
Under review as a conference paper at ICLR 2023

MULTI-TASK STRUCTURAL LEARNING USING LOCAL
TASK SIMILARITY INDUCED NEURON CREATION AND
REMOVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-task learning has the potential to improve generalization by maximizing
positive transfer between tasks while reducing task interference. Fully achieving
this potential is hindered by manually designed architectures that remain static
throughout training. On the contrary, learning in the brain occurs through structural
changes that are in tandem with changes in synaptic strength. Thus, we propose
Multi-Task Structural Learning (MTSL) that simultaneously learns the multi-task
architecture and its parameters. MTSL begins with an identical single task network
for each task and alternates between a task learning phase and a structural learning
phase. In the task learning phase, each network specializes in the corresponding
task. In each of the structural learning phases, starting from the earliest layer,
locally similar task layers first transfer their knowledge to a newly created group
layer before they are removed. MTSL then uses the group layer in place of the
corresponding removed task layers and moves on to the next layers. Our empirical
results show that MTSL achieves competitive generalization with various baselines
and improves robustness to out-of-distribution data. 1

1 INTRODUCTION

Artificial Neural Networks (ANNs) have exhibited strong performance in various tasks essential for
scene understanding. Single-Task Learning (STL) (Yu et al., 2021; Wang et al., 2020b; Orsic et al.,
2019) has been largely at the center of this exhibit driven by custom task-specific improvements.
Despite these improvements, using single task networks for the multiple tasks required for scene
understanding comes with notable problems such as a linear increase in computational cost and a
lack of inter-task communication.

Multi-Task Learning (MTL), on the other hand, with the aid of shared layers provides favorable
benefits over STL such as improved inference efficiency and positive information transfer between
tasks. However, a notable drawback of sharing layers is task interference. Existing works have
attempted to alleviate task interference by modifying the architecture (Kanakis et al., 2020; Liu et al.,
2019), determining which tasks to group together using a similarity notion (Standley et al., 2020;
Fifty et al., 2021; Vandenhende et al., 2020), balancing task loss functions (Kendall et al., 2018; Liu
et al., 2019; Yu et al., 2020; Lin et al., 2019), or learning the architecture (Guo et al., 2020; Lu et al.,
2017). Although these methods have shown promise, progress can be made by drawing inspiration
from the brain, which is the only known intelligent system that excels in multi-task learning. The
inner mechanisms of the brain, although not fully understood, can guide research in ANNs through
simplified notions. Neuron creation and neuron removal (Maile et al., 2022) are simplified notions
that can aid in the automated design of Multi-Task Networks (MTNs).

Neuron removal presents the opportunity to start from a dense set of neurons and move toward a
sparse set of neurons. In the early stages of brain development, neural circuits consist of excess
neurons and connections that provide a rich information pipeline (Maile et al., 2022). This pipeline
allows neural circuits to learn specialized functions while undergoing neuron removal and synaptic
pruning (Riccomagno & Kolodkin, 2015). Thereby, moving from a dense architecture consisting of
multiple single-task networks to a sparse multi-task architecture could be beneficial.

1Code will be made available after acceptance.

1

Under review as a conference paper at ICLR 2023

Neuron creation is an open-ended operation due to the difficulty involved in deciding where, how,
and when to create neurons (Evci et al., 2022). In the brain, local communication between neurons
is an important part of learning. Learning rules that modulate synaptic strength are local in nature
(Kudithipudi et al., 2022) and local neural activity could be responsible for the creation of neurons
(Luhmann et al., 2016) and also neuron removal (Faust et al., 2021). We explore local task similarity
to drive neuron creation and removal, which together could improve learning.

Structural learning pertains to the learning of the architecture and its parameters simultaneously
(Maile et al., 2022). The neural circuitry in the brain changes even during adulthood, undergoing
morphological changes induced by structural plasticity (Kudithipudi et al., 2022). Evidently, learning
in the brain does not involve static architecture creation followed by modulation of synaptic strengths.
Instead, architecture changes occur in tandem with changes in synaptic strength. Thus, utilizing
structural learning with strategic neural operations could mitigate the effects of task interference and
promote generalization in MTL.

Therefore, we propose Multi-Task Structural Learning (MTSL) to simultaneously learn the multi-task
architecture and its parameters. MTSL considers entire layers as computation units (Maile et al.,
2022) and performs neuron creation and neuron removal on them. Inspired by the creation of a large
number of neurons in the developmental stage of the brain, MTSL begins training by initializing
each task with its own network. Similar to the brain, the excess layers of each task network provide
a rich information flow to inform grouping decisions. Local task similarity is used to guide task
learning through the alignment of task representations, and also to make decisions on grouping tasks.
A positive decision to group tasks induces the creation of a group layer, and the associated task layers
transfer their learned knowledge to the group layer before being removed. Finally, a few epochs of
fine-tuning result in a learned MTN which persists the learned parameters for inference.

Contributions. (i) We propose a structural learning algorithm for multi-task learning based on
aligning local task representations, grouping similar task layers, transferring information from
grouped task layers to a new group layer, and removing the concerned task layers. (ii) We compare
against various state-of-the-art methods and show that MTSL shows improved generalization without
the need to retrain. (iii) We show that MTSL improves the robustness to natural corruptions. (iv). We
present an ablation on the various components of MTSL and show its utility.

2 RELATED WORKS

Although different lines of work, such as architecture modifications (Liu et al., 2019; Kanakis et al.,
2020; Misra et al., 2016), task grouping (Standley et al., 2020; Fifty et al., 2021; Vandenhende et al.,
2020), or task loss balancing (Kendall et al., 2018; Liu et al., 2019; Yu et al., 2020; Lin et al., 2019)
address task interference, they use hand-designed architectures that could be suboptimal. A variety of
works in the MTL literature propose methods to learn the architecture, and we categorize these works
into two groups. One group of works considers learning architectures that are capable of dynamically
changing their structure based on the input (Hazimeh et al., 2021; Ahn et al., 2019; Rosenbaum et al.,
2018) while the other group learns the branching structure (Guo et al., 2020; Bruggemann et al.,
2020; Lu et al., 2017; Zhang et al., 2022; 2021; Raychaudhuri et al., 2022).

Input dependent dynamic architectures draw inspiration from the brain and provide many benefits,
including improved computational efficiency (Han et al., 2021). DSelect-k (Hazimeh et al., 2021)
is a mixture of experts model that enables selecting a spare set of experts to infer an input sample.
(Ahn et al., 2019) learn a selector network that learns to pick a subnetwork from a large estimator
network based on input. In routing networks (Rosenbaum et al., 2018), task-dependent agents are
trained using reinforcement learning to pick a path within a large network to infer an input. While
these approaches aim to optimize networks or subnetworks to specialize for a certain distribution of
input samples, MTSL aims to optimize a shared network for all tasks.

The branching structure of multi-task networks have been learned using different approaches.
(Zhang et al., 2022) propose to estimate the accuracy of a branched multi-task network using two task
networks with similar branching. They also suggest data structures and methods to ease branching
decisions search in an arbitrary network similar to (Zhang et al., 2021). Raychaudhuri et al. (2022)
propose two controller networks that predict the branching structure and the weights of the cross-task
edges based on user preferred task importance and budget constraints. (Guo et al., 2020) start from a

2

Under review as a conference paper at ICLR 2023

dense search space where a child layer is connected to a number of parent layers. During learning,
a distribution over parent nodes is learned with the aid of path sampling. At the end of training, a
valid network path is picked and using neuron removal, the neurons no longer a part of the valid
path are removed. BMTAS (Bruggemann et al., 2020) takes a similar approach to (Guo et al., 2020)
but additionally use a resource loss. On the contrary, MTSL involves progressive neuron removals
at different intervals during training. The branching structure learning approaches discussed so far
explicitly retrain the learned architecture, while MTSL avoids retraining and confirms with structural
learning. Like MTSL, (Lu et al., 2017) also avoid retraining and use neuron creation where tasks are
split into different branches starting from the output layer to the input layer using inter-task affinities
defined based on task error margins. Unlike (Lu et al., 2017), MTSL starts from a dense set of
neurons and moves towards a sparse architecture. Also, MTSL is designed to leverage both neuron
creation and neuron removal. Adashare (Sun et al., 2020) learns task specific policies to determine
which residual blocks to execute or skip, leading to residual blocks in the encoder specializing in a
subset of tasks. Unlike (Guo et al., 2020; Zhang et al., 2022; 2021), BMTAS and MTSL, Adashare
does not directly learn a branching structure and is specifically designed for ResNet.

3 MULTI-TASK STRUCTURAL LEARNING (MTSL)

The tasks to be learned together in an MTN bring in diverse information about the input scene. This
diverse information can be leveraged to learn representations with improved generalization on all
tasks. Design decisions such as which layers to share and where to branch tasks are complex due
to their combinatorial nature. This complexity, along with the crucial role of these decisions in
the interplay between positive transfer and task interference are reasons that could render manual
architecture design suboptimal. Structural learning, on the other hand, learns the architecture along
with its parameters, which is likely in line with how the brain learns.

