ISAGWR: Iterative Self-augmented Generation with Reviewer

Anonymous ACL submission

Abstract

Code generation plays a vital role in software
development and has gained widespread at-
tention. Some researchers prone to employ
Retrieval-augmented Generation (RAG) and
achieved impressive results. However, these
methods ignore the real-world iterative code
refining process as they solely reuse external
retrieved code. To tackle this limitation, we
propose a self-augmented generation method
SAG, which iteratively constructs augmented
datasets using Generator’s output. The Gener-
ator refine its own code with the help of the
datasets. Furthermore, inspired by the real-
world role of programmer reviewers, we pro-
pose an iterative generator-review architectural
method ISAGWR based on the SAG datasets.
As its core, a Reviewer module is employed
to detect and handle errors. These feedback
are then feed into Generator for better coding
output. We conduct extensive experiments on
five benchmarks, and the results show that IS-
AGWR significantly surpasses all the baselines.
The results also indicate that the SAG datasets
and the Reviewer module respectively provides
valuable insight to perform automatic data aug-
mentation and integrate self-correct ability into
a unified framework. !

1 Introduction

Programmers often make considerable efforts to
manually write code. Code generation (Yin and
Neubig, 2018; Sun et al., 2019; Wang et al., 2021,
2023) aims to automate this process and generate
programming languages that meet specific natural
language requirements.

Inspired by the code reuse behavior of program-
mers, some research (Hayati et al., 2018; Parvez
et al., 2021; Lu et al., 2022; Shi et al., 2022; Li
et al., 2023) have incorporated retrieval (Robert-
son and Zaragoza, 2009; Karpukhin et al., 2020)

"'We will release the code after the double-blind review
period.

to enhance code generation, achieving promising
results by leveraging existing code snippets. These
Retrieval Augmented Generation methods (RAG)
teach models how to utilize relevant retrieved code
(see Figure 1 (a)). Typically, they adopt an data
augmentation technique (Shorten and Khoshgof-
taar, 2019), which concatenates the retrieved code
with the input requirements to create an augmented
training dataset (Song et al., 2016).

During the coding process, programmers not
only refer to external code, but also iteratively re-
fine their own code. However, the latter behavior is
ignored by existing RAG method. To remedy this
issue, we propose a novel Self-augmented Gen-
eration method, namely SAG, which automates
the iterative coding refine process (see Figure 1
(b)). SAG leverages the Generator’s output to con-
struct augmented datasets at each epoch. The SAG
datasets are then fed into the Generator to improve
its training effectiveness. As shown in Case 1 from
Figure 14 (a), compared to RAG, SAG can fix some
obvious errors through iterative refinement.

SAG also exits some limitations. As illustrated
in Case 2 form Figure 14 (b), the code error
"Mana.Colorless Mana(1)" repeatedly occurs in
each epoch. This issue deserves our attention and
should be addressed. In the real world, such re-
peated errors are often observed by a role of pro-
grammer reviewers, whose responsibility is to iden-
tify code errors and improve code quality. Enlight-
ened by this, we design a novel Review model and
add it into SAG. This forms our Iterative Self-
augmented Generation with Reviewer method, IS-
AGWR (see Figure 1 (c)). This method comprises
two key modules: Reviewer and Generator. The
former automates the code review process. The lat-
ter iteratively generate higher-quality code with the
help of reviewed code provided by the Reviewer.
As illustrated in Case 3 from Figure 14 (c), the
aforementioned repeated mistakes are successful
identified and masked by the Reviewer module,

% Yn+1
Generator Generator
I I I regenerate I
X R X

retrieved code
(a)retrieval-augmented generation(RAG)

+1
—_— yn

Al <_J X Y

generated code
(b)self-augmented generation(SAG)

]

Generator

I regenerate I

Reviewer

rev

reviewed code
(c)iterative SAG with reviewer(ISAGWR)

Figure 1: Comparison of three generation methods. (a) RAG mimics programmer’s code reuse behavior. (b) SAG
emphasizes iterative behavior of a hard-working programmer repeatedly optimizing their own code after refering
the external code. (¢) ISAGWR imitates the real-world code reviewer to check and ensure that the generated code
meets the requirements. A Reviewer module is added in SAG to build ISAGWR.

then promoting the Generator to output correct
code at the 2nd epoch. Our contributions of this
work are summarized as follows:

* We propose a code generation method SAG
which automatically constructs augmented
datasets with Generator’s output at each epoch.
Due to its simplicity and no need for extra
data, this method can be easily applied in other
scenarios, such as RAG.

* Based on SAG, We propose ISAGWR which
incorporates a Reviewer module to facilitate
iterative generation from detecting and mask-
ing errors in Generator’s output. In this way,
harmful errors in current code cannot influ-
ence subsequent code generation.

 All of existing code translation datasests pro-
vide only one reference answer for the same
task. To alleviate this limitation, we release a
new code translation dataset AtCoder, which
collected multiple high-quality coding solu-
tions for the same task from AtCoder website.

* We conduct extensive experiments on five
benchmarks. The results show that ISAGWR
outperforms all the baselines. Further study
demonstrate the effectiveness of SAG datasets
and the Reviewer module for benefiting high-
quality code generation.

2 Related Work

Retrieval-augmented generation. Inspired by
programmers’ code reuse behaviors, several studies
have explored the RAG in code generation (Li et al.,
2023), code summarization (Wei, 2019; Parvez
et al., 2021; Shi et al., 2022), code completion

(Lu et al., 2022; Zhang et al., 2023). In these fields,
there exists a challenge: the retrieved data might
be irrelevant. How to ensure it does not affect
the model generation. Some research (Shi et al.,
2022) such as SKCODER (Li et al., 2023) introduce
Skeleton-based (Cai et al., 2018; Wu et al., 2018;
Wei, 2019; Zan et al., 2022) approach to extract rel-
evant part from the retrieved code. The SAG data
augmentation proposed in this work contribute to
solving this challenge, which we will discuss in
subsequent sections.

Iterative Generation. Like human beings, lan-
guage models do not always generate the best code
through the first try. Some methods iteratively gen-
erate revise feedback to help the models optimize
the outputs (Madaan et al., 2023), and some other
methods need additional reviewer datasets to train
a supervised reviewer (Schick et al., 2022; Welleck
et al., 2022). To better reuse the generated code,
some works just generate in a iterative style with-
out reviewer-like structure. (Zhang et al., 2023).
Pre-trained Model. Pre-trained models are trained
on data of code and fine-tuned on code generation
tasks specifically to enhance code generation per-
formance. Typically, code-based LLMs can be
categorized into three architectures. Encoder-only
model is mostly used in code comprehension like
masked language modeling or code retrieving, in-
cluding CodeBERT (Feng et al., 2020), GraphCode-
BERT (Guo et al., 2020), etc. Decoder-only model
is mainly used to predict following tokens based on
the input context like GPT series which including
CodeGPT (Lu et al., 2021)based on GPT-2 (Rad-
ford et al., 2019). Based on the fine-tuned GPT-Neo
(Black et al., 2021), PyCodeGPT (Zan et al., 2022)
generates codes by a user-defined generated sketch.

Encoder-decoder model can support both code com-
prehension and generation tasks including CodeT5
(Wang et al., 2021), or introduce text-code match-
ing and contrastive learning to learn rich contextual
representations like CodeT5+ (Wang et al., 2023),
PLBART (Ahmad et al., 2021), SPT-Code (Niu
et al., 2022), etc.

3 Self-Augumented Generation (SAG)

The training process of SAG is illustrated in Fig-
ure 2. Implementation details are given as follows:
Static RAG Dataset. We retain the static aug-
mented training dataset used by RAG because it
can help Generator convergence. RAG dataset con-
catenates the retrieved code R and the input re-
quirement X, which is denotedas X + R — Y.
Dynamic SAG Datasets. SAG Datasets are dynam-
ically updated using the Generator’s output at each
training epoch. Specifically, a queue () is designed
to maintain the datasets. At the n-th epoch, the
dataset concatenates the generated code Y and
X, which is denoted as X + YY" — Y. Here,
Y™ = G(X). Then we push the dataset into Q.
Note that the size of () is limited to m to ensure
that each epoch’s re-constructed training data has
equal chance to be trained.

