 612

9

https://api.semanticscholar.org/CorpusID:232185260
https://api.semanticscholar.org/CorpusID:232185260
https://api.semanticscholar.org/CorpusID:232185260
https://api.semanticscholar.org/CorpusID:173188048
https://api.semanticscholar.org/CorpusID:173188048
https://api.semanticscholar.org/CorpusID:173188048
https://api.semanticscholar.org/CorpusID:173188048
https://api.semanticscholar.org/CorpusID:173188048
https://api.semanticscholar.org/CorpusID:245758737
https://api.semanticscholar.org/CorpusID:245758737
https://api.semanticscholar.org/CorpusID:245758737
https://api.semanticscholar.org/CorpusID:244954723
https://api.semanticscholar.org/CorpusID:244954723
https://api.semanticscholar.org/CorpusID:244954723
https://api.semanticscholar.org/CorpusID:52281331
https://api.semanticscholar.org/CorpusID:52281331
https://api.semanticscholar.org/CorpusID:52281331
https://api.semanticscholar.org/CorpusID:233289412
https://api.semanticscholar.org/CorpusID:233289412
https://api.semanticscholar.org/CorpusID:233289412
https://api.semanticscholar.org/CorpusID:258479968
https://api.semanticscholar.org/CorpusID:258479968
https://api.semanticscholar.org/CorpusID:258479968
https://api.semanticscholar.org/CorpusID:258479968
https://api.semanticscholar.org/CorpusID:258479968
https://api.semanticscholar.org/CorpusID:222178041
https://api.semanticscholar.org/CorpusID:222178041
https://api.semanticscholar.org/CorpusID:222178041
https://api.semanticscholar.org/CorpusID:211171605
https://api.semanticscholar.org/CorpusID:211171605
https://api.semanticscholar.org/CorpusID:211171605
https://api.semanticscholar.org/CorpusID:211171605
https://api.semanticscholar.org/CorpusID:211171605
https://api.semanticscholar.org/CorpusID:248157108
https://api.semanticscholar.org/CorpusID:248157108
https://api.semanticscholar.org/CorpusID:248157108
https://api.semanticscholar.org/CorpusID:221761146
https://api.semanticscholar.org/CorpusID:221761146
https://api.semanticscholar.org/CorpusID:221761146
https://api.semanticscholar.org/CorpusID:52136345
https://api.semanticscholar.org/CorpusID:52136345
https://api.semanticscholar.org/CorpusID:52136345
https://api.semanticscholar.org/CorpusID:207930212
https://api.semanticscholar.org/CorpusID:207930212
https://api.semanticscholar.org/CorpusID:207930212
https://api.semanticscholar.org/CorpusID:249097975
https://api.semanticscholar.org/CorpusID:249097975
https://api.semanticscholar.org/CorpusID:249097975
https://api.semanticscholar.org/CorpusID:215737187
https://api.semanticscholar.org/CorpusID:215737187
https://api.semanticscholar.org/CorpusID:215737187
https://api.semanticscholar.org/CorpusID:251105205
https://api.semanticscholar.org/CorpusID:251105205
https://api.semanticscholar.org/CorpusID:251105205
https://api.semanticscholar.org/CorpusID:214727958
https://api.semanticscholar.org/CorpusID:214727958
https://api.semanticscholar.org/CorpusID:214727958

Conference on Software Engineering (ICSE), pages613
150–162.614

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio615
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-616
rich Kuttler, Mike Lewis, Wen tau Yih, Tim Rock-617
täschel, Sebastian Riedel, and Douwe Kiela. 2020.618
Retrieval-augmented generation for knowledge-619
intensive nlp tasks. ArXiv, abs/2005.11401.620

Jia Li, Yongming Li, Ge Li, Zhi Jin, Yiyang Hao, and621
Xing Hu. 2023. Skcoder: A sketch-based approach622
for automatic code generation. 2023 IEEE/ACM 45th623
International Conference on Software Engineering624
(ICSE), pages 2124–2135.625

Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak626
Gotmare, Shafiq R. Joty, Caiming Xiong, and Steven627
C. H. Hoi. 2021. Align before fuse: Vision and lan-628
guage representation learning with momentum distil-629
lation. In Neural Information Processing Systems.630

Wang Ling, Edward Grefenstette, Karl Moritz Hermann,631
Tomáš Kočiskỳ, Andrew Senior, Fumin Wang, and632
Phil Blunsom. 2016. Latent predictor networks for633
code generation. arXiv preprint arXiv:1603.06744.634