MTSL uses two neural operators, namely neuron creation and neuron removal, to aid in structural
learning. In early development, the brain has excess neurons that can provide a rich information
pipeline for a pruned neural circuit to functionally specialize. Likewise, MTSL creates excess neurons
by starting from a disparate network for each task. Through the progress of training, the corresponding
task neurons in a layer pave the way for a specialized group neuron leading to a structural change. In
the next sections, we present the finer details of the MTSL algorithm. In Section 3.1, we formalize
the problem setup and establish the terminologies that we use in the rest of the paper. Following
this section, we discuss how we align task representations in Section 3.2, how we create neurons in
Section 3.3, removal of task neurons in Section 3.4 and the overall MTSL algorithm in Section 3.5.

3.1 PROBLEM SETUP

We consider the problem of structural learning where the MTN architecture and its parameters are
learned simultaneously. Given the set of T tasks that each has its own single network with L layers,
our algorithm results in a single MTN capable of inferring all the T tasks accurately without the need
for retraining. First, we establish the terminologies that are used in the rest of the paper. A node is a
layer that connects one branch to another branch (or to a node), and a branch is a sequence of layers
that follow a node. Initially, the first layer of each single task network is the task node, while the rest
of the task network excluding the task head is called the task branch. Similarly, a group of tasks will
have a group node and a group branch. A task node is of particular significance to our algorithm, as
tasks can only be fused at the task node. Also, only task nodes that are connected to the same group
branch or group node can be fused. At the start of the training, all task nodes are connected to the
input image and can be fused. T and G denote a task and a group, respectively. Additionally, F and
F denote the output features of the task node and the group node, respectively. Figure 1 provides the
overall schematic of our approach, where the leftmost column illustrates the initial state of our setup
using the terminologies defined so far. In the following sections, we discuss the different components
of our approach.

3.2 ALIGNING TASK SPECIFIC REPRESENTATIONS

As is evident from Figure 1, we begin training from single-task networks. Since the encoder of each
task is initialized with ImageNet weights, there exists a correspondence between task nodes initially.

3

Under review as a conference paper at ICLR 2023

Node Node Node

Input

Branch Branch Branch

Node Node

Node

Branch Branch

Branch

Node

 Head Head Head Head Head Head

Input

Node

Initial State

Features

Features

Features

Next State

Neuron Creation

Node Node

Grouping

Features

Features

Features

Node Node Neuron Removal

Alignment

Figure 1: Schematic of the MTSL Algorithm. The grey regions (initial state, alignment, next state)
are part of the task learning phase while the white regions (neuron creation, and neuron removal) are
part of the structural learning phase. During training, our algorithm loops between alignment in the
task learning phase followed by neuron creation and neuron removal in the structural learning phase
leading to the next state (last column).

During training, task nodes would learn concepts that minimize particular task loss independent
of other tasks. This independence likely breaks any correspondence between parameters mapped
one-to-one between any two task nodes. This behavior comes from the permutation invariance of
neural networks that leads to no guarantee on the order in which concepts are learned (Wang et al.,
2020a). Therefore, MTSL aligns the concepts learned by the task nodes and locally increases their
similarity using Centered Kernel Alignment (CKA) (Kornblith et al., 2019).

CKA is used to measure similarity between two feature representations and has been shown to
provide meaningful similarity scores. During training, we introduce a CKA-based regularization term
between task nodes branching from the same group node/branch (or the input). This regularization
term, as shown in the alignment part of Figure 1, is included between all pairs of task node features
(indicated by bi-directional arrows) and enforces the task representations to align by serving as an
alignment constraint. We use the unbiased CKA estimator (Nguyen et al., 2021) to facilitate reliable
estimates of CKA with small batch sizes used during training.

L = LMTL + λ(1− LCKA) (1)

The overall loss that is used for training in the task learning phase of our algorithm is provided in
Equation 1, where the first term (LMTL) represents the multi-task loss which is a weighted sum of
all individual task losses. The second term represents the CKA regularization term (LCKA) that is
included with a balancing factor λ and a negative sign to maximize alignment between tasks.

3.3 CREATING GROUP NODES

The overall loss L used during the task learning phase (discussed in Section 3.2) leads tasks to learn
similar features while also minimizing the concerned task loss. After the task learning phase, MTSL
begins the structural learning phase to first leverage neuron creation. In the brain, local neuronal
activity can affect the structure of the neural circuitry (Luhmann et al., 2016) and play a role in
learning experiences (Kudithipudi et al., 2022). Taking cues from these notions of locality, we use
CKA to gauge the similarity between task node features that represent the local activity of task
neurons. These local task similarities are used to induce the creation of group nodes.

First, CKA between all pairs of task node features is calculated after which all possible groups of task
nodes are listed. From these groups, a set of groups that maximize the total similarity is chosen and

4

Under review as a conference paper at ICLR 2023

the groups that satisfy a minimum similarity of γ induce the creation of a group neuron. For instance,
in Figure 1, we see that the groups picked are [T1, T2] and T3 assuming that the total number of tasks
T is three. More details regarding the grouping algorithm are provided in the Appendix.

After the task nodes have been grouped based on local task similarity, for each group, a group node
is created. The learned knowledge in the task neurons is used to initialize the created group node
using a two-step process. In the first step, the weights of the group node are obtained by averaging
the parameters of the concerned task nodes. This averaging is justified by the alignment constraint
used in the task learning phase that ensures that the corresponding parameters learn similar concepts.
Figure 1 depicts the averaging initialization using a plus symbol. In the second step, MTSL distills
the information learned by multiple task nodes into the group node using an attention-based feature
amalgamation method (Ye et al., 2019) referred to as ATT. Figure 1 depicts this amalgamation
process by using arrows from task node features F1 and F2 to group node feature F .

LKA =
1

N

N∑
i

(
Fi −ATTnet

i (F)⊙F
)2

(2)

The knowledge amalgamation objective LKA is provided in Equation 2 assuming that there are
N tasks grouped together. ATTnet denotes the attention network consisting of two linear layers
with an intermediate ReLU activation and a final sigmoid activation. ATTnet

i (F) provides a 1×C
dimensional attention vector which acts as a weight for the different channels of F allowing the
selective distillation of task features into the group feature.

3.4 REMOVING TASK NEURONS

Starting from a dense set of neurons as in the initial state of MTSL provides the opportunity to
leverage a rich information flow originating from diverse task information. Using neuron removal,
MTSL moves towards a sparser architecture by removing task nodes that learn similar representations.
These locally similar task nodes become redundant once they transfer their knowledge to the group
node. The task branch is then disconnected from these redundant task nodes and connected to the
group node. As defined in Section 3.1, the neurons in the task branch that now connect to the group
node become task nodes. These changes are evident in the depicted next state in Figure 1.

3.5 MTSL ALGORITHM

Algorithm 1 presents the different phases involved in the MTSL algorithm, namely the task learning
phase, the structural learning phase, and a fine-tuning phase. The task learning phase and the structural
learning phase occur alternatively for n number of times, followed by a final fine-tuning phase. In the
task learning phase, the entire network is trained to minimize multi-task loss and maximize similarity
among task nodes as described in Section 3.2. The structural learning phase involves neuron creation
and neuron removal as discussed in Section 3.3 and in Section 3.4, respectively. Et determines
the number of epochs for which each subsequent task learning phase is executed. Similarly, Es

determines the epochs for ATT-based knowledge transfer. Considering a total training budget of E
epochs, the task learning phase is executed up to E − f epochs where f is the minimum epochs
allocated for the fine-tuning phase during which the task nodes are no longer forced to align.

4 EXPERIMENTS

We evaluate the strengths of our approach using two datasets, namely Cityscapes (Cordts et al.,
2016) and NYUv2 (Silberman et al., 2012). The Cityscapes dataset is an outdoor driving scenes
dataset consisting of 2975 training images and 500 validation images. The images are reshaped to
a resolution of 256×512 in both training and validation. The NYUv2 dataset consists of indoor
scenes with a total of 795 training and 654 validation images, respectively. Cityscapes and NYUv2
datasets are also referred to as CS and NYU, respectively. We consider five dense prediction tasks,
namely semantic segmentation (S), depth estimation (D), edge detection (E), surface normals (N),
and autoencoder (A). All numbers are reported on the validation set of each dataset as an average
over three runs. Each of the experiments has been run on one Nvidia Tesla V100 GPU in a DGX
cluster. The ResNet encoder is initialized with the ImageNet pretrained weights and the rest of the

5

Under review as a conference paper at ICLR 2023

Algorithm 1: MTSL algorithm
Input: Initial state (as depicted in Figure 1), Training budget E, Minimum fine-tuning budget f ;
n← Number of structural learning phases;
Task Learning Epochs Et ← [t1, t2.., tn],

∑n
i E

i
t < E − f ;

Structural Learning Epochs Es ← [s1, s2.., sn];
while e < E − f do

t← Next value from Et; // Task Learning Phase
for t epochs do

Train using loss L in Equation 1;
end
e← e+ t;
Create group nodes using local task similarity; // Structural Learning Phase
Average corresponding task nodes to initialize group nodes;
s← Next value from Es;
for s epochs do

Use ATT to transfer knowledge in corresponding task nodes to group nodes;
end
if there is no more layer in all task branches then

Exit loop;
end

end
for E − e epochs do // Fine-Tuning Phase

Fine-tune using multi-task loss LMTL;
end

weights are initialized randomly. The CKA regularization loss weight λ is 0.2. Additional training
details can be found in Section C in Appendix.

