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Abstract: In this research, we introduce a novel approach to the challenge of suc-
tion grasp point detection. Our method, exploiting the strengths of physics-based
simulation and data-driven modeling, accounts for object dynamics during the
grasping process, markedly enhancing the robot’s capability to handle previously
unseen objects and scenarios in real-world settings. We benchmark DYNAMO-
GRASP against established approaches via comprehensive evaluations in both
simulated and real-world environments. DYNAMO-GRASP delivers improved
grasping performance with greater consistency in both simulated and real-world
settings. Remarkably, in real-world tests with challenging scenarios, our method
demonstrates a success rate improvement of up to 48% over SOTA methods.
Demonstrating a strong ability to adapt to complex and unexpected object dynam-
ics, our method offers robust generalization to real-world challenges. The results
of this research set the stage for more reliable and resilient robotic manipulation
in intricate real-world situations. Experiment videos, dataset, model, and code are
available at: https://sites.google.com/view/dynamo-grasp.1
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1 Introduction

Grasp point detection is essential for successful robotic manipulation, as it requires identifying the
optimal location on an object for a robot to securely grasp and manipulate. Rapid and reliable grasp-
ing capabilities for a wide range of objects can benefit various applications, such as warehouse and
service robots. Suction grasping is a popular grasping modality in real-world settings due to its sim-
plicity and reliability when handling objects with nonporous, flat surfaces compared to parallel-jaw
or multi-finger grasping. Existing methods for finding suitable grasping areas for suction grippers
typically focus on maximizing suction seal quality and robustness against wrenches, taking into
account the object’s shape, size, and surface properties [1, 2].

Most existing methods for suction grasping assume a top-down manipulation setting, where objects
are initially placed on a stable, flat surface before being grasped, and the robot attempts to grasp
the object from above. This is due to the suction cup gripper requiring the robot to apply a specific
amount of force to press the suction cup against the object’s surface, which causes the cup to deform
and create an air seal, resulting in a secure suction grasp. Consequently, an object being grasped
needs sufficient and stable support in the direction opposite the robot’s pushing. Without such
support, the object may move in an unfavorable direction, leading to the suction cup’s failure to
form the air seal. However, numerous real-world scenarios require a robot to grasp objects without
stable support, such as grasping from a container with a side opening or from an unstable pile of
objects. In these situations, the objects may exhibit significantly more complex dynamics during
the manipulation process due to the displacement caused by the robot’s motion and the objects’
interactions with one another. State-of-the-art grasp point detection methods for suction grasping
could suffer from these complex object-picking scenarios because they do not consider the objects’
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movement during the manipulation process. This limitation greatly restricts the range of scenarios
in which suction grippers can be applied, preventing them from reaching their full potential in real-
world manipulation tasks. Fig.1.a. illustrates a real-world manipulation task.

In this work, our goal is to fully exploit the potential of suction grippers by developing a grasp
point detection model that not only examines quantitative metrics such as suction quality but, more
importantly, considers the object dynamics during the picking process. This paper makes the fol-
lowing contributions: 1. Suction Grasping by Taking Object Movement into Consideration:
We describe the challenge of complex object movement during suction grasping, which no current
state-of-the-art method adequately addresses. 2. An Open Source Novel Suction Grasping Sim-
ulation: To address this challenge, we developed a high-performance suction grasping simulation
environment using Isaac Gym[3]. This simulation environment models the influence of object dy-
namics on the success of suction grasps throughout the grasping process. 3. A Dataset and Learned
Model: Utilizing the simulation environment, we generated a dataset that contains more than one
million simulated grasps and trained a grasp point detection model that takes into account how the
movement of objects and the robot’s kinematics impact the success of grasping. 4. Evaluation in
a Real-world Warehouse Setting: We assessed two grasp point detection approaches alongside
our model. In both simulated and real-world experiments, our method surpassed the alternatives in
terms of accuracy and consistency.

2 Related Work

Figure 1: a. Suction grasping for real-world sce-
narios remains challenging due to limited analy-
sis of object movements. b. SOTA methods only
reason for object’s surface properties. Left: The
quasi-static spring model. Right: Wrench basis for
the suction cup. [1] c. Left: A warehouse picking
scenario. Middle: DexNet failing the grasp due to
object toppling. Right: An effective grasp point
that prevents unfavorable object movements. See
the project website for experiment videos.

Suction-based robot manipulators have gained
widespread popularity in real-world applica-
tions. For instance, suction grasping methods
are used in manufacturing [4, 5, 6], warehous-
ing [7, 8], underwater manipulation [9, 10],
food and fruit manipulation [11, 12, 13, 14],
etc. Another major direction where suction
grasping has been applied is in the exploration
of end-effector modalities [15, 16, 17, 18].