Generator. Existing sequence to sequence models,
such as CodeT5 and CodeT5+ (Wang et al., 2021,
2023) can be employed as SAG’s Generator.

4 Iterative SAG with Reviewer(ISAGWR)

4.1 Background and Overview

Real-world Reviewers find code errors, handle
them and utilize the reviewed code for next coding
iteration. To mimic this role, we design a Reviewer
module and integrate it into SAG. This forms IS-
AGWR.

ISAGWR includes two modules: Reviewer and
Generator (Figure 3). Technically, Generator G
outputs improved code Yg(:nﬂ) based on reviewed
code Y,«(g,) from the n-th iteration, which is denoted
as G : (YT(Q,),X) — Yg(gjl). Then, Reviewer R
identifies potential errors in Yg(:nﬂ) with X, and
mask them to output K«(2)+1). This is denoted as
R: (X, Yg(e"nJ“l)) Syt By iterating in such
a loop, the Reviewer module plays the role of a
real-world code Reviewer, promoting ISAGWR to
achieve high-quality code generation.

RAG Datasets y
X R —/@m Y .
---------------------------------- : X Y
SAG Datasets Queue Q ' oringinal dataset
X Y — vy |
B R LRET L E LT ERR
X Y2 — Yy i Push into the queue

SAG training data at n-th epoch

l Using generated code to construct

X + Y"

E Input requirement Generated Code

—_—> Y
Generator !
Supervised Code !

Figure 2: Training process of SAG. Compared to RAG
dataset, SAG datasets dynamically updated using the
output from the Generator. In each training epoch, both
kinds of datasets are used to train the Generator. Note
that Y™ from different epochs have different code qual-
ity levels, ensuring diverse patterns in SAG datasets.
Therefore, the Generator can learn more effectively by
utilizing external code and its generated code.

4.2 Reviewer

Reviewer is the core module of ISAGWR and needs
to be meticulously designed. We mainly face two
challenges. First, how to detect and handle poten-
tial errors so as to assist the Generator in outputting
better code? Second, how to automatically collect
a high-quality dataset for the Reviewer?

Regarding the first challenge, we enable the
Reviewer to calculate the validness probability
for each token in the code. When the validness
probability is less than a threshold ¢, the token will
be judged as an error. Technically, Y., is a list
of token (y1,y2, ..., Yn), to review whether Yy,
meets X, we concatenate them into X @ Yy, and
then fed it into the Encoder as follows:

(X' @ Y,,,] = Encoder(X & Ygen) (1)
Yoen = (W1, Y2, - Un) 2)
Both Y/, and X’ are a list of vectors. Through

gen
Encoder, each token y; is transformed into a

256-dim vector y;. Then each y; is input into the
256x1 linear layer with a sigmoid function:

pi = sigmoid(Wyh + bp) 3)

where W,,, and b,, are learnable parameters, the
output p; is the obtained validness probability for
token y;. Following that, we compare p; with ¢.

Review
Yrev

Reviewer Reviewed Code

X + Ygen

Input requirement Generated Code

Ygen ﬁ

‘ , [llﬂ» def f : <Mask>
P S S K
T o def If it x : T T T T .

E Linear layer estimate the mask Linear Layer

_________ T SAG Datasets Queue Q
N B X Y — v
T x v — vy

! supervised label l

Generator probility for each token ‘ ‘ ‘ ‘ ‘l ’ using LCS :
_ 1 H
Regenerate T ' {(1,01,..,1y =LCS (Y Y) .
: , . bt LS (y2 oy)
Y ; Reviewer: encoder | ; :
rev ' '
T Rewew : ” : l
""""""" : N Reviewer Dataset
) | f (IR IR A -
X Rewewer ; W [F @ . : X Y (1011}
______________ i X ¢ - . X Y2 — 0110} |
“s____—7“ — - | :
'''''''''''''''''''''''''' Regencrale guummmmm T
X + Yrev Ygen

Generator

Input requirement Reviewed Code

Generated Code

Figure 3: The Zoom-in view of REVIEWER from ISAGWR. The Reviewer contains a encoder and a linear layer

which aims to review the code generated by Generator. For example, here is a generated code Yy, :
:". Each encoded vector is then fed into the linear layer to output

The encoder encodes it as "X @ def f int x

"def fintax "

reviewed code Y., in which potential errors "int x" are detected and masked. The right side of the figure illustrates

how to convert SAG datasets into Reviewer dataset.

If the former has a smaller value, y; will be marked.

After identifying code errors, the next step is to
handle them. We choose to mask them. Specif-
ically, both a single marked token and consecu-
tive marked tokens are replaced by a Mask token.
Through these mask operations, we ultimately ob-
tain the reviewed code Y,.,, which are then used
to support Generator training.

Regarding the second challenge, we construct
the Reviewer dataset based on the SAG datasets.
Specifically, we employ the Longest Common
Sub-sequence algorithm (LCS), which algorithm
is shown in Appendix B, to annotate those Mask
tokens as binary-classification supervised labels.
Here, LCS helps the Reviewer extract the longest
common tokens between the generated code and its
corresponding supervised code. Common tokens
are labeled as 1, while the remains are labeled as 0.
Therefore the constructed Reviewer datasets have
the form as X + Y™ — D, where D is a list of
supervised label.

We train the Reviewer by minimizing the follow-
ing loss function:

— ZZ Dy; = 1) - log(P;j)
=1 j=1 (4)
+I(Dij = O) : log(l - PZ])]

where s denotes the size of the Reviewer dataset,
h denotes the length of Y., which need to review.
7 is an indicator function that outputs 1 when the
condition is true, O otherwise. P denotes the valid-
ness probability of the Reviewer and D denotes the
supervised label.

4.3 Generator and Complete Training Process
Generator adopted in ISAGWR is the same as SAG.
As introduced in subsection 4.1, we regenerate the
code Yg(nH) as follow.

Y(TH-I)

gen

G(X oY)

rev

&)

The complete training process of ISAGWR in-
cludes Generator training and Reviewer training,
which are integrally given in Algorithm 1.

S Experiments

Although we focus on code generation when de-
scribing ISAGWR, it can be easily applied to other
generation scenarios, such as code translation. Ac-
cordingly, the Reviewer module reviews translated
code. In this regard, we evaluate ISAGWR on code
generation and translation tasks.

5.1 Datasets

We adopt three public datasets and construct a new
AtCoder dataset for the experiments. The statistics
of the datasets are given in Table 1.

Dataset Training Validation Test
Code Generation
Hearthstone 533 66 66
Magic 11,969 664 664
AixBench-L 190,000 10,000 175
Code Translation
CodeXGLUE(trans) 10,300 500 1,000
AtCoder 564 36 57

Table 1: Statistics of the Datasets.

HearthStone and Magic (Ling et al., 2016). Both
datasets automatically generate code for game
cards. Each individual sample within these datasets
comprises a semi-structural description accompa-
nied by a human-authored program.

AixBench-L (Li et al., 2023). It is an augmented
function-level code generation benchmark based on
AixBench, containing preprocessed popular Java
projects without test data from GitHub.
CodeXGLUE (Lu et al., 2021). This dataset col-
lects both Java and C# codes from several public
repos, including Lucene, POI, JGit and Antlr.
AtCoder Dataset. We collect various versions of
correct code in different languages for the same
task from AtCoder. This is the first dataset to pro-
vide multiple reference answers for the same cod-
ing task. Details are given in Appendix C.