We provide multi-task performance improvement (Vandenhende et al., 2021) using Equation 3 where
m and s represent task performance in multi-task and single task networks, respectively. When higher
performance is better l is 0 and when the lower performance is better l is 1. We also report multi-task
performance improvements in segmentation S and depth D tasks as ∆SD

MTL,

∆MTL =
1

T

T∑
i=1

(−1)li (Mm,i −Ms,i) /Ms,i (3)

We compare MTSL with state-of-the-art methods (Section 4.1), evaluate the generalization, inference
efficiency (Section 4.2), and robustness of MTSL (Section 4.3). We draw insights based on the
converged network architecture in Section 4.4 and provide a detailed ablation study in Section 4.5.

4.1 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare MTSL with existing multi-task architectures and methods to learn multi-task architecture
branching. Implementations of Cross-stitch (Misra et al., 2016) and MTAN (Liu et al., 2019) have
been taken from the repository of (Vandenhende et al., 2021) while the implementation of Learning-to-
Branch (LTB; (Guo et al., 2020)) has been taken from LibMTL (Lin & Zhang, 2022). We update LTB
with the resource loss proposed by Branched Multi-Task Architecture Search BMTAS (Bruggemann
et al., 2020) from their open source repository to obtain the implementation of BMTAS. LTB-R and
BMTAS-R refer to the results obtained by retraining the converged architecture from scratch. For all
methods we use the same hyperparameter settings and use ResNet18 backbone with DeepLab head.

In Table 1, we observe that Cross-stitch obtains the best improvement (highlighted in bold) over
Single Task Networks (STNs). Cross-stitch retains all separate task networks and learns task-specific
adapter parameters. These adapter parameters enable the selective transfer of information from other
tasks. Additionally, since there is no explicit parameter sharing, task interference can be mitigated,

6

Under review as a conference paper at ICLR 2023

Table 1: IID Generalization and inference efficiency comparisons between MTSL and state-of-the-art
methods, namely Cross-stitch, MTAN, LTB and BMTAS. LTB-R and BMTAS-R represent results
obtained by retraining the final converged architecture of LTB and BMTAS, respectively. # (M)
denotes parameter count in millions and GMac denotes Giga multiply-accumulate.

CS NYU

Network ∆SD
MTL ↑ ∆MTL ↑ # (M) GMac ∆SD

MTL ↑ ∆MTL ↑ # (M) GMac

STN - - 79.50 26.73 - - 79.51 29.24

One-Net -0.84±0.15 -1.22±0.04 34.79 7.70 -0.79±0.11 -4.57±0.13 34.80 8.42
Cross-stitch +2.79±0.41 +1.01±0.17 79.50 26.73 +0.73±0.37 -2.18±0.25 79.53 29.24
MTAN -0.02±0.49 -3.68±0.64 36.61 11.13 -0.34±0.93 -3.91±0.54 36.62 12.18

LTB-R +0.49±0.40 +0.11±0.17 68.15 19.81 -0.13±0.10 -0.23±0.08 79.17 25.20
BMTAS-R +0.25±0.57 -0.02±0.26 68.30 21.03 -0.10±0.29 -0.21±0.28 79.17 25.20
MTSL-R +0.17±0.47 -0.22±0.20 68.37 12.00 -0.39±0.46 -3.54±0.23 59.98 11.95

LTB -2.95±0.42 -1.79±0.18 68.15 19.81 -4.78±0.40 -5.35±0.31 79.17 25.20
BMTAS -3.84±0.39 -2.19±0.11 68.30 21.03 -4.00±0.74 -5.07±0.42 79.17 25.20
MTSL -0.23±0.85 -0.34±0.37 68.37 12.00 -0.06±0.34 -3.21±0.21 59.98 11.95

leading to increased performance. However, Cross-stitch loses the inference time and memory
advantage of using shared parameters. When comparing MTSL with methods that learn branching
structures (last group), MTSL outperforms both LTB and BMTAS by a considerable margin in both
datasets. For instance, in ∆SD

MTL, MTSL outperforms LTB by 2.72% and 4.72% and BMTAS by
3.61% and 3.94% in Cityscapes and NYUv2 datasets. Also, with the aid of CKA regularization,
MTSL leads to a more inference efficient architecture (visualized in Section E) as evidenced from
GMac. LTB-R, BMTAS-R and MTSL-R are versions of LTB, BMTAS and MTSL respectively where
the final converged architecture is reinitialized and retrained. With additional training, LTB-R and
BMTAS-R can obtain a marginal gain over MTSL. However, they deviate from structural learning
as the original trained weights are no longer relevant and are discarded. MTSL-R is more efficient
in terms of inference and shows a performance comparable to that of LTB-R and BMTAS-R. Note
that MTSL is designed for structural learning and shows clear performance and inference efficiency
improvements over LTB and BMTAS.

The methods discussed so far only consider learning branching structure in the encoder. For the
upcoming experiments, we extend MTSL to an encoder-decoder architecture with a total of ten
locations, six in the encoder and four in the decoder where task nodes can participate in neuron
creation and removal. The encoder is based on ResNet18 and the decoder has ResNet blocks.

4.2 IID GENERALIZATION AND INFERENCE EFFICIENCY

MTSL algorithm begins from STNs and could potentially end in a network with all encoder and
decoder layers shared between all tasks (referred to as One-Net). These two possible networks are
considered as the baselines for evaluating our approach. Table 2 shows the generalization performance
of the baselines and MTSL. MTSL achieves better generalization than One-Net in most cases, while
being close to One-Net in inference efficiency, as seen in the GMac and parameter count columns. In
NYUv2, MTSL even rivals the performance of STN in both S and D tasks. We hypothesize that the
improved generalization can be attributed to brain-inspired aspects of the MTSL algorithm, such as
local task similarity and the change of dense to sparse architecture.

The training time of MTSL is higher than that of One-Net because of the training epochs required
for knowledge amalgamation. However, this only adds 34 additional epochs in training where only
the network parts up until the task nodes is involved in the computation. For a fair comparison, we
train One-Net for 34 more epochs and get the One-Net-L baseline. We note that MTSL also improves
generalization over One-Net-L. Overall, we see that with only a fractional increase in training costs,
MTSL algorithm provides a learned network with better generalization.

7

Under review as a conference paper at ICLR 2023

Table 2: IID generalization and inference efficiency comparisons between MTSL and baselines.
MTSL performs better than One-Net in most cases and achieves an inference efficiency close to
One-Net. # (M) denotes the number of parameters in millions.

Network S ↑ D ↓ E ↓ N ↑ A ↓ ∆SD
MTL ↑ ∆MTL ↑ # (M) GMac

C
S

STN 60.87±0.78 6.37±0.02 0.03±0.00 0.61±0.00 0.05±0.00 - - 107.10 31.03

One-Net 60.34±0.37 6.76±0.04 0.04±0.00 0.59±0.00 0.06±0.00 -3.47±0.80 -9.65±0.46 21.70 7.06
One-Net-L 60.71±0.21 6.75±0.03 0.04±0.00 0.59±0.00 0.06±0.00 -3.15±0.62 -9.39±0.57 21.70 7.06

MTSL 60.68±0.10 6.52±0.03 0.04±0.00 0.60±0.00 0.06±0.00 -1.35±0.70 -7.04±0.56 22.86 8.96

N
Y

U STN 35.63±0.53 52.70±0.25 0.06±0.00 0.80±0.00 0.14±0.00 - - 107.10 33.99

One-Net 34.15±0.15 53.44±0.39 0.06±0.00 0.74±0.00 0.17±0.01 -2.77±0.88 -9.82±1.87 21.70 7.77
One-Net-L 34.42±0.17 53.36±0.31 0.06±0.00 0.74±0.00 0.17±0.01 -2.77±0.70 -9.82±1.67 21.70 7.77

MTSL 35.50±0.25 52.46±0.23 0.06±0.00 0.73±0.00 0.16±0.00 +0.06±1.03 -6.21±0.90 22.81 9.89

Table 3: Robustness to natural corruptions under four categories. MTSL shows better robustness
compared to One-Net in most cases.

Network ∆SD
MTL ↑ ∆MTL ↑

Noise Blur Weather Digital Noise Blur Weather Digital

C
S One-Net -5.78 -1.32 -3.81 -2.15 +3.02 -7.73 -1.36 -12.22

MTSL -3.03 +0.21 +0.49 +1.42 +2.92 -3.72 +2.60 -7.07

N
Y

U One-Net +10.25 -3.71 -3.27 -2.72 +15.72 -8.51 -11.79 -10.35
MTSL +1.92 -2.65 -0.84 -1.14 +13.50 -8.03 +3.22 -7.54

4.3 ROBUSTNESS TO NATURAL CORRUPTIONS

MTSL provides an improved generalization, likely due to its motivation originating from abstract
notions of the brain. Given that the brain is effective in discerning noise from semantics, a natural
question to ask is whether MTSL can lead to improvements in robustness to natural corruptions.
Table 3 shows the robustness of the baselines and MTSL to various natural corruptions (Hendrycks &
Dietterich, 2019) categorized into four types, namely noise, blur, weather and digital. Under each
corruption category, the average across five different severity levels is taken. We see that the MTSL
network exhibits better robustness compared to One-Net in most cases, especially in the weather and
digital category of the Cityscapes dataset. These results further demonstrate that MTSL presents a
compelling case for the utility of drawing inspirations from the brain.