Analytic Models. In the realm of conventional
suction cup grippers, the effective analysis of
grasp quality necessitates the modeling of var-
ious cup properties. Given that these suction
cups are typically fashioned from elastic mate-
rials, such as rubber or silicone, researchers fre-
quently employ spring-mass systems to repre-
sent their deformations [1, 2, 19]. Upon estab-
lishing a secure grasp on an object using a suc-
tion gripper, the suction cup is typically mod-
eled as a rigid entity. The subsequent analysis
involves assessing the forces imposed on the
object, encompassing those along the surface
normal, friction-induced tangential forces and
suction-generated pulling forces [20]. Mahler
et al. [1] introduced a combined model in
DexNet3.0, incorporating both torsional fric-
tion and contact moment within a compliant
model of the contact ring between the cup
and the object. This amalgamated model has
demonstrated its efficacy and is employed in
subsequent works [2, 21]. Additionally, this work adapts the analytic models from DexNet3.0 for
the purpose of data annotation.
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Learning Suction Grasps. Machine learning research in robotics has been actively exploring the se-
lection of optimal grasp points to enhance suction grasping for intricate manipulation tasks [22, 23].
These tasks include novel object picking, object stewing, picking from containers, etc. Existing
approaches generate training data through either human expertise [24] or simulations [1, 2, 22, 25].
DexNet3.0 [1], for instance, synthesizes training data and proposes suction grasp points that aid
in forming an effective suction seal and ensuring wrench resistance. Several other studies cen-
ter around clustered scenarios by creating models that take RGB-D input and predict graspable
points [2, 25, 24]. Jiang et al. [22] proposed a methodology that simultaneously considers grasping
quality and robot reachability for bin-picking tasks. Despite these studies primarily focusing on an-
alyzing surface properties or robot configuration, they largely overlook how the displacement of the
object during the picking process might impact the success of the task. Addressing this particular
aspect is the main focus of our work.

Visual Pushing. This project also shares relevance with the active research area of object dis-
placement modeling during manipulation [26, 27]. Effective non-prehensile manipulation strategies
have been successfully applied to enhance grasping operations [28, 29, 30]. Recently, reasoning
object translation via visual input has gained huge advances. Transporter and its variants [31, 32]
have introduced a data-efficient learning paradigm that links visual inputs to desired robotic actions.
Nonetheless, these methods are underpinned by a strong assumption of translational equivariance
in visual representation, a condition that is often not met in non-table-top settings. Visual foresight
methods [33, 34] have offered a model-based framework that predicts future observations based on a
state-action pair. However, these approaches necessitate searching through the action space given a
specific task, which can be time-consuming for intricate real-world problems. Other existing studies
[35, 36, 37] have examined robotic manipulation from a sideways perspective. However, none of
them have explicitly modeled the complex dynamics caused by the interaction between the robot
and the objects.

3 Problem Statement
Our objective is to identify grasp points on a target object within a container filled with multiple
items, using a single-view depth image observation. The identified grasp points should enable a
robot to successfully establish a suction grasp, even when the object lacks stable support in the
direction opposite to the robot’s push. Consistent with previous suction grasp point detection stud-
ies [1, 2, 21], a grasp point is defined by a target point [p,v]. Here, p ∈ R3 represents the center of
the contact ring between the suction cup and the object, while v ∈ S2 denotes the gripper’s approach
direction. The grasp labeling function is defined as 1 if the grasp successfully forms a suction grasp
on the target object, and 0 if it does not. This section discusses the crucial criteria in order to form a
successful suction grasp.

3.1 Seal Quality and Wrench Resistance

A suction cup is capable of lifting objects owing to a differential in air pressure. This differential is
created across the cup’s membrane by a vacuum generator, which pulls the object toward the cup.
Ensuring a tight seal between the suction cup and the target object is crucial for successful operation.
For sealing evaluation, we follow the highly effective quasi-static spring-based model proposed in
DexNet 3.0 [1]. As shown in Fig.1.b., this model uses a combination of three spring systems to
represent suction cup deformation. A perimeter springs system is used to assess the deformation
between adjacent vertices, namely vi and vi+1. The cone springs system signifies the deformation
of the suction cup’s physical structure, as determined by the distance between vi and a. Lastly, the
flexion springs, which connect vertex vi to vi+2, are employed to resist bending along the surface of
the cup.

When the suction cup forms an air seal with the object, the suction gripper should be able to resist
wrenches that are caused by gravity or other disturbances. The suction ring contact model proposed
in DexNet 3.0 [1] efficiently encapsulates the forces experienced by a suction cup during a grasp.
As depicted in Fig.1.b, this model takes into account five forces. The actuated normal force (fz) and
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Figure 2: An overview of the proposed pipeline: a. We conducted system identification using 19
everyday objects of diverse shapes, weights, volumes, and materials to ascertain the function F
discussed in Section 4. b. Calculation of deformation score at each simulation time step. c.&d. Gen-
erating dataset with our simulation environment. e.&f. Trained DYNAMO-GRASP model outputs
an affordance map highlighting optimal grasp areas.

vacuum force V represent the gripper pressing into the object along the contact axis and air suction
pulling the object, respectively. The friction forces (fx, fy) and torsional friction (τz) result from
the normal force exerted between the suction cup and the object, acting as resistive forces. Lastly,
the elastic restoring torques (τx, τy) result from the elastic restoring forces within the suction cup,
which apply torque on the object along the boundary of the contact ring.