5.2 Evaluation Metrics

We employ Exact match (EM), BLEU4, Code-
BLEU and Pass@1 as the evaluation metrics.
Higher values suggest higher performance. More
details of these metrics are given in Appendix D.
EM assesses the accuracy of a model’s output by
measuring whether it exactly matches a reference
or expected answer.

BLEU4 (Papineni et al., 2002) measures the simi-
larity between a machine-generated text and one or
more reference texts in the context of tasks.
CodeBLEU score (Ren et al., 2020) is a variant of
BLEU4, which considers syntactic and semantic
matches based on the code structure.

Pass@1 is an unit test metric which calculates the
percentage of generated code that can pass the test.
Value 1 stands for only 1 version of code is gener-
ated for each task.

5.3 Baselines

We compare ISAGWR with CodeT5 (Wang et al.,
2021), CodeT5+ (Wang et al., 2023), SkCoder (Li
etal., 2023), CodeBERT (Feng et al., 2020), Graph-

Algorithm 1 The training process of ISAGWR

Require:
#Ngen : The training epoch of Generator
#Nyey, : The training epoch of Reviewer

#queue : SAG datasets queue for Generator
#G : Generator of the ISAGWR
#R : Reviewer of the ISAGWR
#D : Original Tranining dataset
#D,¢, : Tranining dataset of the Reviewer
Ensure: G, R
1: for i in range(Ngen) do
Train the Generator
3 G. train (queue, D)
4 # SAG datasets queue for Generator
5 queue. enqueue ({X : G(X)} = Y)
6: If size (queue) > M :
7 queue. dequeue ()
8 # SAG datasets for Reviewer
9: Dyey. insert {X : G(X)} = Y)
10: end for
11: # Using LCS to tansform the SAG dataset
12: D= Transform(D,¢,)
13: for i in range(Niey) do

14: # Train the Reviewer
15: R. train (Dy¢y)
16: end for

17: return G, R

CodeBERT (Guo et al., 2020) and CodeGPT (Lu
et al., 2021). In addition, RNN and Transformer
are also selected as the baselines.

5.4 Retrieval

The retrieval adopted in our experiments is built
upon the DPR architecture (Karpukhin et al., 2020).
We use the training dataset as retrieval database,
and fintune the retrieval with Moco-based texz-code
contrastive learning (He et al., 2019; Wang et al.,
2023; Li et al., 2021). Please refer to Appendix A
for the details, .

5.5 Experiment-1: Effectiveness of SAG

In the first set of experiments, we compare SAG
with RAG to verify its effectiveness. Then, we
conduct further explorations to figure out whether
this improvement is achieved through its iterative
process or through its data augmentation method.
Specifically, for the latter, we try to answer the
question "do the SAG datasets essentially improve
code generation?". For fair comparisons, we re-
strict SAG from performing iterative generation

http://lucene.apache.org/
http://poi.apache.org/
https://github.com/eclipse/jgit/
https://github.com/antlr/
https://atcoder.jp

—e— Magic
85.2 Hearthstone
—— CodeXGLUE

BLEU4
©
B
o

84.2

84.0

epoch

Figure 4: Results of SAG in terms of BLEU4.

Hearthstone

o
Nk k. *
84.0 TN o
Vi \""y"*‘\'»—,...
83.5
83.0
2825
-
o
82.0
81.5
81.0
-+- RAG+
80.5 RAG
0 4 8 12 16 20 24 28 32

Top-K Retrieved Data

Figure 5: The result of RAG and RAG™ evaluated by
metric BLEU4 on Hearthstone datasets.

and employ RAG’s retrieved dataset. This forms a
new generation method RAG™. Therefore, the key
to the answer is to compare RAG with RAG™.

5.5.1 Experiment-1 Setup

The training methods of RAG, RAG™, and SAG fol-
low previous research. We train RAG™ 50 epochs
with batch size 16 and learning rate 5e-5 on Hearth-
stone. On the test dataset, we generate outputs
using retrieved code from Top-1 to Top-32. Here
Top-k is obtained from ranking the calculated sim-
ilarities between the retrieved code and the input
requirements. A smaller £ means better retrieved
results. Note that to perform a more accurate rank-
ing, we use CodeBLEU to recalculate the similarity
between retrieved code and the supervised code,
and then re-rank them. For fairness, we take the
average value of multiple experiments.

5.5.2 Experiment-1 Results

SAG vs RAG. As illustrated in Table 2, SAG outper-
forms RAG for all the metrics on the three datasets.
This demonstrate that taking both external retrieved
code and Generator’s output code into account pro-
motes code generation.

Iterative process of SAG. From Figure 4, we find

Hearthstone

CodeBLEU
~ ~ ~ ~ ~ ~
N 3 ® o © ©
o ;] o [5,] o (]

~
&
n

RAG+ L S,
RAG :

0 4 8 12 16 20 24 28 32
Top-K Retrieved Data

Figure 6: The result of RAG and RAG™ evaluated by
metric CodeBLEU on Hearthstone datasets.

RAG Dataset

05 05 SAG Dataset

0.4 j‘ 0.4
0.3 0.3
2 2
b= F=]
© ©
4 ‘ 4
0.2 ’7 0.2
0.0 ——— 0.0
0

0.0 0.2 0.4 0.6 0.8 1.0
Quality

0.0 0.2 0.4 0.6 0.8 1.0
Quality

Figure 7: Statistic for two types datasets. Quality
is the CodeBLEU score between augmented code and
supervised code, which is divide averagely in 10 cate-
gories. Ratio is the probability density for the number
of sample in each category.

that the BLEU4 scores of SAG fluctuated in a small
range from 1st epoch to 8th epoch. A possible rea-
son is that the Generator has difficulties to identify
its own code errors, which limits the improvements
at each epoch. However, this iterative process can
not be overlooked. As illustrated in Case Study 1,
SAG can indeed fix some obvious errors through
this iterative process.

RAG vs RAG™. Figure 5 and Figure 6 respec-
tively shows the results of RAG and RAG™ on
BLEU4 and CodeBLEU metrics. We find that
RAG™ always significantly beats RAG. These re-
sults demonstrate that enhanced with SAG’s aug-
mented datasets, RAG™ facilitate the Generator to
effectively utilize external code. Another interest-
ing finding is that as the k increases, RAG™ exhibits
relatively stable performance, while RAG rapidly
oscillates and decreases. In other words, under
small-scale or low-quality retrieval code situation,
RAG™ can maintain much better and stable results
than RAG, indicating that the SAG datasets endows
RAG with robustness.

Analysis of SAG and RAG datasets. For further
exploration, we also analyze statistics on RAG and

Model Hearthstone (Python) Magic (Java) AixBench-L (Java)
EM BLEU4 CodeBLEU EM BLEU4 CodeBLEU Pass@1
RNNx* 3.03 64.53 58.56 16.26 71.96 61.83 4.00
Transformersx 3.03 62.46 51.63 12.20 73.10 66.61 6.29
CodeBERT 3.03 66.50 59.39 19.42 78.69 71.73 9.14
GraphCodeBERT 3.03 66.32 58.87 27.41 82.33 74.76 10.86
CodeGPT 24.24 80.90 75.42 27.40 78.68 70.04 17.71
CodeT5-base 28.79 81.28 77.02 29.82 81.57 75.85 15.42
SKCODER(CodeT5-base) 31.81 84.12 79.45 35.39 85.39 80.62 20.00
CodeT5+ 220M 30.30 81.95 77.81 33.43 82.30 77.43 17.71
RAG(CodeT5+ 220M) 30.30 82.65 78.31 34.19 83.32 78.24 17.71
SAG(CodeT5+ 220M) 31.81(+5.0%) 84.28(+2.8%) 79.63(+2.3%) 34.93(+4.5%) 84.79(+3.0%) 79.77(+3.0%) 19.43(+9.7%)
ISAGWR(CodeT5-base) 31.81(+5.0%) 84.44(+3.0%) 79.90(+2.7%) 35.39(+5.9%) 85.52(+3.9%) 80.64(+4.1%) 20.00(+12.9%)
ISAGWR(CodeT5+ 220M) 31.81(+5.0%) 84.91(+3.6%) 80.16 (+3.0%) 35.54(+6.3%) 85.80(+4.3%) 80.71(+4.2%) 20.00(+12.9%)

Table 2: Results for code generation task. Method name with "x" indicates that its results are obtained from
previous works. The "()" next to the method name specifies the Generator. The improvement percentage compared
to CodeT5+ 220M are displayed in green. Note that the last three methods output the same EM results on the
Hearthstone dataset, this may attributes to the size of this dataset is too small.