4.4 CONVERGED NETWORK ARCHITECTURE AND TASK GROUPS

Assumptions about the data used for training play a pivotal role in determining the learned repre-
sentations. In the brain, exposure to the nature of experiences determines the way neural circuitry
develops (Kudithipudi et al., 2022). Thus, the resultant architecture obtained with MTSL on two
datasets would likely differ. Figure 2 visualizes the One-Net architecture and the learned architectures
in Cityscapes and NYUv2. Evidently, after the first branch from layer six, the task groups and the
branching structure emerging on the two datasets are different. Semantic segmentation (S) and edge
detection (E) grouped together in both datasets follows intuition as edge detection requires predictions
of semantic edges. However, the emergence of certain groups of tasks such as depth and autoencoder
in NYUv2 is counter-intuitive. In addition to task relationships, these results show that local task
similarity and inherent biases in the dataset can also impact the optimal architecture. In Section D,
we analyze the sensitivity of the converged architecture to random seeds and initialization.

4.5 ABLATION STUDY

To determine the effectiveness of the different components involved in MTSL, we perform systematic
evaluations and provide the results in Table 4. When alignment is not used, the task representations
diverge largely around layers 3 and 4. As a result, the task nodes no longer become sufficiently
similar to be fused. Therefore, the resultant architectures in the first three rows perform similarly

8

Under review as a conference paper at ICLR 2023

Table 4: Effect of alignment (Align), average initialization (Avg), and attention-based knowledge
amalgamation (ATT). In the first three rows, without alignment, the resultant networks remain close
to the STN. In the last three rows, the alignment results in networks closer to One-Net.

CS NYU

Align Avg ATT ∆SD
MTL ↑ ∆MTL ↑ # (M) GMac ∆SD

MTL ↑ ∆MTL ↑ # (M) GMac

✓ -0.35 -2.25 97.37 17.02 +0.38 -4.24 69.94 17.87
✓ -0.05 -1.92 97.37 17.02 +0.57 -4.23 95.97 17.87

✓ ✓ -0.39 -2.12 95.97 16.30 +0.31 -4.25 95.97 17.87

✓ ✓ -2.29 -7.67 22.56 8.71 -1.26 -6.68 22.97 10.32
✓ ✓ -3.62 -9.66 22.51 8.60 -2.36 -6.71 23.10 10.90
✓ ✓ ✓ -1.35 -7.04 22.86 8.96 +0.06 -6.21 22.81 9.89

Input

Cityscapes NYUv2 One-Net

10 network layers

Figure 2: Visualization of the One-Net architecture and the MTSL resultant architectures. In both
datasets, tasks branch out at layer six but differences emerge in the branching structure in the following
layers. The oval shapes at the end of each path represents the task heads.

and have inference requirements close to STN. On the other hand, in the last three rows, with the
help of alignment, the resultant architectures undergo neuron creation and removal in more layers
and approach close to the inference efficiency of One-Net. Of these, the last row constitutes all the
components used in MTSL and results in the best performance. Note that although we use CKA for
alignment and attention for knowledge amalgamation, various other methods can also be used.

5 CONCLUSION

Inspired by the notion that both the structure of the neural circuits and the associated synaptic
strengths change together in the brain, we proposed Multi-Task Structural Learning (MTSL). MTSL
relies on local similarity-induced creation of group neurons and removal of task neurons. We showed
that MTSL results in networks with improved generalization and robustness while improving the
inference efficiency. We discussed the dependence of converged network architectures on local task
similarity and dataset. We studied the role of the different components in MTSL and found that
enforcing local task similarities results in architectures with better inference efficiency.

Limitations. A fixed epoch schedule is used to transition between different learning phases of MTSL.
Instead, it can be explored to automatically determine the periods in training in which structural
learning is required. In this regard, the local inter-neuron activity in the brain could provide useful
cues to automatically drive structural changes. Further, local similarity should likely be an emergent
result of inter-neuron activity contrary to being explicitly enforced as in MTSL. MTSL does not
use synaptogenesis and synaptic pruning, thereby limiting its ability to learn connections. Despite
these limitations, MTSL serves as an indication of the potential of extending simplified notions from
neuroscience into multi-task learning.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Chanho Ahn, Eunwoo Kim, and Songhwai Oh. Deep elastic networks with model selection for
multi-task learning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2019.

David Bruggemann, Menelaos Kanakis, Stamatios Georgoulis, and Luc Van Gool. Automated search
for resource-efficient branched multi-task networks. In BMVC, 2020.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Utku Evci, Bart van Merrienboer, Thomas Unterthiner, Fabian Pedregosa, and Max Vladymyrov.
Gradmax: Growing neural networks using gradient information. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=qjN4h_
wwUO.

Travis E Faust, Georgia Gunner, and Dorothy P Schafer. Mechanisms governing activity-dependent
synaptic pruning in the developing mammalian cns. Nature Reviews Neuroscience, 22(11):657–673,
2021.

Christopher Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently
identifying task groupings for multi-task learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=hqDb8d65Vfh.

Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learning to branch for multi-task learning. In
Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 3854–3863. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.press/v119/guo20e.html.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, PP, 2021.

Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdhery, Maheswaran Sathiamoorthy, Yihua Chen,
Rahul Mazumder, Lichan Hong, and Ed Chi. DSelect-k: Differentiable selection in the mixture
of experts with applications to multi-task learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=tKlYQJLYN8v.

Xiaoxi He, Zimu Zhou, and Lothar Thiele. Multi-task zipping via layer-wise neuron sharing. In
NeurIPS, 2018.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. Proceedings of the International Conference on Learning Representations,
2019.

Menelaos Kanakis, David Bruggemann, Suman Saha, Stamatios Georgoulis, Anton Obukhov, and
Luc Van Gool. Reparameterizing convolutions for incremental multi-task learning without task
interference. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.),
Computer Vision – ECCV 2020, pp. 689–707, Cham, 2020. Springer International Publishing.
ISBN 978-3-030-58565-5.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7482–7491, 2018.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 3519–3529. PMLR, 09–15 Jun 2019. URL https://
proceedings.mlr.press/v97/kornblith19a.html.

10

https://openreview.net/forum?id=qjN4h_wwUO
https://openreview.net/forum?id=qjN4h_wwUO
https://openreview.net/forum?id=hqDb8d65Vfh
https://proceedings.mlr.press/v119/guo20e.html
https://openreview.net/forum?id=tKlYQJLYN8v
https://proceedings.mlr.press/v97/kornblith19a.html
https://proceedings.mlr.press/v97/kornblith19a.html

Under review as a conference paper at ICLR 2023

Dhireesha Kudithipudi, Mario Aguilar-Simon, Jonathan Babb, Maxim Bazhenov, Douglas Blackiston,
Josh Bongard, Andrew P Brna, Suraj Chakravarthi Raja, Nick Cheney, Jeff Clune, et al. Biological
underpinnings for lifelong learning machines. Nature Machine Intelligence, 4(3):196–210, 2022.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical world. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Workshop Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=HJGU3Rodl.

Mikhail Iu. Leontev, Viktoriia Islenteva, and Sergey V. Sukhov. Non-iterative knowledge fusion in
deep convolutional neural networks. Neural Processing Letters, 51:1–22, 2019.

Wei-Hong Li and Hakan Bilen. Knowledge distillation for multi-task learning. In Proceedings of the
European Conference on Computer Vision Workshop on Imbalance Problems in Computer Vision,
2020.

Baijiong Lin and Yu Zhang. LibMTL: A python library for multi-task learning. arXiv preprint
arXiv:2203.14338, 2022.

Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. Pareto multi-task learn-
ing. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
685bfde03eb646c27ed565881917c71c-Paper.pdf.

Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning with attention.
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1871–1880,
2019.

Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and Rogerio Feris. Fully-
adaptive feature sharing in multi-task networks with applications in person attribute classification.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1131–1140,
2017. doi: 10.1109/CVPR.2017.126.

Heiko J Luhmann, Anne Sinning, Jenq-Wei Yang, Vicente Reyes-Puerta, Maik C Stüttgen, Sergei
Kirischuk, and Werner Kilb. Spontaneous neuronal activity in developing neocortical networks:
from single cells to large-scale interactions. Frontiers in neural circuits, 10:40, 2016.

Sihui Luo, Xinchao Wang, Gongfan Fang, Yao Hu, Dapeng Tao, and Mingli Song. Knowledge
amalgamation from heterogeneous networks by common feature learning. In Proceedings of the
28th International Joint Conference on Artificial Intelligence (IJCAI), 2019.