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung635
won Hwang, and Alexey Svyatkovskiy. 2022. Reacc:636
A retrieval-augmented code completion framework.637
ArXiv, abs/2203.07722.638

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey639
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,640
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong641
Zhou, Linjun Shou, Long Zhou, Michele Tufano,642
Ming Gong, Ming Zhou, Nan Duan, Neel Sundare-643
san, Shao Kun Deng, Shengyu Fu, and Shujie Liu.644
2021. Codexglue: A machine learning benchmark645
dataset for code understanding and generation. ArXiv,646
abs/2102.04664.647

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler648
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,649
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,650
Sean Welleck, Bodhisattwa Prasad Majumder,651
Shashank Gupta, Amir Yazdanbakhsh, and Peter652
Clark. 2023. Self-refine: Iterative refinement with653
self-feedback. ArXiv, abs/2303.17651.654

Ansong Ni, Srini Iyer, Dragomir R. Radev, Ves Stoy-655
anov, Wen tau Yih, Sida I. Wang, and Xi Victoria Lin.656
2023. Lever: Learning to verify language-to-code657
generation with execution. ArXiv, abs/2302.08468.658

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Hai-659
quan Wang, Yingbo Zhou, Silvio Savarese, and Caim-660
ing Xiong. 2022. Codegen: An open large language661
model for code with multi-turn program synthesis.662
In International Conference on Learning Representa-663
tions.664

Changan Niu, Chuanyi Li, Vincent Ng, Jidong665
Ge, LiGuo Huang, and Bin Luo. 2022. Spt-666
code: Sequence-to-sequence pre-training for learning667
source code representations. 2022 IEEE/ACM 44th668

International Conference on Software Engineering 669
(ICSE), pages 01–13. 670

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 671
Jing Zhu. 2002. Bleu: a method for automatic evalu- 672
ation of machine translation. In Annual Meeting of 673
the Association for Computational Linguistics. 674

Md. Rizwan Parvez, Wasi Uddin Ahmad, Saikat 675
Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 676
2021. Retrieval augmented code generation and sum- 677
marization. ArXiv, abs/2108.11601. 678

Alec Radford, Jeff Wu, Rewon Child, David Luan, 679
Dario Amodei, and Ilya Sutskever. 2019. Language 680
models are unsupervised multitask learners. 681

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie 682
Liu, Duyu Tang, M. Zhou, Ambrosio Blanco, and 683
Shuai Ma. 2020. Codebleu: a method for automatic 684
evaluation of code synthesis. ArXiv, abs/2009.10297. 685

Stephen E. Robertson and Hugo Zaragoza. 2009. The 686
probabilistic relevance framework: Bm25 and be- 687
yond. Found. Trends Inf. Retr., 3:333–389. 688

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. 689
2021. Learning to retrieve prompts for in-context 690
learning. ArXiv, abs/2112.08633. 691

Timo Schick, Jane Dwivedi-Yu, Zhengbao Jiang, Fabio 692
Petroni, Patrick Lewis, Gautier Izacard, Qingfei You, 693
Christoforos Nalmpantis, Edouard Grave, and Sebas- 694
tian Riedel. 2022. Peer: A collaborative language 695
model. ArXiv, abs/2208.11663. 696

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin 697
Jiang, Ming Zhang, and Qun Liu. 2021. Generate & 698
rank: A multi-task framework for math word prob- 699
lems. In Conference on Empirical Methods in Natu- 700
ral Language Processing. 701

Ensheng Shi, Yanlin Wang, Wei Tao, Lun Du, Hongyu 702
Zhang, Shi Han, Dongmei Zhang, and Hongbin Sun. 703
2022. Race: Retrieval-augmented commit message 704
generation. In Conference on Empirical Methods in 705
Natural Language Processing. 706

Connor Shorten and Taghi M. Khoshgoftaar. 2019. A 707
survey on image data augmentation for deep learning. 708
Journal of Big Data, 6:1–48. 709

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, 710
and Jason Weston. 2021. Retrieval augmentation re- 711
duces hallucination in conversation. In Conference 712
on Empirical Methods in Natural Language Process- 713
ing. 714

Yiping Song, Rui Yan, Xiang Li, Dongyan Zhao, and 715
Ming Zhang. 2016. Two are better than one: An 716
ensemble of retrieval- and generation-based dialog 717
systems. ArXiv, abs/1610.07149. 718