CodeXGLUE(Java-to-C#) AtCoder(Cpp-to-Python) AtCoder(Java-to-Python)

Model EM BLEU4 CodeBLEU BLEU4 CodeBLEU BLEU4 CodeBLEU
CodeBERT 59.00 79.92 85.10 9.12 18.58 18.24 23.97
CodeT5-base 65.90 84.03 86.91 11.65 20.76 19.48 25.33
CodeT5+ 220M 66.20 84.25 87.36 12.83 21.61 20.89 26.25
SAG(CodeT5+ 220M) 67.10(+1.4%) 85.35(+1.3%) 88.23(+1.0%) 13.45(+4.8%) 22.50(+4.1%) 21.45(+2.7%) 27.01(+2.9%)
ISAGWR(CodeT5-base) 67.000+1.2%) 85.27(+1.2%) 88.31(+1.1%) 13.52(+5.4%) 22.54(+4.3%) 21.15(+1.2%) 26.70(+1.7%)
ISAGWR(CodeT5+ 220M) 67.30(+1.7%) 85.52(+1.5%) 88.79(+1.6%) 13.88(+8.2%) 23.59(+9.2%) 22.13(+5.9%) 28.09(+7.0%)

Table 3: Results for code translation task. The improvement percentage compared to CodeT5+ 220M are displayed

in green. The "()" next to the method name specifies the Generator.

SAG datasets, the results are shown in Figure 7.
Compared to RAG dataset, SAG datasets exhibit a
more uniform distribution. The reason is that RAG
solely uses the Top-1 code as its augmented code,
resulting in relatively homogeneous code patterns.
In contrast, SAG datasets utilize Generator’s output
from different epochs, resulting in more diverse
code patterns. This diverse characteristic ensures
SAG’s robustness.

In summary, we demonstrate the effectiveness
and robustness of SAG for code generation. As its
core, the SAG datasets are essentially helpful. Since
SAG self-augments with Generators’ output and no
extra data is necessary, it can be easily applied to
enhance existing models, such as RAG.

5.6 Experiment-2: Effectiveness of ISAGWR

In the second set of experiments, we compare 1S-
AGWR with SAG, and also explore the iterative
process of ISAGWR, to verify the advantanges of
the Reviewer module. Then, we compare ISAGWR
with other baselines to demonstrate its effctiveness.

5.6.1 Experiment-2 Setup

ISAGWR trains the Generator similar as SAG. We
train the Reviewer module 20 epochs with a batch

size 16 and learning rate 2e-5.

5.6.2 Experiment-2 Results

Table 2 and Table 3 present various metrics of base-
lines and our methods (SAG and ISAGWR).
ISAGWR vs SAG. (1) Code generation task (see
Table 2), ISAGWR succeeds in all the Generator
settings upon the three datasets compared to SAG;
(2) Code translation task (see Table 3), ISAGWR al-
ways outperforms SAG when employing the same
CodeT5+ Generator. These results not only demon-
strate the superiority of ISAGWR over SAG for both
generation tasks, but also verify the effectiveness
of the Reviewer module adopted in ISAGWR.
Iterative review process of ISAGWR. ISAGWR
achieves the best BLEU4 at the 3rd epoch on Magic
and CodeXGLUE datasets, and at the 4th epoch on
Hearthstone dataset (see Figure 8). As illustrated in
Case 2, the iteration process of SAG can not identify
some code errors that the Generator repeatedly out-
puts. This situation has largely changed since the
Reviewer module is involved in ISAGWR. In each
iteration, the Reviewer checks the output code of
the Generator and masks error tokens, and then the
Generator performs next-epoch training based on
the masked code. Therefore, with the iterative col-

laboration between the Generator and the Reviewer,
ISAGWR can better identify and handle code er-
rors, thus improving generation performance. Case
3 also confirms this point.

ISAGWR vs OTHER BASELINES . IS-
AGWR(CodeT5+ 220M) achieves noticeable per-
formance improvement over all baselines, showing
its effectiveness in code generation and transla-
tion. We attribute this superiority to its iterative
generation-review strategy. Take a close look at
some interesting findings: (1) Code generation
task (see Table 2). For the AixBench-L dataset,
compared to CodeT5+ 220M, ISAGWR(CodeT5+
220M) obtains the best improvements on Pass@1
(12.9%). A possible reason is that AixBench-L is
a large-scale dataset, which can be used to build
larger-scale SAG datasets, thereby promoting Gen-
erator and Reviewer to refine code. (2) Code
translation task (see Table 3). ISAGWR shows
better improvements on AtCoder compared to re-
sults on CodeXGLUE. One possible reason is that
compared to AtCoder dataset, the results retrieved
on CodeXGLUE have relatively lower relevance,
which affects the retrieval quality.

5.7 Experiment-3: Effect of queue size m

In the third set of experiments, we vary queue size
m (1, 2, 3, oo) of SAG datasets to explore its im-
pact on performance. Due to limited space, we only
report results on Hearthstone (see Figure 7). We
find that the best performance is achieved at m = 3.
In addition, we also explore the two extreme situ-
ations: (1) when m = oo, ISAGWR performs the
worst. The SAG dataset constructed at each epoch
will be retained indefinitely. This will cause an
issue of biasing augmented datasets, as the datasets
constructed in early epochs will be trained more
times than the later constructed datasets, leading
to performance degradation. (2) when m = 1, IS-
AGWR is ranked as the second worst. The SAG
dataset created for each epoch will be removed
from the queue after one epoch. Due to insufficient
training for Generator, ISAGWR fails to achieve
satisfactory results. Therefore, to strike a balance
between unbiased datasets and sufficient training,
it’s necessary to find a suitable m value within a
reasonable range.

6 Conclusion

SAG is an augmented generation method proposed
in this work. Different from RAG, SAG iteratively

85.8
85.6
85.4
85.2

<

2 85.0

-

@ g4.8
84.6

—e— Magic
84.4

Hearthstone
84.2 —— CodeXGLUE
84.0

1 2 3 4 5 6 7 8
epoch

Figure 8: Results of ISAGWR in terms of BLEU4.

BLEU4 CodeBLEU

ISAGWR (m=3) 84.91 80.16
Data Augmentation

- Fixed Size Queue (m=1) 84.37 79.92

- Fixed Size Queue (m=2) 84.75 80.05

- Fixed Size Queue (m=4) 84.61 79.97

- Fixed Size Queue (m=0c0) 84.32 79.88

Table 4: Results s on Hearthstone. m denotes the size
of SAG datasets queue

reuse the Generator’s output to build augmented
datasets. This SAG datasets are then used to train
the Generator for better output. Furthermore, en-
lightened by the real-world code reviewer role, we
design a Reviewer module and integrate it into
SAG, which forms an iterative generator-review ar-
chitectural method ISAGWR. In each epoch, the
Reviewer module identifies and eliminates error
tokens based on the SAG datasets. After that, the
reviewed code is feed into the Generator to ensure
high-quality code generation. Extensive experi-
ments verify that ISAGWR can effectively perform
generation task with the help of Reviewer module
and SAG datasets as well as outperform all the base-
lines. We also believe that the AtCoder Dataset we
collected will facilitates relevant researches.