3.2 Object Movement

Most established suction grasping techniques assume little to no movement of the object during the
process, which facilitates the deformation of the suction cup, thereby enabling the formation of an
air seal for a secure grasp. However, in various practical manipulation scenarios, the target object
might not have ample and steady support opposite the robot’s push. This lack of support can lead
to undesirable shifts in the object’s position, preventing the successful creation of the air seal. The
situation becomes even more complex when other objects are located near the target, due to the
interactions among them. This work addresses these complexities by modeling the movement of
objects during the picking process, which enhances the applicability and efficiency of suction-based
grippers in real-world manipulation tasks. Assuming that an object’s state is denoted by its Cartesian
pose and velocity in a workspace, represented as s = (p, δp), the states of i objects in a container
at time t can be represented as st = {st0 , st1 , ..., sti}. At each time step, a robot equipped with a
suction gripper performs a pushing action at = (ft,p,v), applying a force ft to a specific location,
p, on the object’s surface in the direction of v. The state transition model p(st+1) = T (st, at)
provides a distribution over the potential movements of the objects during the picking process.

4 DYNAMO-GRASP

This section proposes a robot learning pipeline designed to create a grasp point detection model.
This model suggests suction grasp points by analyzing combined information regarding object sur-
face properties and object movement during the picking process. We first implemented a new
suction grasping simulation environment that accurately simulate suction cup properties and ob-
jects’ displacement caused by the robot’s motion and the objects’ interactions with one another. A
transformer-based model is trained to take a depth image as input and generates an affordance map
over the target object’s surface, indicating the likelihood of a successful suction grasp if a robot
executes a pushing action along the surface normal across various areas of the object. Please note
that our method primarily focuses on analyzing the impact of physical interaction between robots
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and objects on the quality of a suction grasp. During execution, we filter out grasp points that of-
fer inadequate air seals and wrench resistance, based on DexNet’s output. Fig.2 shows the system
architecture.

4.1 Simulation Environment and Data Generation

In order to eliminate the need for expensive real robot data collection, we carefully designed a sim-
ulation environment that accurately replicates the physical properties of the suction cup, the motion
of objects caused by robot grasping, as well as the robot’s kinematics during the picking process.
We chose to implement our grasping simulation environment based on Isaac Gym, allowing all
computations to be accelerated via GPUs. While Isaac Gym lacks important features that emulate
detailed suction grasping properties, our environment integrates several custom-implemented func-
tional modules. It provides a pipeline that accurately simulates a suction-picking process by taking
into account factors such as suction cup properties, robot kinematic constraints, collisions, control
noise, and object dynamics. Additional implementation details can be found in Appendix.A.1

Modeling Suction Properties. The majority of popular physics simulations for robotics merely
simulate suction grasp through simplistic mechanisms. These mechanisms typically involve directly
attaching the object to the robot’s end-effector or creating an attracting force between the object and
the effector. However, these approaches neglect critical physical details. Specifically, to successfully
register a suction grasp, the suction cup must be pushed and deformed to a sufficient extent that the
rim of the suction cup attaches to the surface of the object, thereby forming an air seal. Modeling
the amount of force required to form an air seal is crucial for this problem. This is because when the
target object lacks rigid support, exerting sufficient force directly causes the object’s displacement.
Understanding the magnitude of the force that the robot exerts on the target object is instrumental
in recreating accurate object dynamics. To model the deformation properties of the suction cup, we
first adopted the Perimeter Springs in the quasi-static spring system, as discussed in Sec 3.1. Given
a grasp point p on the object’s surface and the angle of incident v, this model calculates a suction
deformation score Sdeform = 1 − max(r1, r2, ..., rn), where ri = min(1, |(l′i − li)/li|). Here, li
represents the original length of the perimeter spring linking vertex vi and vi+1, and l

′

i is the length
after projecting the vertices onto the object’s surface. Using real-world data, we then conduct a
system identification process to ascertain the function F . This function signifies how forcefully the
robot needs to press the suction cup to achieve a successful grasp, given a deformation score of a
specific grasp point: F (Sdeform) → fgrasp.