Kaya Stechly, Matthew Marquez, and Subbarao Kamb- 719
hampati. 2023. Gpt-4 doesn’t know it’s wrong: An 720
analysis of iterative prompting for reasoning prob- 721
lems. ArXiv, abs/2310.12397. 722

10

https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:256826931
https://api.semanticscholar.org/CorpusID:256826931
https://api.semanticscholar.org/CorpusID:256826931
https://api.semanticscholar.org/CorpusID:236034189
https://api.semanticscholar.org/CorpusID:236034189
https://api.semanticscholar.org/CorpusID:236034189
https://api.semanticscholar.org/CorpusID:236034189
https://api.semanticscholar.org/CorpusID:236034189
https://api.semanticscholar.org/CorpusID:247450969
https://api.semanticscholar.org/CorpusID:247450969
https://api.semanticscholar.org/CorpusID:247450969
https://api.semanticscholar.org/CorpusID:231855531
https://api.semanticscholar.org/CorpusID:231855531
https://api.semanticscholar.org/CorpusID:231855531
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:256900680
https://api.semanticscholar.org/CorpusID:256900680
https://api.semanticscholar.org/CorpusID:256900680
https://api.semanticscholar.org/CorpusID:252668917
https://api.semanticscholar.org/CorpusID:252668917
https://api.semanticscholar.org/CorpusID:252668917
https://api.semanticscholar.org/CorpusID:246077487
https://api.semanticscholar.org/CorpusID:246077487
https://api.semanticscholar.org/CorpusID:246077487
https://api.semanticscholar.org/CorpusID:246077487
https://api.semanticscholar.org/CorpusID:246077487
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:237304122
https://api.semanticscholar.org/CorpusID:237304122
https://api.semanticscholar.org/CorpusID:237304122
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:221836101
https://api.semanticscholar.org/CorpusID:221836101
https://api.semanticscholar.org/CorpusID:221836101
https://api.semanticscholar.org/CorpusID:207178704
https://api.semanticscholar.org/CorpusID:207178704
https://api.semanticscholar.org/CorpusID:207178704
https://api.semanticscholar.org/CorpusID:207178704
https://api.semanticscholar.org/CorpusID:207178704
https://api.semanticscholar.org/CorpusID:245218561
https://api.semanticscholar.org/CorpusID:245218561
https://api.semanticscholar.org/CorpusID:245218561
https://api.semanticscholar.org/CorpusID:251765117
https://api.semanticscholar.org/CorpusID:251765117
https://api.semanticscholar.org/CorpusID:251765117
https://api.semanticscholar.org/CorpusID:237434245
https://api.semanticscholar.org/CorpusID:237434245
https://api.semanticscholar.org/CorpusID:237434245
https://api.semanticscholar.org/CorpusID:237434245
https://api.semanticscholar.org/CorpusID:237434245
https://api.semanticscholar.org/CorpusID:253097741
https://api.semanticscholar.org/CorpusID:253097741
https://api.semanticscholar.org/CorpusID:253097741
https://api.semanticscholar.org/CorpusID:195811894
https://api.semanticscholar.org/CorpusID:195811894
https://api.semanticscholar.org/CorpusID:195811894
https://api.semanticscholar.org/CorpusID:233240939
https://api.semanticscholar.org/CorpusID:233240939
https://api.semanticscholar.org/CorpusID:233240939
https://api.semanticscholar.org/CorpusID:18616524
https://api.semanticscholar.org/CorpusID:18616524
https://api.semanticscholar.org/CorpusID:18616524
https://api.semanticscholar.org/CorpusID:18616524
https://api.semanticscholar.org/CorpusID:18616524
https://api.semanticscholar.org/CorpusID:264305982
https://api.semanticscholar.org/CorpusID:264305982
https://api.semanticscholar.org/CorpusID:264305982
https://api.semanticscholar.org/CorpusID:264305982
https://api.semanticscholar.org/CorpusID:264305982

Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili723
Mou, and Lu Zhang. 2019. Treegen: A tree-based724
transformer architecture for code generation. ArXiv,725
abs/1911.09983.726

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob727
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz728
Kaiser, and Illia Polosukhin. 2017. Attention is all729
you need. In Neural Information Processing Systems.730