Limitations

The limitations of this paper are as follows:

Time Complexity. Constructing SAG datasets re-
quires model generation at each epoch. Especially
if the training dataset is too large, this can lead a
bottleneck in terms of time complexity. In addition,
iterative generation inevitably increases the cost
of model inference. We will explore the trade-off
between time complexity and performance in our
future work.

Limitation of the Reviewer module. Although the
proposed Reviewer module identifies and masks

potential errors, it cannot correct them. We defer it
as our future work.

The size of the model’s parameters. This work
focuses on validating the effectiveness of ISAGWR
in small-parameter models. Due to the resource
constraints, we does not investigate larger model
parameters. Future research will explore this area.

Ethical Statement

This research provides methods for generating and
iteratively refining source code based on natural
language descriptions. As with all Al techniques
related to code, there exists potential for dual use
and misuse. Our methods should only be applied
to legal and ethical domains.

All datasets used in this paper are available pub-
licly or were collected with appropriate permis-
sions. The collection of the AtCoder dataset has
already been approved.

All experiments in this work were conducted
using public datasets.

References

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi
Ray, and Kai-Wei Chang. 2021. Unified pre-training
for program understanding and generation. ArXiv,
abs/2103.06333.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. Mathqa: Towards interpretable math
word problem solving with operation-based for-
malisms. ArXiv, abs/1905.13319.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and
Stella Biderman. 2021. Gpt-neo: Large scale autore-
gressive language modeling with mesh-tensorflow.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,
Trevor Cai, Eliza Rutherford, Katie Millican, George
van den Driessche, Jean-Baptiste Lespiau, Bogdan
Damoc, Aidan Clark, Diego de Las Casas, Aurelia
Guy, Jacob Menick, Roman Ring, T. W. Hennigan,
Saffron Huang, Lorenzo Maggiore, Chris Jones, Al-
bin Cassirer, Andy Brock, Michela Paganini, Geof-
frey Irving, Oriol Vinyals, Simon Osindero, Karen
Simonyan, Jack W. Rae, Erich Elsen, and L. Sifre.
2021. Improving language models by retrieving from
trillions of tokens. In International Conference on
Machine Learning.

Deng Cai, Yan Wang, Victoria Bi, Zhaopeng Tu, Xi-
aojiang Liu, Wai Lam, and Shuming Shi. 2018.
Skeleton-to-response: Dialogue generation guided
by retrieval memory. ArXiv, abs/1809.05296.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Con-
ference on Empirical Methods in Natural Language
Processing.

Xin Cheng, Di Luo, Xiuying Chen, Lemao Liu,
Dongyan Zhao, and Rui Yan. 2023. Lift yourself
up: Retrieval-augmented text generation with self
memory. ArXiv, abs/2305.02437.

Colin B. Clement, Dawn Drain, Jonathan Timcheck,
Alexey Svyatkovskiy, and Neel Sundaresan. 2020.
Pymt5: Multi-mode translation of natural language
and python code with transformers. In Conference on
Empirical Methods in Natural Language Processing.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and natu-
ral languages. ArXiv, abs/2002.08155.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida I.
Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen
tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022.
Incoder: A generative model for code infilling and
synthesis. ArXiv, abs/2204.05999.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Jian Yin,
Daxin Jiang, and M. Zhou. 2020. Graphcodebert:
Pre-training code representations with data flow.
ArXiv, abs/2009.08366.

Shirley Anugrah Hayati, Raphaél Olivier, Pravalika Av-
varu, Pengcheng Yin, Anthony Tomasic, and Graham
Neubig. 2018. Retrieval-based neural code genera-
tion. ArXiv, abs/1808.10025.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross B. Girshick. 2019. Momentum contrast for
unsupervised visual representation learning. 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 9726-9735.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense in-
formation retrieval with contrastive learning. Trans.
Mach. Learn. Res., 2022.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Yu Wu, Sergey Edunov, Danqi Chen,
and Wen tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Conference on
Empirical Methods in Natural Language Processing.

Jungo Kasai, Keisuke Sakaguchi, Yoichi Takahashi,
Ronan Le Bras, Akari Asai, Xinyan Velocity Yu,
Dragomir R. Radev, Noah A. Smith, Yejin Choi, and
Kentaro Inui. 2022. Realtime qa: What’s the answer
right now? ArXiv, abs/2207.13332.

Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish
Chandra. 2020. Code prediction by feeding trees to
transformers. 2021 IEEE/ACM 43rd International

https://api.semanticscholar.org/CorpusID:232185260
https://api.semanticscholar.org/CorpusID:232185260
https://api.semanticscholar.org/CorpusID:232185260
https://api.semanticscholar.org/CorpusID:173188048
https://api.semanticscholar.org/CorpusID:173188048
https://api.semanticscholar.org/CorpusID:173188048
https://api.semanticscholar.org/CorpusID:173188048
https://api.semanticscholar.org/CorpusID:173188048
https://api.semanticscholar.org/CorpusID:245758737
https://api.semanticscholar.org/CorpusID:245758737
https://api.semanticscholar.org/CorpusID:245758737
https://api.semanticscholar.org/CorpusID:244954723
https://api.semanticscholar.org/CorpusID:244954723
https://api.semanticscholar.org/CorpusID:244954723
https://api.semanticscholar.org/CorpusID:52281331
https://api.semanticscholar.org/CorpusID:52281331
https://api.semanticscholar.org/CorpusID:52281331
https://api.semanticscholar.org/CorpusID:233289412
https://api.semanticscholar.org/CorpusID:233289412
https://api.semanticscholar.org/CorpusID:233289412
https://api.semanticscholar.org/CorpusID:258479968
https://api.semanticscholar.org/CorpusID:258479968
https://api.semanticscholar.org/CorpusID:258479968
https://api.semanticscholar.org/CorpusID:258479968
https://api.semanticscholar.org/CorpusID:258479968
https://api.semanticscholar.org/CorpusID:222178041
https://api.semanticscholar.org/CorpusID:222178041
https://api.semanticscholar.org/CorpusID:222178041
https://api.semanticscholar.org/CorpusID:211171605
https://api.semanticscholar.org/CorpusID:211171605
https://api.semanticscholar.org/CorpusID:211171605
https://api.semanticscholar.org/CorpusID:211171605
https://api.semanticscholar.org/CorpusID:211171605
https://api.semanticscholar.org/CorpusID:248157108
https://api.semanticscholar.org/CorpusID:248157108
https://api.semanticscholar.org/CorpusID:248157108
https://api.semanticscholar.org/CorpusID:221761146
https://api.semanticscholar.org/CorpusID:221761146
https://api.semanticscholar.org/CorpusID:221761146
https://api.semanticscholar.org/CorpusID:52136345
https://api.semanticscholar.org/CorpusID:52136345
https://api.semanticscholar.org/CorpusID:52136345
https://api.semanticscholar.org/CorpusID:207930212
https://api.semanticscholar.org/CorpusID:207930212
https://api.semanticscholar.org/CorpusID:207930212
https://api.semanticscholar.org/CorpusID:249097975
https://api.semanticscholar.org/CorpusID:249097975
https://api.semanticscholar.org/CorpusID:249097975
https://api.semanticscholar.org/CorpusID:215737187
https://api.semanticscholar.org/CorpusID:215737187
https://api.semanticscholar.org/CorpusID:215737187
https://api.semanticscholar.org/CorpusID:251105205
https://api.semanticscholar.org/CorpusID:251105205
https://api.semanticscholar.org/CorpusID:251105205
https://api.semanticscholar.org/CorpusID:214727958
https://api.semanticscholar.org/CorpusID:214727958
https://api.semanticscholar.org/CorpusID:214727958

Conference on Software Engineering (ICSE), pages
150-162.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kuttler, Mike Lewis, Wen tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. ArXiv, abs/2005.11401.

Jia Li, Yongming Li, Ge Li, Zhi Jin, Yiyang Hao, and
Xing Hu. 2023. Skcoder: A sketch-based approach
for automatic code generation. 2023 IEEE/ACM 45th
International Conference on Software Engineering
(ICSE), pages 2124-2135.

Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak
Gotmare, Shafiq R. Joty, Caiming Xiong, and Steven
C. H. Hoi. 2021. Align before fuse: Vision and lan-
guage representation learning with momentum distil-
lation. In Neural Information Processing Systems.

Wang Ling, Edward Grefenstette, Karl Moritz Hermann,
Tomas Kocisky, Andrew Senior, Fumin Wang, and
Phil Blunsom. 2016. Latent predictor networks for
code generation. arXiv preprint arXiv:1603.06744.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung
won Hwang, and Alexey Svyatkovskiy. 2022. Reacc:
A retrieval-augmented code completion framework.
ArXiv, abs/2203.07722.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano,
Ming Gong, Ming Zhou, Nan Duan, Neel Sundare-
san, Shao Kun Deng, Shengyu Fu, and Shujie Liu.
2021. Codexglue: A machine learning benchmark
dataset for code understanding and generation. ArXiv,
abs/2102.04664.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter
Clark. 2023. Self-refine: Iterative refinement with
self-feedback. ArXiv, abs/2303.17651.

Ansong Ni, Srini Iyer, Dragomir R. Radev, Ves Stoy-
anov, Wen tau Yih, Sida I. Wang, and Xi Victoria Lin.
2023. Lever: Learning to verify language-to-code
generation with execution. ArXiv, abs/2302.08468.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Hai-
quan Wang, Yingbo Zhou, Silvio Savarese, and Caim-
ing Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
In International Conference on Learning Representa-
tions.

Changan Niu, Chuanyi Li, Vincent Ng, Jidong
Ge, LiGuo Huang, and Bin Luo. 2022. Spt-
code: Sequence-to-sequence pre-training for learning
source code representations. 2022 IEEE/ACM 44th

10

International Conference on Software Engineering

(ICSE), pages 01-13.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Annual Meeting of
the Association for Computational Linguistics.

Md. Rizwan Parvez, Wasi Uddin Ahmad, Saikat
Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Retrieval augmented code generation and sum-
marization. ArXiv, abs/2108.11601.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie
Liu, Duyu Tang, M. Zhou, Ambrosio Blanco, and
Shuai Ma. 2020. Codebleu: a method for automatic
evaluation of code synthesis. ArXiv, abs/2009.10297.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm?25 and be-
yond. Found. Trends Inf. Retr., 3:333-389.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2021. Learning to retrieve prompts for in-context
learning. ArXiv, abs/2112.08633.

Timo Schick, Jane Dwivedi-Yu, Zhengbao Jiang, Fabio
Petroni, Patrick Lewis, Gautier Izacard, Qingfei You,
Christoforos Nalmpantis, Edouard Grave, and Sebas-
tian Riedel. 2022. Peer: A collaborative language
model. ArXiv, abs/2208.11663.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin
Jiang, Ming Zhang, and Qun Liu. 2021. Generate &
rank: A multi-task framework for math word prob-
lems. In Conference on Empirical Methods in Natu-
ral Language Processing.

Ensheng Shi, Yanlin Wang, Wei Tao, Lun Du, Hongyu
Zhang, Shi Han, Dongmei Zhang, and Hongbin Sun.
2022. Race: Retrieval-augmented commit message
generation. In Conference on Empirical Methods in
Natural Language Processing.

Connor Shorten and Taghi M. Khoshgoftaar. 2019. A
survey on image data augmentation for deep learning.
Journal of Big Data, 6:1-48.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,
and Jason Weston. 2021. Retrieval augmentation re-
duces hallucination in conversation. In Conference
on Empirical Methods in Natural Language Process-

ing.

Yiping Song, Rui Yan, Xiang Li, Dongyan Zhao, and
Ming Zhang. 2016. Two are better than one: An
ensemble of retrieval- and generation-based dialog
systems. ArXiv, abs/1610.07149.

Kaya Stechly, Matthew Marquez, and Subbarao Kamb-
hampati. 2023. Gpt-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning prob-
lems. ArXiv, abs/2310.12397.

https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:256826931
https://api.semanticscholar.org/CorpusID:256826931
https://api.semanticscholar.org/CorpusID:256826931
https://api.semanticscholar.org/CorpusID:236034189
https://api.semanticscholar.org/CorpusID:236034189
https://api.semanticscholar.org/CorpusID:236034189
https://api.semanticscholar.org/CorpusID:236034189
https://api.semanticscholar.org/CorpusID:236034189
https://api.semanticscholar.org/CorpusID:247450969
https://api.semanticscholar.org/CorpusID:247450969
https://api.semanticscholar.org/CorpusID:247450969
https://api.semanticscholar.org/CorpusID:231855531
https://api.semanticscholar.org/CorpusID:231855531
https://api.semanticscholar.org/CorpusID:231855531
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:256900680
https://api.semanticscholar.org/CorpusID:256900680
https://api.semanticscholar.org/CorpusID:256900680
https://api.semanticscholar.org/CorpusID:252668917
https://api.semanticscholar.org/CorpusID:252668917
https://api.semanticscholar.org/CorpusID:252668917
https://api.semanticscholar.org/CorpusID:246077487
https://api.semanticscholar.org/CorpusID:246077487
https://api.semanticscholar.org/CorpusID:246077487
https://api.semanticscholar.org/CorpusID:246077487
https://api.semanticscholar.org/CorpusID:246077487
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:237304122
https://api.semanticscholar.org/CorpusID:237304122
https://api.semanticscholar.org/CorpusID:237304122
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:221836101
https://api.semanticscholar.org/CorpusID:221836101
https://api.semanticscholar.org/CorpusID:221836101
https://api.semanticscholar.org/CorpusID:207178704
https://api.semanticscholar.org/CorpusID:207178704
https://api.semanticscholar.org/CorpusID:207178704
https://api.semanticscholar.org/CorpusID:207178704
https://api.semanticscholar.org/CorpusID:207178704
https://api.semanticscholar.org/CorpusID:245218561
https://api.semanticscholar.org/CorpusID:245218561
https://api.semanticscholar.org/CorpusID:245218561
https://api.semanticscholar.org/CorpusID:251765117
https://api.semanticscholar.org/CorpusID:251765117
https://api.semanticscholar.org/CorpusID:251765117
https://api.semanticscholar.org/CorpusID:237434245
https://api.semanticscholar.org/CorpusID:237434245
https://api.semanticscholar.org/CorpusID:237434245
https://api.semanticscholar.org/CorpusID:237434245
https://api.semanticscholar.org/CorpusID:237434245
https://api.semanticscholar.org/CorpusID:253097741
https://api.semanticscholar.org/CorpusID:253097741
https://api.semanticscholar.org/CorpusID:253097741
https://api.semanticscholar.org/CorpusID:195811894
https://api.semanticscholar.org/CorpusID:195811894
https://api.semanticscholar.org/CorpusID:195811894
https://api.semanticscholar.org/CorpusID:233240939
https://api.semanticscholar.org/CorpusID:233240939
https://api.semanticscholar.org/CorpusID:233240939
https://api.semanticscholar.org/CorpusID:18616524
https://api.semanticscholar.org/CorpusID:18616524
https://api.semanticscholar.org/CorpusID:18616524
https://api.semanticscholar.org/CorpusID:18616524
https://api.semanticscholar.org/CorpusID:18616524
https://api.semanticscholar.org/CorpusID:264305982
https://api.semanticscholar.org/CorpusID:264305982
https://api.semanticscholar.org/CorpusID:264305982
https://api.semanticscholar.org/CorpusID:264305982
https://api.semanticscholar.org/CorpusID:264305982

Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili
Mou, and Lu Zhang. 2019. Treegen: A tree-based
transformer architecture for code generation. ArXiv,
abs/1911.09983.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Neural Information Processing Systems.