Simulating Grasping Physics. (1) Kinematics: Our simulation accepts a robot’s model as input and
controls the robot using an end-effector controller to attempt various suction grasps. This approach
enables the simulation to demonstrate how the robot’s form factor and kinematic properties impact
its grasp. For instance, some grasp points might be physically unattainable for the robot due to its
manipulability and reachability constraints or collisions. (2) Generating Scenarios: Our experiment
primarily focuses on a warehouse lateral picking scenario. During our data generation process, the
simulation randomly selects one to three objects from our object set and spawns them into the same
container with random positions and orientations. We also implement domain randomization for
observation noise, objects’ weights, and controller parameters, ensuring the dataset reflects a range
of diverse physical properties and robot behaviors. One of the objects in the container is randomly
assigned as the target object to be picked. (3) Sampling Grasp Points: Given a picking scenario,
we sample two sets of candidate grasp points from the visible surface of the target object. The
first set is derived from uniform sampling across the entire surface, ensuring that the robot explores
diverse picking strategies. The second set contains the grasp points with the highest score returned
by DexNet via the Cross-Entropy Method (CEM) sampling strategy, ensuring the robot explores
areas that DexNet deems preferable.

Labeling Data. After sampling the candidate grasp points, our simulated robot ‘physically’ exe-
cutes each candidate p by performing a sequence of pushing actions A = {at}Tt=0, where each
action at = (ft,p,v). Here, v is determined by the surface normal at p. The robot exerts a con-
stant force ft = fc if the target object is unstable and moves in response to the gripper’s push.
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Once the object finds a position with adequate support against the push, ft gradually increases until
the suction cup deforms enough to form an air seal or until the object starts moving again. The
simulation of the suction cup’s deformation and the precise estimation of suction grasp registration
involves a continuous calculation of Sdeform and fgrasp at each timestep. This process considers
the suction cup’s current position relative to the target object, as shown in Fig.2.b. A force sensor
on the end-effector continuously monitors ft, and a grasp is deemed successful if ft ≥ fgrasp. Any
failure to meet this condition, such as collisions or inaccuracies in end-effector positioning due to
manipulability or reachability issues, results in the grasp point being marked as unsuccessful. For
successful grasps, we incorporated a penalization term pmove into the label to penalize unnecessary
object movements. Further details are discussed in Appendix.A.1.

4.2 Model Training

We employ the suction grasping simulation, as described above, to generate a dataset. This dataset
represents a warehouse scenario where a robot equipped with a suction gripper is tasked with extract-
ing a target object from a small container filled with multiple unorganized items. The experimental
setting is detailed in Sec.5. This dataset was used to train a model for grasp point selection. The
model takes a single-view point cloud of the container’s interior, a segmentation mask identifying
each object within the container and its boundaries as inputs. It then outputs an affordance map
representing the estimated probability of successful grasps at all potential grasp points on the target
object. The largest value in the affordance map indicates the optimal grasp point, (p∗,v∗), for the
given scenario. As shown in Fig.2.e, our model employs an auto-encoder architecture, integrating a
transformer encoder and a deconvolutional decoder. As previously mentioned, our data generation
process is designed to capture the inherent variabilities of complex real-world robotic suction grasp-
ing tasks. These include variations stemming from the physical properties of different objects, robot
constraints, and stochasticity in the controller, among others. Empirically, we discovered that the
following loss function can effectively mitigate the adverse effects of the high aleatoric uncertainty
in our dataset during training: LYmax

= 1
N

∑N
i=1(yi − ŷi)

2,∀yi ∈ Ymax. Here, Ymax represents
a subset of samples containing the n highest-scored grasp points on an object. More details are
discussed in Appendix.A.2.

5 Experiment

Figure 3: Left: The simulation environment for data gen-
eration and experiments. The simulated objects with differ-
ent weights, sizes, and shapes are displayed on the left side
of the robot. Right: In Section 5.1, challenging test cases
are presented where only DYNAMO-GRASP was success-
ful in grasping the target object. The orange, blue, and yel-
low points indicate the grasp points proposed by DYNAMO-
GRASP, DexNet, and the Centroid method, respectively.

Our experiment focuses on robotic
suction grasping for industrial ware-
house shelves [38]. Fig.1 depicts the
robot setup and the industrial shelv-
ing unit which is packed with ob-
jects. The opening of these shelv-
ing units is located on the side, which
makes suction grasping significantly
more challenging compared to top-
down manipulation scenarios, as the
robot’s movements can trigger a se-
ries of object displacements, leading
to objects being shifted or even top-
pled over. Consequently, this sce-
nario serves as an excellent evalua-
tion environment for our work. Our
system setup is as follows. Through-
out our evaluation, we employed a
Universal Robots UR16e robot equipped with a Robotiq EPick suction gripper and an Intel Re-
alsense L515 camera mounted on its wrist. A large variety of objects with different shapes, dimen-
sions, and physical properties were used in our experiment, details can be found in Appendix.A.1.
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Dyn(Full) Dyn w/ MSR Dyn w/o PEN Dex Cen
Total Success Rate 88.05% 86.75% 82.93% 81.12% 78.78%

Success Std 0.30 0.32 0.36 0.36 0.40

Table 1: The first row of the table displays the grasping success rate for each method, calculated
from all 1300 picks. The second row provides the standard deviation of the success rate for each
method across various scenarios. The first three columns of the table present an ablation comparison
for our DYNAMO-GRASP (DYN) method, while Dex and Cen represent the DexNet and Centroid
methods, respectively.