Xin Wang, Yasheng Wang, Yao Wan, Jiawei Wang,731
Pingyi Zhou, Li Li, Hao Wu, and Jin Liu. 2022.732
Code-mvp: Learning to represent source code from733
multiple views with contrastive pre-training. In734
NAACL-HLT.735

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi736
D. Q. Bui, Junnan Li, and Steven C. H. Hoi.737
2023. Codet5+: Open code large language mod-738
els for code understanding and generation. ArXiv,739
abs/2305.07922.740

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven741
C. H. Hoi. 2021. Codet5: Identifier-aware unified742
pre-trained encoder-decoder models for code under-743
standing and generation. ArXiv, abs/2109.00859.744

Bolin Wei. 2019. Retrieve and refine: Exemplar-based745
neural comment generation. 2019 34th IEEE/ACM746
International Conference on Automated Software En-747
gineering (ASE), pages 1250–1252.748

Sean Welleck, Ximing Lu, Peter West, Faeze Brah-749
man, Tianxiao Shen, Daniel Khashabi, and Yejin750
Choi. 2022. Generating sequences by learning to751
self-correct. ArXiv, abs/2211.00053.752

Yu Wu, Furu Wei, Shaohan Huang, Zhoujun Li, and753
Ming Zhou. 2018. Response generation by context-754
aware prototype editing. In AAAI Conference on755
Artificial Intelligence.756

Pengcheng Yin and Graham Neubig. 2018. Tranx: A757
transition-based neural abstract syntax parser for se-758
mantic parsing and code generation. In Conference759
on Empirical Methods in Natural Language Process-760
ing.761

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan762
Berant. 2023. Making retrieval-augmented lan-763
guage models robust to irrelevant context. ArXiv,764
abs/2310.01558.765

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu766
Kim, Bei Guan, Yongji Wang, Weizhu Chen, and767
Jian-Guang Lou. 2022. Cert: Continual pre-training768
on sketches for library-oriented code generation. In769
International Joint Conference on Artificial Intelli-770
gence.771

Fengji Zhang, B. Chen, Yue Zhang, Jin Liu, Daoguang772
Zan, Yi Mao, Jian-Guang Lou, and Weizhu Chen.773
2023. Repocoder: Repository-level code comple-774
tion through iterative retrieval and generation. ArXiv,775
abs/2303.12570.776

A Text-Code contrastive learning 777

Given a batch of positive pairs text T and code C, 778

we make the vector representations Et for text T 779

and Ec for code C by mapping [CLS] embeddings 780

to normalized lower-dimensional (256-d) from the 781

encoder. We maintain two queues of size M to store 782

the most recent vector representations Qt and Qc 783

from the momentum encoders, and the element of 784

which is not equal to the batch sample is denoted 785

as negative samples. 786

We calculate the similarity of text-code St2c(T) 787

and code-text Sc2t(C) as: 788

St2c(T) = E⊤
t Qc, S

c2t(C) = E⊤
c Qt (6) 789

Then we softmax-normalized them as pt2c(T) and 790

pc2t(C): 791

pt2ci (T) =
exp(St2c(T)i/τ)∑M

j=1 exp(S
t2c(T)i,j/τ)

(7) 792

pc2ti (C) =
exp(Sc2t(C)i/τ)∑M

j=1 exp(S
c2t(C)i,j/τ)