Sihui Luo, Wenwen Pan, Xinchao Wang, Dazhou Wang, Haihong Tang, and Mingli Song. Collabora-
tion by competition: Self-coordinated knowledge amalgamation for multi-talent student learning.
In ECCV, 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

Kaitlin Maile, Luga Hervé, and Dennis George Wilson. Structural learning in artificial neural
networks: A neural operator perspective. Transactions on Machine Learning Research, 2022. URL
https://openreview.net/forum?id=gzhEGhcsnN. Survey Certification.

I. Misra, Abhinav Shrivastava, A. Gupta, and M. Hebert. Cross-stitch networks for multi-task learning.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3994–4003,
2016.

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the same
things? uncovering how neural network representations vary with width and depth. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=KJNcAkY8tY4.

11

https://openreview.net/forum?id=HJGU3Rodl
https://openreview.net/forum?id=HJGU3Rodl
https://proceedings.neurips.cc/paper/2019/file/685bfde03eb646c27ed565881917c71c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/685bfde03eb646c27ed565881917c71c-Paper.pdf
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=gzhEGhcsnN
https://openreview.net/forum?id=KJNcAkY8tY4
https://openreview.net/forum?id=KJNcAkY8tY4

Under review as a conference paper at ICLR 2023

Marin Orsic, Ivan Kreso, Petra Bevandic, and Sinisa Segvic. In defense of pre-trained imagenet
architectures for real-time semantic segmentation of road-driving images. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12607–12616, 2019.

Dripta S Raychaudhuri, Yumin Suh, Samuel Schulter, Xiang Yu, Masoud Faraki, Amit K Roy-
Chowdhury, and Manmohan Chandraker. Controllable dynamic multi-task architectures. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10955–10964, 2022.

Martin M Riccomagno and Alex L Kolodkin. Sculpting neural circuits by axon and dendrite pruning.
Annual review of cell and developmental biology, 31:779–805, 2015.

Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection of
non-linear functions for multi-task learning. In International Conference on Learning Representa-
tions, 2018. URL https://openreview.net/forum?id=ry8dvM-R-.

Chengchao Shen, Xinchao Wang, Jie Song, Li Sun, and Mingli Song. Amalgamating knowl-
edge towards comprehensive classification. In Proceedings of the Thirty-Third AAAI Confer-
ence on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence
Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,
AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019. ISBN 978-1-57735-809-1. doi: 10.1609/
aaai.v33i01.33013068. URL https://doi.org/10.1609/aaai.v33i01.33013068.

N. Silberman, Derek Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference
from rgbd images. In ECCV, 2012.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 22045–22055. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
fb2697869f56484404c8ceee2985b01d-Paper.pdf.

Trevor Scott Standley, Amir Roshan Zamir, Dawn Chen, Leonidas J. Guibas, Jitendra Malik, and
Silvio Savarese. Which tasks should be learned together in multi-task learning? In ICML, 2020.

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate Saenko. Adashare: Learning what to share
for efficient deep multi-task learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 8728–
8740. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/
2020/file/634841a6831464b64c072c8510c7f35c-Paper.pdf.

S. Vandenhende, S. Georgoulis, B. De Brabandere, and L. Van Gool. Branched Multi-Task Networks:
Deciding What Layers To Share. In BMVC, 2020.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,
and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. IEEE transactions on
pattern analysis and machine intelligence, PP, 2021.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Fed-
erated learning with matched averaging. In International Conference on Learning Representations,
2020a. URL https://openreview.net/forum?id=BkluqlSFDS.

Lijun Wang, Jianming Zhang, Oliver Wang, Zhe Lin, and Huchuan Lu. Sdc-depth: Semantic divide-
and-conquer network for monocular depth estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 541–550, 2020b.

Jingwen Ye, Yixin Ji, Xinchao Wang, Kairi Ou, Dapeng Tao, and Mingli Song. Student becoming
the master: Knowledge amalgamation for joint scene parsing, depth estimation, and more. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2824–2833,
2019.

Changqian Yu, Changxin Gao, Jingbo Wang, Gang Yu, Chunhua Shen, and Nong Sang. Bisenet
v2: Bilateral network with guided aggregation for real-time semantic segmentation. International
Journal of Computer Vision, 129(11):3051–3068, 2021.

12

https://openreview.net/forum?id=ry8dvM-R-
https://doi.org/10.1609/aaai.v33i01.33013068
https://proceedings.neurips.cc/paper/2020/file/fb2697869f56484404c8ceee2985b01d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fb2697869f56484404c8ceee2985b01d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/634841a6831464b64c072c8510c7f35c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/634841a6831464b64c072c8510c7f35c-Paper.pdf
https://openreview.net/forum?id=BkluqlSFDS

Under review as a conference paper at ICLR 2023

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 5824–
5836. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/
2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf.

Lijun Zhang, Xiao Liu, and Hui Guan. Automtl: A programming framework for automated multi-task
learning, 2021.

Lijun Zhang, Xiao Liu, and Hui Guan. A tree-structured multi-task model recommender. In First
Conference on Automated Machine Learning (Main Track), 2022. URL https://openreview.
net/forum?id=BEl4CgaHLlc.

13

https://proceedings.neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
https://openreview.net/forum?id=BEl4CgaHLlc
https://openreview.net/forum?id=BEl4CgaHLlc

Under review as a conference paper at ICLR 2023

A ADDITIONAL RELATED WORKS

MTSL relies on local task similarity to drive group neuron creation and removal of the corresponding
task neurons. The learned convolutional filters in different task branches might not align one-on-one
due to the permutation invariance of convolutional neural networks (Wang et al., 2020a). Existing
works (Wang et al., 2020a; Leontev et al., 2019; Singh & Jaggi, 2020; He et al., 2018) use different
ways to align the corresponding layers of two models to counteract the permutation invariance. MTSL
uses CKA (Kornblith et al., 2019) to align neurons based on representation similarity. Knowledge
amalgamation approaches (Li & Bilen, 2020; Shen et al., 2019; Luo et al., 2020; 2019; He et al.,
2018) address distilling the knowledge from multiple learned teachers into a single student. (Ye et al.,
2019) create task-specific coding at a layer in the student network using a small network for feature
distillation. MTSL uses this feature distillation process to exploit the knowledge of the task neurons
set to be removed.

B GROUPING ALGORITHM

At the beginning of the structural learning phase, the task nodes are grouped according to the
local similarity between task node features. The grouping algorithm used to provide this grouping
decision is detailed in Algorithm 2. This algorithm provides the best possible task grouping, which is
subsequently used to determine the creation of group nodes and the removal of task nodes.

Algorithm 2: Grouping
Input: Task set T and Similarity Sij , i, j ∈ T , i ̸= j;
Group G← {tasks};
Grouping G ← {groups};
Task value in group G is Vt ← 1

i

∑
i Sti, where i ⊂ G\t;

Group value VG ← 1
t

∑
t Vt, where t is the #tasks in group ;

Unique Grouping G ⊂ G, such that all tasks are present exactly once;
for all unique groupings do
VG ← 1

g

∑
g Vg , where g is the #groups in grouping;

end
Final grouping← grouping with maximum VG;
Result: Final grouping

C ADDITIONAL TRAINING DETAILS

We provide additional training details to aid with reproducibility. The five tasks used in our exper-
iments S, D, E , N and A are evaluated with mIoU, RMSE, BCE (Binary Cross Entropy Error),
Cosine Similarity, and MSE, respectively. The edge detection task E concerns the predictions of
semantic edges in the scene. We use an encoder-decoder architecture where the first four layers of
the encoder are initialized with ImageNet pretrained weights, while the last layer of the encoder and
the decoder are initialized randomly.

For both baselines and MTSL, we use the same training hyperparameters and evaluation metrics. For
training, we use the Adam optimizer with a learning rate of 1e-4 for 80 epochs. We use the step-wise
learning schedule with steps at epochs 60 and 70. The batch size used is 16, a weight decay of 5e-5
and we equally weigh all task losses (all task losses have a weight of 1). In addition to averaging all
parameters to initialize the group node, we also average the optimizer state of the task nodes to get
the optimizer state of the group node. All other parameters that are not removed retain their weights,
as well as their optimizer state. The grouping threshold γ used is 0.8 and the number of structural
learning phases is set to 10. The task learning epochs for subsequent phases are 2, 2, 2, 2, 4, 4, 8,
8, 8, and 8 and knowledge amalgamation is done for 1, 1, 2, 2, 2, 2, 4, 4, 8, and 8 epochs in the
subsequent structural learning phases. The task learning epochs and knowledge amalgamation epochs
are increased progressively based on nature of task representations learned at different stages of
training. In early training, all task nodes are in early layers and need to learn low-level features. Our
intuition here is that these generic features are likely common across tasks and can be learned fast.

14

Under review as a conference paper at ICLR 2023

The former suggests our use of low epochs in the structural learning phase, and the latter suggests the
task learning phase early in the training. As we progress through the training, more epochs would be
required to learn task-specific features, suggesting the increase in task-specific phase epochs. Also,
later in the training, features of each task likely diverge becoming more task-specific, suggesting the
increase in structural learning phase epochs.