Xin Wang, Yasheng Wang, Yao Wan, Jiawei Wang,
Pingyi Zhou, Li Li, Hao Wu, and Jin Liu. 2022.
Code-mvp: Learning to represent source code from
multiple views with contrastive pre-training. In
NAACL-HLT.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi
D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
2023. Codet5+: Open code large language mod-
els for code understanding and generation. ArXiv,
abs/2305.07922.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code under-
standing and generation. ArXiv, abs/2109.00859.

Bolin Wei. 2019. Retrieve and refine: Exemplar-based
neural comment generation. 2019 34th IEEE/ACM
International Conference on Automated Software En-
gineering (ASE), pages 1250-1252.

Sean Welleck, Ximing Lu, Peter West, Faeze Brah-
man, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. 2022. Generating sequences by learning to
self-correct. ArXiv, abs/2211.00053.

Yu Wu, Furu Wei, Shaohan Huang, Zhoujun Li, and
Ming Zhou. 2018. Response generation by context-
aware prototype editing. In AAAI Conference on
Artificial Intelligence.

Pengcheng Yin and Graham Neubig. 2018. Tranx: A
transition-based neural abstract syntax parser for se-
mantic parsing and code generation. In Conference
on Empirical Methods in Natural Language Process-

ing.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan
Berant. 2023. Making retrieval-augmented lan-
guage models robust to irrelevant context. ArXiv,
abs/2310.01558.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu
Kim, Bei Guan, Yongji Wang, Weizhu Chen, and
Jian-Guang Lou. 2022. Cert: Continual pre-training
on sketches for library-oriented code generation. In
International Joint Conference on Artificial Intelli-
gence.

Fengji Zhang, B. Chen, Yue Zhang, Jin Liu, Daoguang
Zan, Yi Mao, Jian-Guang Lou, and Weizhu Chen.
2023. Repocoder: Repository-level code comple-
tion through iterative retrieval and generation. ArXiv,
abs/2303.12570.

11

A Text-Code contrastive learning

Given a batch of positive pairs text 7" and code C,
we make the vector representations E; for text T
and E. for code C' by mapping [C LS| embeddings
to normalized lower-dimensional (256-d) from the
encoder. We maintain two queues of size M to store
the most recent vector representations ¢); and (),
from the momentum encoders, and the element of
which is not equal to the batch sample is denoted
as negative samples.

We calculate the similarity of text-code S*2¢(T)
and code-text S¢%(C') as:

(6)

S24T) = B Q., 5 (C) = E] Q

Then we softmax-normalized them as p*?*(T’) and
p(C):

py (ST
F =i sy,
e anSHCO
=S e, ©

where 7 is a learnable temperature parameter.
Let y2¢(T) and y“?*(C) denote the ground-truth
one-hot similarity, the text-code contrastive loss
from a corpus D is define as the cross-entropy H
between y and p:

1
Ece = iE(T,C)ND[H<yt2C(T)7pt2c(T))

+ H(y(C),p™(C))]

©)

https://api.semanticscholar.org/CorpusID:208248351
https://api.semanticscholar.org/CorpusID:208248351
https://api.semanticscholar.org/CorpusID:208248351
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:248512635
https://api.semanticscholar.org/CorpusID:248512635
https://api.semanticscholar.org/CorpusID:248512635
https://api.semanticscholar.org/CorpusID:258685677
https://api.semanticscholar.org/CorpusID:258685677
https://api.semanticscholar.org/CorpusID:258685677
https://api.semanticscholar.org/CorpusID:237386541
https://api.semanticscholar.org/CorpusID:237386541
https://api.semanticscholar.org/CorpusID:237386541
https://api.semanticscholar.org/CorpusID:237386541
https://api.semanticscholar.org/CorpusID:237386541
https://api.semanticscholar.org/CorpusID:204838350
https://api.semanticscholar.org/CorpusID:204838350
https://api.semanticscholar.org/CorpusID:204838350
https://api.semanticscholar.org/CorpusID:253244506
https://api.semanticscholar.org/CorpusID:253244506
https://api.semanticscholar.org/CorpusID:253244506
https://api.semanticscholar.org/CorpusID:49312395
https://api.semanticscholar.org/CorpusID:49312395
https://api.semanticscholar.org/CorpusID:49312395
https://api.semanticscholar.org/CorpusID:52926380
https://api.semanticscholar.org/CorpusID:52926380
https://api.semanticscholar.org/CorpusID:52926380
https://api.semanticscholar.org/CorpusID:52926380
https://api.semanticscholar.org/CorpusID:52926380
https://api.semanticscholar.org/CorpusID:263608822
https://api.semanticscholar.org/CorpusID:263608822
https://api.semanticscholar.org/CorpusID:263608822
https://api.semanticscholar.org/CorpusID:249642442
https://api.semanticscholar.org/CorpusID:249642442
https://api.semanticscholar.org/CorpusID:249642442
https://api.semanticscholar.org/CorpusID:257663528
https://api.semanticscholar.org/CorpusID:257663528
https://api.semanticscholar.org/CorpusID:257663528

B LCS Algorithm

Algorithm 2 Longest Common Subsequence
(LCS)
Require:
#X : The first string of LCS
#Y : The second string of LCS
Ensure: LCS: L[m,n|
1: m < ‘X‘
n < |Y]
: for i = 0tom do
for j =0tondo
if i == 0 or j == 0 then
L[i,j] «+ 0O
else if X[i] == Y'[j] then
Lli,j]«< Lli—1,7—1]+1
else
Ll[i, j] < max(L[i—1, j], L[i,j —

R AN Il

,_
e

1])
11:
12:
13:
14:

end if
end for
end for
return L[m, n]

C AtCoder Dataset

Comparing to the text generation domain, code
generation typically has various reference answers.
It is challenging to collect multiple reference an-
swers in the same programming languages that
solve a specific task. The online judge platform
like AtCoder holds competition regularly and re-
quires participants submit codes to solve several
problems, which provides a large amount of refer-
ence answers in multiple languages.

Inspired by this, the AtCoder dataset is con-
structed from the AtCoder platform which hosts
weekly competitions. The data collection protocol
is approved by an ethics review board and we have
obtained the consent of the platform owner prior
to use. We collect the code from 150-th to 233-
th AtCoder Beginner Contest (ABC). We remove
the unnecessary comments to simplify the content
and provide an dataset which is specified to pro-
cess tailored for code-to-code tasks. We filter out
excessively long codes to ensure the model could
fully process the input code, the filtered result is
shown in Figure 9. To collect reference answers in
a specific program language, we selected the same
problem from AtCoder competition and gathered
accepted code submissions in Java, C#, and Python.

12

The codes can translate to each other since they fix
the same task.

500

Token_num

C++ Java Python

Figure 9: Statistic of token number for AtCoder datasets

D Metrics

The calculating details of the metrics we use are
shown below.

D.1 BLEU4
The equation for BLEU4 is:

N
BLEU4 = BP x exp <Z wy, - log(py,)

n=1

) (10)

where w,, represents the weight assigned to the
precision of n-grams. log(p,,) is the logarthm of
the precision of n-grams.

D.2 CodeBLEU

Unlike traditional BLEU, CodeBLEU aims to cap-
ture both syntactic and semantic correctness in
code. It not only considers the lexical similarity
but also the syntactic structure and semantic mean-
ing of the generated code, which are crucial for
assessing code quality.

First it calculates token-level BLEU using n-
gram precision in a manner similar to traditional
BLEU scores in natural language processing. The
n-gram precision is computed as:

Pn = 36 Candidates 2oi1 M - Countaip (C' (i, i + 1))

T orccmitne Sic Hi Count(C" (i, + 1))
an
Then the syntactic matching involves comparing
the abstract syntax trees (AST) of the generated
and reference code. The syntactic matching score

can be represented as:

. Number of matching nodes in AST
Syntactic Score =

Total number of nodes in reference A(Sl"lz"

Then the data flow and control flow graph match
involves comparing the data flow and control flow
graphs. The semantic score can be similarly com-
puted based on the proportion of matched elements
in these graphs. Finally, these components are
combined into the overall CodeBLEU score with
weights indicating the importance of each compo-
nent.