(8) 793

where τ is a learnable temperature parameter. 794

Let yt2c(T) and yc2t(C) denote the ground-truth 795

one-hot similarity, the text-code contrastive loss 796

from a corpus D is define as the cross-entropy H 797

between y and p: 798

Lce =
1

2
E(T,C)∼D[H(yt2c(T), pt2c(T))

+H(yc2t(C), pc2t(C))]
(9) 799

11

https://api.semanticscholar.org/CorpusID:208248351
https://api.semanticscholar.org/CorpusID:208248351
https://api.semanticscholar.org/CorpusID:208248351
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:248512635
https://api.semanticscholar.org/CorpusID:248512635
https://api.semanticscholar.org/CorpusID:248512635
https://api.semanticscholar.org/CorpusID:258685677
https://api.semanticscholar.org/CorpusID:258685677
https://api.semanticscholar.org/CorpusID:258685677
https://api.semanticscholar.org/CorpusID:237386541
https://api.semanticscholar.org/CorpusID:237386541
https://api.semanticscholar.org/CorpusID:237386541
https://api.semanticscholar.org/CorpusID:237386541
https://api.semanticscholar.org/CorpusID:237386541
https://api.semanticscholar.org/CorpusID:204838350
https://api.semanticscholar.org/CorpusID:204838350
https://api.semanticscholar.org/CorpusID:204838350
https://api.semanticscholar.org/CorpusID:253244506
https://api.semanticscholar.org/CorpusID:253244506
https://api.semanticscholar.org/CorpusID:253244506
https://api.semanticscholar.org/CorpusID:49312395
https://api.semanticscholar.org/CorpusID:49312395
https://api.semanticscholar.org/CorpusID:49312395
https://api.semanticscholar.org/CorpusID:52926380
https://api.semanticscholar.org/CorpusID:52926380
https://api.semanticscholar.org/CorpusID:52926380
https://api.semanticscholar.org/CorpusID:52926380
https://api.semanticscholar.org/CorpusID:52926380
https://api.semanticscholar.org/CorpusID:263608822
https://api.semanticscholar.org/CorpusID:263608822
https://api.semanticscholar.org/CorpusID:263608822
https://api.semanticscholar.org/CorpusID:249642442
https://api.semanticscholar.org/CorpusID:249642442
https://api.semanticscholar.org/CorpusID:249642442
https://api.semanticscholar.org/CorpusID:257663528
https://api.semanticscholar.org/CorpusID:257663528
https://api.semanticscholar.org/CorpusID:257663528

B LCS Algorithm800

Algorithm 2 Longest Common Subsequence
(LCS)
Require:

#X : The first string of LCS
#Y : The second string of LCS

Ensure: LCS: L[m,n]
1: m← |X|
2: n← |Y |
3: for i = 0 to m do
4: for j = 0 to n do
5: if i == 0 or j == 0 then
6: L[i, j]← 0
7: else if X[i] == Y [j] then
8: L[i, j]← L[i− 1, j − 1] + 1
9: else

10: L[i, j]← max(L[i−1, j], L[i, j−
1])

11: end if
12: end for
13: end for
14: return L[m,n]

C AtCoder Dataset801

Comparing to the text generation domain, code802

generation typically has various reference answers.803

It is challenging to collect multiple reference an-804

swers in the same programming languages that805

solve a specific task. The online judge platform806

like AtCoder holds competition regularly and re-807

quires participants submit codes to solve several808

problems, which provides a large amount of refer-809

ence answers in multiple languages.810

Inspired by this, the AtCoder dataset is con-811

structed from the AtCoder platform which hosts812

weekly competitions. The data collection protocol813

is approved by an ethics review board and we have814

obtained the consent of the platform owner prior815

to use. We collect the code from 150-th to 233-816

th AtCoder Beginner Contest (ABC). We remove817

the unnecessary comments to simplify the content818

and provide an dataset which is specified to pro-819

cess tailored for code-to-code tasks. We filter out820

excessively long codes to ensure the model could821

fully process the input code, the filtered result is822

shown in Figure 9. To collect reference answers in823

a specific program language, we selected the same824

problem from AtCoder competition and gathered825

accepted code submissions in Java, C#, and Python.826

The codes can translate to each other since they fix 827

the same task. 828

C++ Java Python
0

100

200

300

400

500

To
ke

n_
nu

m

Figure 9: Statistic of token number for AtCoder datasets

D Metrics 829

The calculating details of the metrics we use are 830

shown below. 831

D.1 BLEU4 832

The equation for BLEU4 is: 833

BLEU4 = BP× exp

(
N∑

n=1

wn · log(pn)

)
(10) 834

where wn represents the weight assigned to the 835

precision of n-grams. log(pn) is the logarthm of 836

the precision of n-grams. 837

838

D.2 CodeBLEU 839

Unlike traditional BLEU, CodeBLEU aims to cap- 840

ture both syntactic and semantic correctness in 841

code. It not only considers the lexical similarity 842

but also the syntactic structure and semantic mean- 843

ing of the generated code, which are crucial for 844

assessing code quality. 845

First it calculates token-level BLEU using n- 846

gram precision in a manner similar to traditional 847

BLEU scores in natural language processing. The 848

n-gram precision is computed as: 849

pn =

∑
C∈Candidates

∑l
i=1 µ

i
n · Countclip(C

′(i, i+ n))∑
C′∈Candidates

∑l
i=1 µ

i
n · Count(C′(i, i+ n))