In our experiment, we focus on evaluating three methods: 1. our method DYNAMO-GRASP (Dyn),
2. DexNet3.0 (Dex), and 3. the Centroid method (Cen). DexNet3.0 is a SOTA suction-picking tech-
nique, serving as a strong baseline. Meanwhile, the Centroid method, a straightforward approach
involving suctioning on the object’s centroid, has proven effective in similar tasks at the Amazon
Robotics Challenge [37, 39].

5.1 Large-scale, Diverse Scenario Assessment, and Ablation Test

To comprehensively assess the performance and robustness of various methods for the suction grasp-
ing challenge, we generated 260 diverse picking scenarios. We use the same simulation environment
as we used to generate our training dataset. Each of the three methods was tested with five suction
grasps per scenario in simulation, resulting in 1300 simulated suction grasps for each method’s eval-
uation. The scenarios were generated by sampling from a distribution that incorporates even greater
randomness in object orientation than the dataset used for model training. These scenarios incorpo-
rate a wide range of object configurations, leading to potentially complex object movements during
picking.

Comparing the first, fourth, and fifth columns of Table.1, it is evident that our method exhibits a
marked improvement over both DexNet and the Centroid method in terms of overall success rate
and consistent performance across various scenarios. Our method achieved the highest success
rate of 88.05% and exhibited the least variance in success across different scenarios. The first,
second, and third columns of Table.1 presents an ablation test that illustrates the contributions of
various components in our learning pipeline to the effective training of our model. Dyn(Full) is our
final model, Dyn w/ MSR represents a model trained with standard MSR loss instead of the LYmax

described in Sec.4.2, and Dyn w/o PEN further remove the use of penalization term pmove in the
labeling process.

5.2 Real-world Evaluation

To assess real-world efficacy, we executed 375 real-world suction grasps to evaluate the various
methods. In this experiment, we curated three sets of scenarios: the Common set, Challenging
set, and Adversarial set, each embodying a distinct level or type of challenge for suction grasping.
The statistic of all experimental trials and their comparison to the simulated trials are detailed in
Table.2, 3, and 4 in Appendix.A.3.1.

The Common Set: In this experiment, we sampled ten scenarios from the 260 randomly generated
ones as detailed in Sec.5.1. We then recreated these scenarios in the real world using objects with
dimensions similar to those in the simulations. Each method was used to perform five grasps on each
of these scenarios. This evaluation set captures the typical challenges of most picking tasks in this
specific warehouse environment. As shown in Fig.4, our model demonstrates an advantage with
a total success rate of 94%, averaging 4.7 successful grasps out of five attempts and a standard
deviation of 0.67. In contrast, both DexNet and the Centroid method average 4.2 successful grasps
out of five attempts. Their higher standard deviations, 0.92 and 1.03 respectively, point to less
consistent performance.

The Challenging Set and Adversarial Set: We are particularly interested in the more challenging
cases. Consequently, we devised two sets of scenarios in the real world to further test the capa-
bilities of the three methods. The Challenging Set comprises five scenarios from the 260 scenarios
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Figure 4: Comparison of the total success rates of different methods underscores their real-world
performance on the three evaluation sets described Sec.5.2. The total success rate is computed by
dividing the number of successful grasps by the total number of attempts within an evaluation set.

described in Sec.5.1. These scenarios exhibit the lowest combined success rate for the three methods
in simulation, representing the most challenging situations our simulation generated without human
bias. In contrast, the Adversarial Set comprises five scenarios designed by a human operator, specif-
ically tailored to challenge these grippers. The objects featured in this set are everyday items that
were not included during the training phase. As depicted in Fig.4 and Table.3,4 in Appendix.A.3.1,
DYNAMO-GRASP markedly outperforms the two baseline methods in both total success rate
and performance consistency in more challenging scenarios. On the challenging set, our method
achieved a success rate of 60%, whereas, on the adversarial set, it reached 76%. In stark contrast,
DexNet and the Centroid method’s success rates are 24% and 36% for the challenging set, with both
achieving 28% on the adversarial set. Furthermore, DYNAMO-GRASP consistently executed more
than four successful grasps out of five attempts in over half of the scenarios in both sets. Meanwhile,
the other two methods faltered, rarely managing even three successful grasps in any scenario within
these evaluation sets.