D.3 Pass@1

The way to compute Pass@1 is to calculate the
percentage of the number of sample passes the test
once among the total number of the samples. It is
calculated as:

1
Pass@1 =] Z Lirankiwy=1y ~ (13)

i€l

where || denotes the total number of instances
for which predictions were made, y; is the true label
or item for instance i, rank;(y;) is the function
that returns the rank of the true label in the list of

predictions for instance ¢, with 1 being the top rank.

E Supplementary Results of
Experiment-1

The results of other datasets are shown below.

Magic

"»—*—‘* -
84.5 S e AL
S e

A
Y —e \,/\y’\»*

2 83.0
—
o
82.5
82.0
8131 oo RrAGH
81.0 RAG
0 4 8 12 16 20 24 28 32

Top-K Retrieved Data

Figure 10: The result of RAG and RAG™ evaluated by
metric BLEU4 on Magic datasets.

50 Magic

79

CodeBLEU
~
©

~
~
.

b

76 RAG+

RAG .,“. . s

0 4 8 12 16 20 24 28 32

Top-K Retrieved Data

Figure 11: The result of RAG and RAG™ evaluated by
metric CodeBLEU on Magic datasets.

CodeXGLUE(Java-to-C#)

bt *
85.0 L Tt | Py
\
e NS
»* ST R A
X/ NI e N NP
84.5 NN

7

-%- RAG+
82.5 RAG

0 4 8 12 16 20 24 28 32
Top-K Retrieved Data

Figure 12: The result of RAG and RAG™ evaluated by
metric BLEU4 on CodeXGLUE(java-to-c#) datasets.

CodeXGLUE(Java-to-C#)

88.0

© ©
N ~N
o 5

CodeBLEU

©
o
5

RAG+
86.0

0 4 8 12 16 20 24 28 32
Top-K Retrieved Data

Figure 13: The result of RAG and RAG™ evaluated
by metric CodeBLEU on CodeXGLUE(java-to-c#)
datasets.

F Case Study

Input requirement: Wild Defiance NAME_END NIL ATK_END NIL DEF_END { 2 } { G } COST_END NIL DUR_END Enchantment TYPE_END Avacyn Restored PLAYER_CLS_END 203 RACE_END R
RARITY_END Whenever a creature you control becomes the target of an instant or sorcery spell, that creature gets + 3 / + 3 until end of turn .
Output of RAG Output of epoch 1 (SAG) Output of epoch 2 (SaG)
public class Wild Defiance extends Card Impl { public class Wild Defiance extends Card Impl { public class Wild Defiance extends Card Impl {
private static final Filter Spell filter = new Filter Spell (....); private static final Filter Spell filter = new Filter Spell (....); public Wild Defiance (UUID owner Id) {
this . set Target Controller (event . get Player Id ()) ; this . set Target Controller (event . get Player Id ()) ; this . set Target Controller (controller Id) ;
return true ; return true ; return true ; }
} } }
return false ; } return false ; } return false ; }
@ Override public String get Rule () { @ Override public String get Rule () { @ Override public String get Rule () {
return * Whenever a creature you control becomes the return * Whenever a creature you control becomes the return * Whenever a creature you control becomes the
target of an instant or sorcery spell, that creature gets target of an instant or sorcery spell, that creature gets target of an instant or sorcery spell, that creature gets
+3/+3untilend of turn."; } +3/+3untilend of turn.”; } +3/+3untilendofturn.’;}

A successful example of iterative generation using SaG

(a) Case Study 1. The grey background represents the repaired parts. SAG can fix some obvious errors through iteration.

Input requirement: Boseiju, Who Shelters All NAME_END NIL ATK_END NIL DEF_END NIL COST_END NIL DUR_END Legendary Land TYPE_END Champions of Kamigawa PLAYER_CLS_END
273 RACE_END R RARITY_END Boseiju , Who Shelters All enters the battlefield tapped . $ { tap }, Pay 2 life : Add { C } to your mana pool . If that mana is spent on an instant or sorcery spell ...

Output of epoch 1 (SAG) Output of epoch 2 (SAG) Output of epoch 3 (SAG)
public class Boseiju Who Shelters All extends Card Impl { public class Boseiju Who Shelters All extends Card Impl { public class Boseiju Who Shelters All extends Card Impl {
public Boseiju Who Shelters All (UUID owner Id) { public Boseiju Who Shelters All (UUID owner Id) { public Boseiju Who Shelters All (UUID owner Id) {
super (owner Id, 273, * Boseiju , Who Shelters All *, super (owner Id, 273, " Boseiju , Who Shelters All *, super (owner Id, 273, " Boseiju , Who Shelters All *,
Rarity . RARE , new Card Type []{....); Rarity . RARE , new Card Type []{....); Rarity . RARE , new Card Type []{....);
this . expansion Set Code =" CHK *; this . expansion Set Code =" CHK *; this . expansion Set Code =" CHK " ;
this . supertype . add (* Legendary ') ; this . supertype . add (* Legendary ') ; this . supertype . add (" Legendary) ;
this . add Ability (.... Ability ()) ; this . add Ability (.... Ability ()) ; this . add Ability (.... Ability ()) ;
Mana mana = Mana . Colorless Mana (1) ; Mana mana = Mana . Colorless Mana (1) ; Mana mana = Mana . Colorless Mana (1) ;
mana . set Flag (true); X mana . set Flag (true) ; X mana . set Flag (true) ;

repeated mistakes
SAG: the phenomenon of repeated mistakes

(b) Case Study 2. The grey background represents the repeated mistakes. SAG is unable to recognize and fix some errors, leading
to a phenomenon of repeated mistakes.

Input requirement: Boseiju , Who Shelters All NAME_END NIL ATK_END NIL DEF_END NIL COST_END NIL DUR_END Legendary Land TYPE_END Champions of Kamigawa PLAYER_CLS_END
273 RACE_END R RARITY_END Boseiju , Who Shelters All enters the battlefield tapped . $ { tap }, Pay 2 life : Add { C } to your mana pool . If that mana is spent on an instant or sorcery spell

Output of epoch 1 (ISAGWR) After Review Output of epoch 2 (ISAGWR)
public class Boseiju Who Shelters All extends Card Impl { public class Boseiju Who Shelters All extends Card Impl { public class Boseiju Who Shelters All extends Card Impl {
public Boseiju Who Shelters All (UUID owner Id) { public Boseiju Who Shelters All (UUID owner Id) { public Boseiju Who Shelters All (UUID owner Id) {

super (owner Id, 273, * Boseiju , Who Shelters All *, super (owner Id, 273, * Boseiju, Who Shelters All *, super (owner Id, 273, " Boseiju, Who Shelters All *,
Rarity . RARE , new Card Type []{....); Rarity . RARE , new Card Type []{....); Rarity . RARE , new Card Type []{....);
this . expansion Set Code =" CHK *; this . expansion Set Code =" CHK *; this . expansion Set Code =" CHK *;
this . supertype . add (* Legendary ") ; this . supertype . add (' Legendary ") ; this . supertype . add (* Legendary) ;
this . add Ability (.... Ability ()) ; this . add Ability (... Ability ()) ; this . add Ability (.... Ability ()) ;
Mana mana = Mana . Colorless Mana (1) ; Mana mana:- Mana mana = new Mana (0,0,0,0,0,0,0,1);

mana . set Flag (true) ; X mana . set Flag (true) ; mana. set Flag (true) ;

repeated mistakes

ISAGWR: mask the repeated mistakes

(c) Case Study 3. The grey background on output of epoch 1 represents the repeated mistakes. The grey background on output of
epoch 2 represents the repaired parts.

Figure 14: Case Study

14