(11) 850

Then the syntactic matching involves comparing 851

the abstract syntax trees (AST) of the generated 852

and reference code. The syntactic matching score 853

can be represented as: 854

Syntactic Score =
Number of matching nodes in AST

Total number of nodes in reference AST
(12) 855

12

Then the data flow and control flow graph match856

involves comparing the data flow and control flow857

graphs. The semantic score can be similarly com-858

puted based on the proportion of matched elements859

in these graphs. Finally, these components are860

combined into the overall CodeBLEU score with861

weights indicating the importance of each compo-862

nent.863

D.3 Pass@1864

The way to compute Pass@1 is to calculate the865

percentage of the number of sample passes the test866

once among the total number of the samples. It is867

calculated as:868

Pass@1 =
1

|I|
∑
i∈I

1{ranki(yi)=1} (13)869

where |I| denotes the total number of instances870

for which predictions were made, yi is the true label871

or item for instance i, ranki(yi) is the function872

that returns the rank of the true label in the list of873

predictions for instance i, with 1 being the top rank.874

E Supplementary Results of875

Experiment-1876

The results of other datasets are shown below.877

0 4 8 12 16 20 24 28 32
Top-K Retrieved Data

81.0

81.5

82.0

82.5

83.0

83.5

84.0

84.5

BL
EU

Magic

RAG+
RAG

Figure 10: The result of RAG and RAG+ evaluated by
metric BLEU4 on Magic datasets.

0 4 8 12 16 20 24 28 32
Top-K Retrieved Data

76

77

78

79

80

Co
de

BL
EU

Magic

RAG+
RAG

Figure 11: The result of RAG and RAG+ evaluated by
metric CodeBLEU on Magic datasets.

0 4 8 12 16 20 24 28 32
Top-K Retrieved Data

82.5

83.0

83.5

84.0

84.5

85.0

BL
EU

CodeXGLUE(Java-to-C#)

RAG+
RAG

Figure 12: The result of RAG and RAG+ evaluated by
metric BLEU4 on CodeXGLUE(java-to-c#) datasets.

0 4 8 12 16 20 24 28 32
Top-K Retrieved Data

86.0

86.5

87.0

87.5

88.0

Co
de

BL
EU

CodeXGLUE(Java-to-C#)

RAG+
RAG

Figure 13: The result of RAG and RAG+ evaluated
by metric CodeBLEU on CodeXGLUE(java-to-c#)
datasets.

F Case Study 878

13

Input requirement: Wild Defiance NAME_END NIL ATK_END NIL DEF_END { 2 } { G } COST_END NIL DUR_END Enchantment TYPE_END Avacyn Restored PLAYER_CLS_END 203 RACE_END R
RARITY_END Whenever a creature you control becomes the target of an instant or sorcery spell , that creature gets + 3 / + 3 until end of turn .

Output of epoch 1 （SAG）Output of RAG Output of epoch 2（SAG）

A successful example of iterative generation using SAG

public class Wild Defiance extends Card Impl {
 private static final Filter Spell filter = new Filter Spell (....)；
 ...
 this . set Target Controller (event . get Player Id ()) ;
 return true ;
 }
 return false ; }
 @ Override public String get Rule () {
 return ` Whenever a creature you control becomes the
 target of an instant or sorcery spell , that creature gets
 + 3 / + 3 until end of turn . ` ; }

public class Wild Defiance extends Card Impl {
 private static final Filter Spell filter = new Filter Spell (....)；
 ...
 this . set Target Controller (event . get Player Id ()) ;
 return true ;
 }
 return false ; }
 @ Override public String get Rule () {
 return ` Whenever a creature you control becomes the
 target of an instant or sorcery spell , that creature gets
 + 3 / + 3 until end of turn . ` ; }

public class Wild Defiance extends Card Impl {
 public Wild Defiance (UUID owner Id) {
 ...
 this . set Target Controller (controller Id) ;
 return true ; }
 }
 return false ; }
 @ Override public String get Rule () {
 return ` Whenever a creature you control becomes the
 target of an instant or sorcery spell , that creature gets
 + 3 / + 3 until end of turn . ` ; }

x
x

(a) Case Study 1. The grey background represents the repaired parts. SAG can fix some obvious errors through iteration.