Qualitative Analysis. The Fig.7 in Appendix.A.3.1 depicts the grasp points chosen by various
methods and indicates the success of each attempt during the adversarial evaluation. The figure
offers insights into the areas chosen by each method for grasping and sheds light on which areas are
more likely to lead to successful grasps. For example, in the first scenario, a tall bottle is partially
propped up by a box in the back. The test checks the grasp method’s awareness of potential object
toppling. DYNAMO-GRASP chose the bottle’s lower part, ensuring the box supported the pick.
Some grasp points chosen by the other two methods were higher up on the bottle leading to toppling
movements. Similarly, in scenarios two, four, and five, DYNAMO-GRASP tends to select grasp
points from regions that are overlooked by the other methods, resulting in more successful
grasps in these scenarios.

6 Conclusion and Limitation

This paper discusses the challenge of complex object movement during suction grasping, which
no current state-of-the-art method adequately addresses. We introduced DYNAMO-GRASP, a
dynamic-aware grasp point detection method that selects grasp points by factoring in the impact
of object movement on the success of suction grasping. DYNAMO-GRASP delivers improved
grasping performance with greater consistency in both simulated and real-world settings. Notably,
in real-world experiments involving challenging scenarios, our method exhibits an improvement of
up to 48% in success rate compared to alternative methods. Limitations and future work: Firstly,
the dataset used in our simulation environment primarily includes objects with relatively simple ge-
ometric shapes. This aspect could limit the efficacy of our method when dealing with objects of
uncommon or complex shapes. Similarly, our real-world experiments primarily involved simple ge-
ometric objects, such as boxes and bottles. In future research, there’s potential to develop effective
heuristics that combine information from both DYNAMO-GRASP and DexNet. While our method
emphasizes modeling object movement, DexNet primarily targets suction quality based on object
surface geometry. Integrating the strengths of both methods could lead to enhanced performance in
specific applications.
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A Appendix

A.1 Simulation Details

A simulation that accurately replicates the targeted robotic tasks can significantly enhance the effi-
ciency of various machine learning algorithms in learning these tasks[40, 41, 42, 43]. Most physi-
cal simulators, such as Mujoco[44], PyBullet[45], and IsaacGym[3], which excel at simulating the
physical properties of object motion, lack the functionality to simulate the characteristics of suction
cups during suction grasping. Our development efforts focus on utilizing the sensing and physical
information in IsaacGym to create more realistic suction-picking properties.

System Identification: Our system identification process aims to accurately model the force re-
quired by the robot to deform the suction cup. This ensures the rim of the cup adheres to the object’s
surface, forming an air seal. We chose 18 everyday objects with varied surface geometric charac-
teristics, aiming to cover a broad spectrum of deformation scores. For each object, we executed ten
suction grasps using our UR16 robot. To minimize measurement noise, the objects were held firmly
to limit movement during the grasping process. The force required for the suction gripper to achieve
a suction seal was detected by a sudden decrease in suction airflow and the force torque sensor lo-
cated on the robot’s wrist. We observed that the characteristics of our suction cup differ significantly
between nearly flat object surfaces and those that are more curved or intricate. Consequently, we
chose to represent the function F (Sdeform) → fgrasp using a hybrid linear function:

F (Sdeform) =

{
7.66− 0.06 ∗ Sdeform if Sdeform ≤ 80
22.2− 0.18 ∗ Sdeform otherwise

Typically, the size and firmness of a suction cup influence its working range for objects of varying
sizes and weights. However, this doesn’t profoundly alter the nature of this grasping problem. For
instance, when using a small suction cup to manipulate lighter, smaller objects, these objects typi-
cally have less friction with the container and reduced inertia, making them more prone to toppling.
However, even though we anticipate a certain degree of generalization to unseen suction cups, we
recommend carrying out the system identification process to achieve optimal performance.

Figure 5: Force exerted on an object as a function of the suction deformation score. Solid lines
represent system identification fits for cylindrical (blue-colored line) and cuboidal (violet-colored
line) objects. The dotted line demarcates the distribution of data points between the two object
types.

Domain Randomization: We performed domain randomization to vary object weights, where
each of the ten chosen objects had their original weights varied by −5 g, −10 g, 5 g, and 10 g,
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leading to five weight versions per object. These objects were cylindrical or cuboidal with varying
dimensions, inertia, and weights. The cylindrical ones had radii from 26mm to 46.3mm, heights
between 95mm and 155mm, and weights ranging from 118 g to 602 g. In contrast, the cuboidal
objects had lengths from 112mm to 165mm, breadths between 55mm and 102mm, and widths
from 55mm to 95mm. Notably, with every weight change, the inertia properties were appropriately
modified. When placing objects in the simulator, their orientations on all three axes were uniformly
picked from −180◦ to 180◦. Although their initial placements followed predefined bin coordinates,
potential collisions might displace some objects. As a preventive measure, we ensured that each
object remained within the bin limits and verified the stability of each object setup by spawning
it thrice and monitoring its movement at each simulation step for minimal displacement until the
suction gripper gets in contact with the target object. Lastly, to closely mimic our physical robot
setup with the Intel RealSense L515 camera, we added Gaussian noise (mean: 0mm, standard
deviation: 0.9mm) to the depth images.