D SENSITIVITY ANALYSIS

D.1 SENSITIVITY OF THE CONVERGED ARCHITECTURES

In the main paper, we showed that the converged architecture differs between the two datasets
Cityscapes and NYUv2. This suggests that the algorithm is sensitive to the dataset. In addition, we
observe that the converged architectures are also sensitive to the initialization of the encoder and to
random seeds. We tabulate the different architectures obtained in Table 5. The layer column lists the
layers in the network, and the corresponding entries in the remaining columns show which tasks have
been grouped. For instance, [D, N , A] means D, N , and A are grouped together.

Table 5: Sensitivity of the converged architecture to different initialization of the encoder and random
seeds in both datasets. The random seeds groupings using ImageNet pretrained weights for the
encoder.

Layer Seed 0 Seed 1 Seed 2 Random
Seed 2

C
S

1-6 [S, E , D, N , A] [S, E , D, N , A] [S, E , D, N , A] [S , E , D, N , A]
7,8 [S , E , A], [D, N] [S, E], [D, N , A] [S, E], [D, N , A] [S , E , D, N , A]
9 [S, E , A], [D], [N] [S, E], [D], [N], [A] [S, E], [D, N , A] [S , E , D, N , A]
10 [S, E , A], [D], [N] [S, E], [D], [N], [A] [S, E], [D, N], [A] [S , E , D, N , A]

N
Y

U 1-6 [S, E , D, N , A] [S, E , D, N , A] [S, E , D, N , A] [S , E , D, N , A]
7,8,9 [S , E], [D, N , A] [S, E , N], [D, A] [S, E], [D, N , A] [S , E , D, N , A]

10 [S, E], [D], [N], [A] [S], [E], [N], [D, A] [S], [E], [D, N , A] [S , E , D, N , A]

D.2 SENSITIVITY TO GROUPING THRESHOLD

The grouping threshold determines whether or not a group of task nodes are similar enough to lead to
the creation of a group node and eventual removal of the concerned task nodes. The sensitivity of
MTSL to different grouping thresholds is shown in Table 6. A high grouping threshold would mean
that task nodes are never grouped, and the resultant architecture will be similar to STN in terms of
GMac and parameters. However, the performance would still be different due to the use of CKA to
regularize the task representations. A low grouping threshold would mean that task nodes are always
grouped leading to architectures more similar to One-Net. We observe that for a threshold of 0.7 or
less, MTSL leads to One-Net architecture, but the performance is not sufficient. A threshold of 0.9 or
higher leads to slow inference networks. A threshold of 0.8 provides the right trade-off and is used
for all experiments in the main paper.

D.3 SENSITIVITY TO NUMBER OF TASKS

We evaluate whether or not MTSL leads to improvements over One-Net when only 4 out of the 5 tasks
are used. To this end, we train multi-task networks for 4 tasks, namely S, E , D and N . The results
are tabulated in 7. We observe that even when there are 4 tasks, MTSL improves over One-Net.

E CONVERGED ARCHITECTURES

In Table 1, we provide results for state-of-the-art LTB and BMTAS methods. Here, we visualize
the converged architectures of LTB and BMTAS along with those of MTSL and provide inferences.
Figure 3 illustrates the converged architectures on both the Cityscapes and NYUv2 dataset. We see
that LTB and BMTAS generally converged to a larger architecture in comparison to MTSL. MTSL is

15

Under review as a conference paper at ICLR 2023

Table 6: Sensitivity of MTSL to the grouping threshold. For example, MTSL-0.1 denotes MTSL with
a grouping threshold of 0.1. # (M) denotes the number of parameters in millions.

Network S ↑ D ↓ E ↓ N ↑ A ↓ ∆SD
MTL ↑ ∆MTL ↑ # (M) GMac

C
S

STN 61.95 6.38 0.0341 0.6108 0.0535 - - 107.10 31.03

One-Net 60.02 6.71 0.0421 0.5941 0.0620 -4.10 -10.06 21.70 7.06
MTSL-0.1 59.98 6.75 0.0439 0.5955 0.0626 -4.48 -11.44 21.70 7.06
MTSL-0.2 59.97 6.68 0.0433 0.5956 0.0629 -3.92 -10.98 21.70 7.06
MTSL-0.3 59.97 6.70 0.0437 0.5961 0.0629 -4.06 -11.25 21.70 7.06
MTSL-0.4 60.32 6.67 0.0436 0.5960 0.0626 -3.59 -10.90 21.70 7.06
MTSL-0.5 59.95 6.68 0.0437 0.5963 0.0626 -3.95 -11.09 21.70 7.06
MTSL-0.6 60.31 6.72 0.0431 0.5967 0.0628 -3.98 -10.81 21.70 7.06
MTSL-0.7 59.48 6.68 0.0432 0.5965 0.0625 -4.32 -10.90 21.70 7.06
MTSL-0.8 60.64 6.52 0.0415 0.6023 0.0565 -2.13 -6.59 22.99 9.53
MTSL-0.9 60.04 6.46 0.0359 0.6074 0.0559 -2.12 -2.91 95.97 16.30
MTSL-1.0 60.73 6.46 0.0340 0.6105 0.0538 -1.61 -0.71 107.10 31.03

N
Y

U

STN 35.36 52.36 0.0566 0.7966 0.1401 - - 107.10 33.99

One-Net 33.99 53.26 0.0634 0.7378 0.1557 -2.80 -7.22 21.70 7.77
MTSL-0.1 34.48 53.29 0.0634 0.7330 0.1859 -2.13 -11.39 21.70 7.77
MTSL-0.2 33.99 52.95 0.0635 0.7328 0.1840 -2.49 -11.30 21.70 7.77
MTSL-0.3 34.69 52.92 0.0638 0.7337 0.1824 -1.48 -10.75 21.70 7.77
MTSL-0.4 34.07 53.23 0.0634 0.7346 0.1772 -2.65 -10.32 21.70 7.77
MTSL-0.5 34.19 52.94 0.0633 0.7349 0.1861 -2.20 -11.36 21.70 7.77
MTSL-0.6 34.27 53.07 0.0636 0.7360 0.1860 -2.21 -11.43 21.70 7.77
MTSL-0.7 34.53 53.22 0.0638 0.7330 0.1888 -2.00 -11.89 21.70 7.77
MTSL-0.8 34.63 52.81 0.0586 0.7309 0.1649 -1.46 -6.48 22.84 10.11
MTSL-0.9 35.22 52.25 0.0587 0.7149 0.1504 -0.10 -4.30 95.97 17.87
MTSL-1.0 35.71 52.88 0.0565 0.7921 0.1344 0.00 0.74 107.10 33.99

Table 7: Sensitivity of MTSL to the number of tasks. # (M) denotes the number of parameters in
millions.

Network S ↑ D ↓ E ↓ N ↑ ∆SD
MTL ↑ ∆MTL ↑ # (M) GMac

C
S

STN 59.84 6.43 0.0341 0.6114 - - 85.68 24.80

One-Net 60.38 6.79 0.0415 0.5966 -2.31 -7.18 21.63 6.83
MTSL 60.41 6.43 0.0360 0.6068 0.45 -1.35 77.33 13.75

N
Y

U STN 35.41 53.10 0.0572 0.7881 - - 85.68 27.18

One-Net 34.37 53.29 0.0623 0.7427 -1.65 -4.49 21.63 7.51
MTSL 35.95 51.69 0.0585 0.7127 2.08 -1.92 77.33 15.09

16

Under review as a conference paper at ICLR 2023

(a) Converged architecture on Cityscapes dataset.

(b) Converged architecture on NYUv2 dataset.

Figure 3: Illustration of the converged architecture of LTB, BMTAS, and MTSL. In each figure, each
row of circles represents a layer in the encoder. At the last layer of the encoder, each task branch out
with their own heads.

able to learn a more efficient architecture, likely because of the use of the CKA regularization term,
which forces tasks to learn similar representations, leading to more sharing across tasks.

F CENTERED KERNEL ALIGNMENT (CKA)

Centered Kernel Alignment (CKA) provides the similarity between two layers by computing the
similarity between the output representations of the said layers. Let X and Y represent the output
representations obtained for N images by the two layers to be compared. X and Y are then transformed
by taking the mean across the spatial dimension to obtain N×C dimensional representations. We
then use the unbiased estimate (Nguyen et al., 2021) to obtain the CKA. First, the gram matrices of
the two representations GX = XXT and GY = Y Y T are calculated and centered. CKA is then
obtained using Equation 4.

CKA =
GX .GY

||GX ||F × ||GY ||F
(4)

In MTSL, to enforce the similarity between tasks, the CKA regularization term is calculated between
pairs of task representations by using the current training minibatch. CKA similarities for grouping

17

Under review as a conference paper at ICLR 2023

(a) In Cityscapes dataset. (b) In NYUv2 dataset.

Figure 4: Task vs the total similarity of the corresponding task representations with all other task
representations at the output of the first layer. MTSL leads to higher CKA similarities with the aid of
CKA regularization, as shown by the taller green bars.

Table 8: Sensitivity of BMTAS to the resource loss weight λ. For example, BMTAS-0.1 refers to
λ=0.1 # (M) denotes the number of parameters in millions.