Input requirement: Boseiju , Who Shelters All NAME_END NIL ATK_END NIL DEF_END NIL COST_END NIL DUR_END Legendary Land TYPE_END Champions of Kamigawa PLAYER_CLS_END
273 RACE_END R RARITY_END Boseiju , Who Shelters All enters the battlefield tapped . $ { tap } , Pay 2 life : Add { C } to your mana pool . If that mana is spent on an instant or sorcery spell

Output of epoch 2（SAG）Output of epoch 1（SAG） Output of epoch 3（SAG）

SAG: the phenomenon of repeated mistakes

public class Boseiju Who Shelters All extends Card Impl {
 public Boseiju Who Shelters All (UUID owner Id) {
 super (owner Id , 273 , ` Boseiju , Who Shelters All ` ,
 Rarity . RARE , new Card Type [] {) ;
 this . expansion Set Code = ` CHK ` ;
 this . supertype . add (` Legendary `) ;
 this . add Ability (.... Ability ()) ;
 Mana mana = Mana . Colorless Mana (1) ;
 mana . set Flag (true) ;
 ... xx

public class Boseiju Who Shelters All extends Card Impl {
 public Boseiju Who Shelters All (UUID owner Id) {
 super (owner Id , 273 , ` Boseiju , Who Shelters All ` ,
 Rarity . RARE , new Card Type [] {) ;
 this . expansion Set Code = ` CHK ` ;
 this . supertype . add (` Legendary `) ;
 this . add Ability (.... Ability ()) ;
 Mana mana = Mana . Colorless Mana (1) ;
 mana . set Flag (true) ;
 ...

public class Boseiju Who Shelters All extends Card Impl {
 public Boseiju Who Shelters All (UUID owner Id) {
 super (owner Id , 273 , ` Boseiju , Who Shelters All ` ,
 Rarity . RARE , new Card Type [] {) ;
 this . expansion Set Code = ` CHK ` ;
 this . supertype . add (` Legendary `) ;
 this . add Ability (.... Ability ()) ;
 Mana mana = Mana . Colorless Mana (1) ;
 mana . set Flag (true) ;
 ... x

repeated mistakes

(b) Case Study 2. The grey background represents the repeated mistakes. SAG is unable to recognize and fix some errors, leading
to a phenomenon of repeated mistakes.

Input requirement: Boseiju , Who Shelters All NAME_END NIL ATK_END NIL DEF_END NIL COST_END NIL DUR_END Legendary Land TYPE_END Champions of Kamigawa PLAYER_CLS_END
273 RACE_END R RARITY_END Boseiju , Who Shelters All enters the battlefield tapped . $ { tap } , Pay 2 life : Add { C } to your mana pool . If that mana is spent on an instant or sorcery spell

After ReviewOutput of epoch 1（ISAGWR） Output of epoch 2 (ISAGWR）
public class Boseiju Who Shelters All extends Card Impl {
 public Boseiju Who Shelters All (UUID owner Id) {
 super (owner Id , 273 , ` Boseiju , Who Shelters All ` ,
 Rarity . RARE , new Card Type [] {) ;
 this . expansion Set Code = ` CHK ` ;
 this . supertype . add (` Legendary `) ;
 this . add Ability (.... Ability ()) ;
 Mana mana = Mana . Colorless Mana (1) ;
 mana . set Flag (true) ;
 ...

public class Boseiju Who Shelters All extends Card Impl {
 public Boseiju Who Shelters All (UUID owner Id) {
 super (owner Id , 273 , ` Boseiju , Who Shelters All ` ,
 Rarity . RARE , new Card Type [] {) ;
 this . expansion Set Code = ` CHK ` ;
 this . supertype . add (` Legendary `) ;
 this . add Ability (.... Ability ()) ;
 Mana mana = new Mana (0 , 0 , 0 , 0 , 0 , 0 , 0 , 1) ;
 mana . set Flag (true) ;
 ...x

public class Boseiju Who Shelters All extends Card Impl {
 public Boseiju Who Shelters All (UUID owner Id) {
 super (owner Id , 273 , ` Boseiju , Who Shelters All ` ,
 Rarity . RARE , new Card Type [] {) ;
 this . expansion Set Code = ` CHK ` ;
 this . supertype . add (` Legendary `) ;
 this . add Ability (.... Ability ()) ;
 Mana mana = <Mask>
 mana . set Flag (true) ;
 ...

repeated mistakes

ISAGWR: mask the repeated mistakes

(c) Case Study 3. The grey background on output of epoch 1 represents the repeated mistakes. The grey background on output of
epoch 2 represents the repaired parts.

Figure 14: Case Study

14