Labeling: For the label for each configuration, each grasp point score serves as an indicator of
grasp success. A grasp point that fails to achieve a secure suction grip is assigned a definitive zero
score. Additionally, the label is designated as a ‘failure’ if the robotic arm does not align and picks
the object at the computed angle of incidence derived from the surface normals, ensuring the grasp
adheres to the pre-calculated optimal orientation. Another critical constraint is that the arm must
avoid unintended contact with any other object before establishing contact with the target, as such
collisions can compromise the grasp’s integrity and lead to potential inaccuracies or damage. On the
other hand, successful grasp points are scored using the equation s = 1− pmove, where,

pmove = max(0,min(obj movement, 0.3))

obj movement =

T−1∑
t=0

(
||trant+1 − transt||+ (1− |quatt+1 · quatt)

)
pmove is a penalization term that discourages unnecessary movement of the target object.
obj movement calculates the total movement of the target object during the picking process. The
picking horizon T is discretized by a fixed interval, and t represents a time step within T . tran and
quat represent the translation and orientation of the target object at a given time step, respectively.

Dataset: We implemented specific data augmentation techniques on our dataset to enhance our
model’s resilience against variances in real-world scenarios. We added Gaussian noise to the point
cloud data and flipped the input data along with their corresponding labels, strengthening the model’s
ability to recognize various object orientations and thereby improving its generalization capabilities.
These augmentation strategies significantly expanded the diversity of our training dataset, ensuring
the model’s proficiency in managing diverse input perturbations. The complete dataset, including
labels and augmented inputs, consisted of around 12000 configurations, including augmentations,
enhancing the dataset’s diversity and depth, which occupy approximately 10 GB of storage space.

A.2 Learning Details

Model Architecture: Our model employs a variation of the Vision Transformer (ViT), adopting the
architecture from Beyer et al.[46]. We chose ViT because it represents a state-of-the-art architecture
widely used in vision classification tasks. Utilizing this architecture demonstrates that a standard
network, when trained with our dataset, effectively addresses the challenge of suction grasping in
complex object clusters. This is achieved without the need for custom modifications to the model
architecture.

Loss Fuction: We initially experimented with both the standard MSE loss and Cross-entropy loss
but observed only mediocre performance from the model. As highlighted in Section 4, the domain
randomization process introduced significant stochasticity to our dataset. Empirically, we found the
presented loss function to be more effective in this specific context. The use of Ymax is a simple
technique designed to mitigate the adverse effects of high aleatoric uncertainty present in the training
data. It updates the model by only taking into account the grasp points that the model deems to have
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Figure 6: Training and validation metrics over epochs: The top row displays the metrics related to
training, with the left graph showing the training accuracy (calculated using all grasp points) and
the right graph presenting the training loss (determined with 15 highest-scored grasp points). The
bottom row focuses on validation metrics, with the left graph illustrating the validation accuracy
(using all grasp points) and the right graph depicting the validation loss (using the 15 highest-scored
grasp points)

a high confidence of success. This approach is aimed at penalizing false positive predictions made
with high confidence or encouraging true positive predictions made with high confidence while
disregarding low confidence labels, which usually arise due to data noise. We discovered that this
loss function led to improved prediction accuracy and produced a smoother affordance map.

Hyperparameters: We trained our ViT model using the Adam optimizer with a learning rate of
5e−5 and a batch size of 128 images. The model converged in about 500 epochs, and the training
was conducted on an NVIDIA RTX 3090. Our ViT model consists of eight heads, each with a
dimension of 64. Consequently, we set Q, K, and V to 128, 257, and 1536, respectively. The model
accepts a 4 × 256 × 256 tensor as input. The first, second, and third channels represent the x, y,
and z values of the cropped point cloud observation for the container. The fourth channel provides
a segmentation mask that localizes the target object. The model produces a 256 × 256 affordance
map. Each pixel in this map provides a score ranging from 0 to 1. A higher score indicates a more
favorable grasp point for achieving a successful suction grasp.

Segmentation Mask: Within the Isaac GYM simulator, we adhere to ground truth segmenta-
tion masks. For real-robot experiments, we used a specialized method, called “STOW” [47], that
combines VITA [48] and the Mask2Former [49], which is tailored for joint unseen object instance
segmentation and tracking. The method uses transformer-based architectures and dynamic tracking
anchors to handle real-world visuals characterized by dense clustering and substantial intra-frame
object displacements.