CS NYU

Network ∆SD
MTL ↑ ∆MTL ↑ # (M) GMac ∆SD

MTL ↑ ∆MTL ↑ # (M) GMac

BMTAS-1.0 -3.07±0.38 -1.89±0.21 79.69 22.10 -3.84±0.64 -5.06±0.38 68.15 21.67
BMTAS-0.1 -3.45±0.19 -2.02±0.08 79.31 24.25 -4.38±0.98 -5.18±0.53 79.17 25.20
BMTAS-0.5 -3.19±0.47 -1.95±0.17 79.31 24.25 -3.83±1.07 -5.10±0.63 79.17 25.20
BMTAS-0.05 -3.84±0.39 -2.19±0.11 68.30 21.03 -4.00±0.74 -5.07±0.42 79.17 25.20
BMTAS-0.01 -3.55±0.34 -2.10±0.20 79.17 23.04 -3.58±0.83 -4.90±0.41 78.65 24.02
BMTAS-0.02 -3.48±0.18 -2.06±0.11 78.64 21.96 -4.40±0.87 -5.16±0.46 76.69 24.17

decisions during training are calculated using a subset of 800 training images in Cityscapes and all
795 training images in NYUv2. To demonstrate that CKA can be optimized, we look at the sum
of CKA values of a task layer with all other task layers in STN and MTSL illustrated in Figure 4.
The similarities are taken using the output representations of the first layer of different single-task
networks (STNs). In the case of MTSL, this similarity is taken right before tasks are grouped in the
first layer. For example, the gray bar for S is obtained by adding the similarity of the first layer in the
single task segmentation network with the first layer of all other task networks. The plot shows that
MTSL is able to increase similarity between tasks, as is evident by the taller green bars, by using
CKA regularization.

G SENSITIVITY OF BMTAS TO RESOURCE LOSS WEIGHT

We test the sensitivity of BMTAS to the resource loss weight. Both ∆SD
MTL and ∆MTL values remain

fairly close to each other and remain within standard deviation. Parameter count and GMac change
due to the change in the effect of resource loss. We note that in the main paper, we use λ=0.05 based
on the values used by the authors.

H ROBUSTNESS TO NATURAL CORRUPTIONS

We look at the robustness to natural corruptions of the different state-of-the-art methods and MTSL
when using the ResNet encoder and DeepLab head. The results are tabulated in Table 9. Cross-
stitch shows the best results among all methods likely because of the task-specific adapter blocks
and task-specific networks. However, as discussed in Section 4.1, Cross-stitch has a low inference
efficiency contrary to the other methods. When comparing LTB, BMTAS and MTSL, except in
noise corruption, MTSL provides the most robustness. The cause of the reduced robustness of
MTSL to noise corruption is currently unclear. Task interference could likely play a role, but further
investigation can be done in future work.

18

Under review as a conference paper at ICLR 2023

Table 9: Robustness to natural corruptions under four categories when using the ResNet encoder and
the DeepLab head. MTSL shows better robustness compared to LTB and BMTAS in most cases.

Network ∆SD
MTL ↑ ∆MTL ↑

Noise Blur Weather Digital Noise Blur Weather Digital

C
S

One-Net -8.55 -5.48 -9.72 -1.79 -3.26 -3.94 -1.60 -1.38
Cross-stitch -1.94 -0.17 -3.42 +2.51 +0.14 -1.28 +3.51 +1.04

MTAN -6.53 -6.03 -6.42 -0.95 -6.23 -7.30 -13.28 -4.03

LTB-R -2.52 -2.83 -6.08 -2.23 +1.84 -2.26 -1.24 -1.21
BMTAS-R -3.48 -2.37 -3.63 -1.63 -1.80 -1.67 +1.01 -0.96
MTSL-R -5.64 -3.35 -7.13 +0.95 -2.87 -2.97 -1.61 +0.03

LTB -6.50 -3.98 -8.75 -2.35 -0.08 -3.42 -1.68 -1.47
BMTAS -7.77 -3.49 -11.11 -2.63 -1.60 -2.81 -5.37 -1.55
MTSL -9.52 -1.68 -4.87 +0.56 -3.21 -2.46 -1.14 +0.16

N
Y

U

One-Net -2.84 -2.89 -4.77 -1.25 -1.74 -5.02 -3.00 -4.92
Cross-stitch +5.82 -1.29 -3.31 +1.23 +5.53 -1.42 +1.12 -1.48

MTAN +2.42 -4.87 -3.78 +0.36 +0.78 -5.57 -4.53 -4.26

LTB-R +0.98 -1.74 -1.76 -0.84 +0.19 -0.70 -1.33 -0.92
BMTAS-R +2.73 -0.20 -0.44 +0.52 -1.16 -0.52 +0.06 -0.14
MTSL-R -2.13 -3.18 -2.94 -0.02 +1.56 -3.11 +0.20 -3.52

LTB +11.21 -2.61 -6.18 -3.76 +6.49 -4.52 -4.07 -5.47
BMTAS +11.27 -3.97 -6.82 -3.63 +4.41 -5.18 -6.94 -5.34
MTSL +1.41 -1.58 -4.11 +1.09 +1.00 -2.67 -0.30 -2.85

Table 10: Generalization and robustness comparison of MTSL against a version in which the learned
architecture is reinitialized and retrained (MTSL-R).

Network ∆SD
MTL ↑ ∆MTL ↑ ∆SD

MTL ↑ ∆MTL ↑
Generalization N B W D N B W D

C
S One-Net -3.47 -9.65 -5.78 -1.32 -3.81 -2.15 +3.02 -7.73 -1.36 -12.22

MTSL-R -1.22 -6.71 -3.49 +0.15 -4.64 +0.51 +4.50 -4.13 +0.23 -8.33
MTSL -1.35 -7.04 -3.03 +0.21 +0.49 +1.42 +2.92 -3.72 +2.60 -7.07

N
Y

U One-Net -2.77 -9.82 +10.25 -3.71 -3.27 -2.72 +15.72 -8.51 -11.79 -10.35
MTSL-R -1.34 -6.71 +7.25 -1.84 -2.29 -1.42 +15.92 -7.16 +3.31 -7.72
MTSL +0.06 -6.21 +1.92 -2.65 -0.84 -1.14 +13.50 -8.03 +3.22 -7.54

I RETRAINING THE CONVERGED ARCHITECTURES

We evaluate the effectiveness of the learned architecture with and without the learned parameters.
The learned architecture is reinitialized and retrained under the same training settings as MTSL. The
result of this retrained architecture is presented as MTSL-R in Table 10. Both MTSL-R and MTSL
provide improved results when compared with One-Net, suggesting that both the learned architecture
in and of itself and the MTSL training procedure of simultaneously learning the architecture and its
parameters are beneficial.

Next, we provide results for MTSL-R, where the converged architectures are retrained from scratch.
Instead of retraining the architecture converged on a dataset to retrain on the same dataset, we use the
converged architecture in Cityscapes to train on NYUv2 and vice versa. We refer to this switched
evaluation as MTSL-R-Switch. The results are provided in Table 11. We observe that switching the
converged architectures leads to marginal improvements.

19

Under review as a conference paper at ICLR 2023

Table 11: Switching of the converged architectures. # (M) denotes the number of parameters in
millions.

Network S ↑ D ↓ E ↓ N ↑ A ↓ ∆SD
MTL ↑ ∆MTL ↑ # (M) GMac

C
S

STN 61.95 6.38 0.0341 0.6108 0.0535 - - 107.10 31.03

One-Net 60.02 6.71 0.0421 0.5941 0.0620 -4.10 -10.06 21.70 7.06
MTSL-R 60.34 6.46 0.0414 0.6028 0.0567 -1.92 -6.51 22.99 9.53

MTSL-R-Switch 61.30 6.54 0.0380 0.5987 0.0569 -1.78 -4.67 22.83 9.20

N
Y

U

STN 35.36 52.36 0.0566 0.7966 0.1401 - - 107.10 33.99

One-Net 33.99 53.26 0.0634 0.7378 0.1557 -2.80 -7.22 21.70 7.77
MTSL-R 34.94 52.89 0.0585 0.7342 0.1524 -1.10 -4.43 22.84 10.11

MTSL-R-Switch 35.25 52.66 0.0628 0.7308 0.1561 -0.44 -6.30 22.90 10.47

Table 12: MTSL with a different similarity metric called RSA. # (M) denotes the number of parameters
in millions.

Network S ↑ D ↓ E ↓ N ↑ A ↓ ∆SD
MTL ↑ ∆MTL ↑ # (M) GMac

C
S

STN 60.87±0.78 6.37±0.02 0.03±0.00 0.61±0.00 0.05±0.00 - - 107.10 31.03

MTSL 60.68±0.10 6.52±0.03 0.04±0.00 0.60±0.00 0.06±0.00 -1.35±0.70 -7.04±0.56 22.86 8.96
MTSL-RSA 60.61±0.39 6.43±0.05 0.04±0.00 0.61±0.00 0.06±0.00 -0.72±0.61 -2.36±0.18 95.97 16.3

N
Y

U STN 35.63±0.53 52.70±0.25 0.06±0.00 0.80±0.00 0.14±0.00 - - 107.10 33.99

MTSL 35.50±0.25 52.46±0.23 0.06±0.00 0.73±0.00 0.16±0.00 +0.06±1.03 -6.21±0.90 22.81 9.89
MTSL-RSA 35.50±0.20 52.19±0.12 0.06±0.00 0.71±0.00 0.15±0.00 +0.31±0.54 -4.77±0.53 95.97 16.3

J ADDITIONAL SIMILARITY METRIC

Instead of using CKA for alignment and grouping, a variety of other similarity metrics can be used.
Here, we replace CKA with Representation Similarity Analysis (RSA) and provide the results in
Table 12. We observe that RSA is able to improve the results of MTSL but at the cost of additional
computation.