Grasp Point Selection: After getting the affordance map, we first identify the pixels that represent
the target object in the map using the segmentation mask. Subsequently, we use the DBSCAN
algorithm [50] to cluster regions displaying high-affinity scores exceeding 0.9. During this clustering
phase, each cluster encompasses a minimum of five pixels. The final grasp point is defined by the
centroid of the cluster with the highest average affinity score.
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Figure 7: Real-world adversarial evaluation with five grasp points for each configuration: DYNAMO
GRASP (our method), DexNet, and Centroid. The color-coded points represent the suggested grasp
points success and failure from various algorithms. The successfully identified grasp points are
marked by the color along the label “success” and “failure”.

A.3 Experiment Details:

In the real-world environment setup, distinct from the simulator approach, objects were first stowed
into a designated bin. Following this, a segmentation algorithm was employed to generate a mask
delineating each object. The user then selects the target object based on its unique value in the
grayscale mask image, referred to as the ‘target object id’. With the object identified, the next phase
involves running the inference of a user-provided algorithm to determine the optimal strategy for
picking the selected object. The entire operation is orchestrated through a state machine, ensuring
a seamless transition between stages. Each state is connected sequentially. In evaluating success
and failure across various methods, a grasp point is deemed unsuccessful if motion planning fails
consecutively on two occasions. Additionally, if the system does not create a suction with the
object, it is also considered a failure. A successful grasp is solely determined by the creation of a
good suction with the target object.

A.3.1 Extra Experimental Result:

The Sim2Real Gap: Our DYNAMO-GRASP model was exclusively trained using simulated data.
In most of our experiments, this model exhibited outstanding real-world performance without requir-
ing tuning using real-world data. This indicates the model’s strong ability to generalize in real-world
conditions, showcasing a minimal sim2real gap. To delve deeper into our pipeline’s constraints, we
pinpointed situations where simulation deemed the target object “impossible” to pick up. In these
instances, all three picking techniques registered a 0% success rate in simulation. Importantly, these
situations are infrequent, accounting for just around 3% of the 260 simulated test scenarios. We then
mirrored these situations in an actual warehouse environment and ran a real robot experiment as
delineated in Sec.5.2. Despite the struggles faced by all three methods to secure high success rates
(DYN: 16%, Dex: 8%, Cen: 40%), the real-world challenges weren’t as formidable as projected
by the simulation. However, this did highlight a sim2real gap in these rare scenarios. Our observa-
tions also revealed that, in cases where our simulation wasn’t entirely accurate, the centroid method
surpassed the performance of learning-based approaches. This observation emphasizes the value of
refining learning-based models using actual world data.
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Common Set
Real world experiments sim experiments
DYN Dex Cen DYN Dex Cen

Scenario 1 3 2 3 5 5 5
Scenario 2 5 4 5 5 5 5
Scenario 3 5 4 5 5 5 5
Scenario 4 5 5 5 5 5 5
Scenario 5 5 5 5 5 5 5
Scenario 6 5 5 5 5 5 5
Scenario 7 4 4 4 5 5 5
Scenario 8 5 4 4 0 5 5
Scenario 9 5 4 2 5 0 5
Scenario 10 5 5 4 5 5 5

Avg. Success Grasps 4.7 4.2 4.2 4.5 4.5 5
Std. Dev. 0.675 0.919 1.033 1.581 1.581 0

Total Success Rate 94% 84% 84% 90% 90% 100%

Table 2: Comparative evaluation of grasp success rates in common scenarios for three methodolo-
gies: DYNAMO-GRASP (DYN), DexNet (Dex), and Centroid (Cen). The table enumerates the
average success rates, standard deviations, and total success rates for each method.

Challenging Set
Real world experiments sim experiments
DYN Dex Cen DYN Dex Cen

Scenario 1 4 1 2 5 0 0
Scenario 2 2 2 3 0 3 3
Scenario 3 4 1 0 5 0 0
Scenario 4 0 1 3 0 0 2
Scenario 5 5 1 1 5 0 0

Avg. Success Grasps 3 1.2 1.8 3 0.6 1
Std. Dev. 2 0.447 1.304 2.739 1.342 1.414

Total Success Rate 60% 24% 36% 60% 12% 20%

Table 3: Comparative evaluation of grasp success rates in challenging scenarios for three method-
ologies: DYNAMO-GRASP (DYN), DexNet (Dex), and Centroid (Cen). The table enumerates the
average success rates, standard deviations, and total success rates for each method.

Adversarial Set
Real world experiments
DYN Dex Cen

Scenario 1 5 3 2
Scenario 2 3 0 0
Scenario 3 1 0 1
Scenario 4 5 3 1
Scenario 5 5 1 3

Avg. Success Grasps 3.8 1.4 1.4
Std. Dev. 1.789 1.517 1.14

Total Success Rate 76% 28% 28%

Table 4: Comparative evaluation of grasp success rates in adversarial scenarios for three method-
ologies: DYNAMO-GRASP (DYN), DexNet (Dex), and Centroid (Cen). The table enumerates the
average success rates, standard deviations, and total success rates for each method.
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