K EXTENDED NUMBERS FOR COMPARISON WITH SOTA

Table 13 provides extended numbers for all the sota methods against which MTSL is compared.

L ROBUSTNESS TO ADVERSARIAL ATTACK

In addition to the robustness to natural corruptions discussed in the main paper, we evaluate the
robustness to PGD attacks (Madry et al., 2018). We perform the attacks using four epsilon levels
(0.25, 0.5, 1 and 2), step size of 1 and number of iterations determined using min(ϵ + 4, ⌈1.25ϵ⌉)
(Kurakin et al., 2017). For each task S and D, the corresponding task loss is used for attack. MTSL
provides improved robustness over One-Net in most cases, as seen in Table 14.

M EXTENDED NUMBER FOR GENERALIZATION RESULTS

The generalization performance of the baselines and MTSL have been provided in Table 15 with
extended digits after the decimal point where required.

N EXTENDED NUMBERS FOR ABLATION RESULTS

The performance of each task using different components of MTSL is provided in Table 16.

20

Under review as a conference paper at ICLR 2023

Table 13: Generalization and inference efficiency comparisons between MTSL and state-of-the-art
methods, namely cross stitch (Misra et al., 2016), MTAN (Liu et al., 2019), LTB (Guo et al., 2020)
and BMTAS (Bruggemann et al., 2020). LTB-R and BMTAS-R denote the results obtained by
retraining the converged models of LTB and BMTAS. In MTSL-RSA, the similarity metric CKA is
replaced with RSA. # (M) denotes the number of parameters in millions.

Network S ↑ D ↓ E ↓ N ↑ A ↓

C
S

STN 50.77±0.18 7.22±0.01 0.0642 0.5819 0.2246

One-Net 50.90±0.13 7.36±0.03 0.0650±0.00 0.5783±0.00 0.2302±0.00

Cross-stitch 52.63±0.34 7.08±0.01 0.0644±0.00 0.5818±0.00 0.2250±0.00

MTAN 51.41±0.63 7.31±0.01 0.0650±0.00 0.5805±0.00 0.2626±0.00

LTB 49.57±0.47 7.47±0.02 0.0649±0.00 0.5812±0.00 0.2289±0.00

LTB-R 51.29±0.28 7.22±0.03 0.0643±0.00 0.5820±0.00 0.2253±0.00

BMTAS 48.84±0.29 7.50±0.03 0.0649±0.00 0.5809±0.00 0.2290±0.00

BMTAS-R 51.18±0.32 7.24±0.06 0.0644±0.00 0.5820±0.00 0.2253±0.00

MTSL 50.81±0.59 7.26±0.03 0.0644±0.00 0.5820±0.00 0.2268±0.00

MTSL-RSA 51.10±0.20 7.18±0.02 0.0644±0.00 0.5819±0.00 0.2254±0.00

N
Y

U

STN 34.56±0.19 54.17±0.17 0.0764±0.00 0.7712±0.00 0.5933±0.00

One-Net 33.49±0.38 53.35±0.29 0.0776±0.00 0.7041±0.00 0.6590±0.00

Cross-stitch 34.25±0.23 52.90±0.24 0.0768±0.00 0.7010±0.00 0.6096±0.00

MTAN 33.79±0.51 53.33±0.27 0.0764±0.00 0.7070±0.00 0.6563±0.00

LTB 31.92±0.04 55.21±0.22 0.0768±0.00 0.6964±0.00 0.6345±0.00

LTB-R 34.04±0.47 53.49±0.40 0.0768±0.00 0.7725±0.00 0.5970±0.00

BMTAS 32.09±0.29 54.64±0.36 0.0768±0.00 0.6978±0.00 0.6370±0.00

BMTAS-R 34.30±0.26 53.88±0.12 0.0764±0.00 0.7685±0.00 0.5968±0.00

MTSL 33.83±0.30 53.09±0.11 0.0776±0.00 0.6993±0.00 0.6233±0.00

MTSL-RSA 33.74±0.33 53.33±0.31 0.0768±0.00 0.7047±0.00 0.6271±0.00

21

Under review as a conference paper at ICLR 2023

Table 14: Robustness to PGD attack of the baselines and MTSL.

Network S ↑ D ↓
0.25 0.5 1 2 0.25 0.5 1 2

C
S

STN 45.42 40.76 31.14 24.56 10.80 13.21 19.93 25.86

One-Net 45.28 40.97 31.41 24.84 11.63 14.42 22.16 29.04
MTSL 46.42 41.72 31.94 25.34 11.28 14.02 21.52 28.58

N
Y

U

STN 21.58 17.96 11.65 8.24 85.98 103.13 150.55 194.52

One-Net 20.75 17.31 11.17 7.83 85.40 103.67 149.12 191.13
MTSL 21.88 18.25 11.50 7.90 85.00 102.85 148.80 191.21

Table 15: Generalization comparisons between MTSL and baselines. # (M) denotes the number of
parameters in millions.

Network S ↑ D ↓ E ↓ N ↑ A ↓

C
S

STN 60.87±0.78 6.37±0.02 0.0342±0.00 0.6106±0.00 0.0535±0.00

One-Net 60.34±0.37 6.76±0.04 0.0423±0.00 0.5943±0.00 0.0616±0.00

One-Net-L 60.71±0.21 6.75±0.03 0.0421±0.00 0.5942±0.00 0.0615±0.00

MTSL 60.68±0.10 6.52±0.03 0.0419±0.00 0.6029±0.00 0.0583±0.00

N
Y

U STN 35.63±0.53 52.70±0.25 0.0570±0.00 0.7955±0.00 0.1355±0.00

One-Net 34.15±0.15 53.44±0.39 0.0636±0.00 0.7370±0.00 0.1688±0.01

One-Net-L 34.42±0.17 53.36±0.31 0.0634±0.00 0.7366±0.00 0.1682±0.01

MTSL 35.50±0.25 52.46±0.23 0.0595±0.00 0.7298±0.00 0.1605±0.00

Table 16: Ablation results of different tasks.

Align Avg ATT S ↑ D ↓ E ↓ N ↑ A ↓

C
S

✓ 60.54±1.06 6.38±0.02 0.0362±0.00 0.6070±0.00 0.0558±0.00

✓ 61.13±0.10 6.40±0.05 0.0359±0.00 0.6073±0.00 0.0557±0.00

✓ ✓ 60.95±0.34 6.43±0.02 0.0358±0.00 0.6075±0.00 0.0560±0.00

✓ ✓ 60.29±1.32 6.60±0.13 0.0421±0.00 0.6006±0.00 0.0584±0.00

✓ ✓ 59.39±1.39 6.67±0.11 0.0436±0.00 0.5974±0.00 0.0596±0.00

✓ ✓ ✓ 60.68±0.10 6.52±0.03 0.0419±0.00 0.6029±0.00 0.0583±0.00

N
Y

U

✓ 35.34±0.06 51.88±0.06 0.0589±0.00 0.7145±0.00 0.1470±0.00

✓ 35.54±0.44 51.97±0.47 0.0590±0.00 0.7140±0.00 0.1469±0.00

✓ ✓ 35.64±0.50 52.40±0.07 0.0589±0.00 0.7102±0.00 0.1461±0.00

✓ ✓ 34.80±0.33 52.80±0.06 0.0584±0.00 0.7331±0.00 0.1634±0.00

✓ ✓ 34.18±0.44 53.05±0.21 0.0588±0.00 0.7344±0.00 0.1599±0.02

✓ ✓ ✓ 35.50±0.25 52.46±0.23 0.0595±0.00 0.7298±0.00 0.1605±0.00

22

	Introduction
	Related works
	Multi-Task Structural Learning (MTSL)
	Problem Setup
	Aligning Task Specific Representations
	Creating Group Nodes
	Removing Task Neurons
	MTSL Algorithm

	Experiments
	Comparison with state-of-the-art methods
	IID Generalization and Inference Efficiency
	Robustness to Natural Corruptions
	Converged Network Architecture and Task Groups
	Ablation Study

	Conclusion
	Additional related works
	Grouping Algorithm
	Additional training details
	Sensitivity analysis
	Sensitivity of the converged architectures
	Sensitivity to grouping threshold
	Sensitivity to number of tasks

	Converged Architectures
	Centered Kernel Alignment (CKA)
	Sensitivity of BMTAS to resource loss weight
	Robustness to natural corruptions
	Retraining the converged architectures
	Additional similarity metric
	Extended numbers for comparison with SOTA
	Robustness to Adversarial Attack
	Extended number for generalization results
	Extended numbers for ablation results

