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ABSTRACT

Discovering high-entropy alloys (HEAs) with high yield strength is an important
yet challenging task in material science. However, the yield strength can only
be accurately measured by very expensive and time-consuming real-world exper-
iments, hence cannot be acquired at scale. Learning-based methods could facili-
tate the discovery process, but the lack of a comprehensive dataset on HEA yield
strength has created barriers. We present X-Yield, a large-scale material science
benchmark with 240 experimentally measured (“high-quality”) and over 100K
simulated (imperfect or “low-quality”) HEA yield strength annotations. Due to the
scarcity of experimental annotations and the quality gap in imperfectly simulated
data, existing transfer learning methods cannot generalize well on our dataset. We
address this cross-quality few-shot transfer problem by leveraging model sparsifi-
cation “twice” — as a noise-robust feature learning regularizer at the pre-training
stage, and as a data-efficient learning regularizer at the few-shot transfer stage.
While the workflow already performs decently with ad-hoc sparsity patterns tuned
independently for either stage, we take a step further by proposing a bi-level op-
timization framework termed Bi-RPT, that jointly learns optimal masks and au-
tomatically allocates sparsity levels for both stages. The optimization problem
is solved efficiently using gradient unrolling, which is seamlessly integrated with
the training process. The effectiveness of Bi-RPT is validated through extensive
experiments on our new challenging X-Yield dataset, alongside other synthesized
testbeds. Specifically, we achieve an 8.9 ∼ 19.8% reduction in terms of the test
mean squared error and 0.98 ∼ 1.53% in terms of test accuracy, merely using
5-10% of the experimental data. Codes and sample data are in the supplement.

1 INTRODUCTION

Machine learning (ML) methods have recently demonstrated great promise in the important field of
material science, and in this paper, we focus on ML-assisted high-entropy alloy (HEA) (Yeh et al.,
2004) discovery and property prediction. HEAs own promising properties that traditional alloys do
not hold, such as extraordinary mechanical performance at high temperatures, making them well-
suited options for various material applications. One particular property, i.e., the yield strength of
HEAs, characterizes the maximum stress a material can endure before starting to deform, which is
a critical parameter for customized HEA design.

However, in order to accurately measure the yield strength of specific HEAs, expensive scientific
experiments need to be conducted for each alloy, often involving hard-to-create experimental condi-
tions, especially at high temperatures (mainly caused by difficulties with oxidation control) as well
as extremely long experimental duration. At high temperatures, these measurements are typically
taken with the Gleeble system (Gle). From sample preparation to yield strength measurement can
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take between two to four weeks even for a domain expert team, including melting of the alloy,
machining the sample, and preparing and mechanically testing with the Gleeble. Therefore, it is
challenging to acquire yield strength measurements from those “high-quality” experiments at scale.

Similar to the trends in computer vision fields (Tremblay et al., 2018), recent efforts attempt to
mitigate the scarcity of real-world measurements using ML-based predictors: to directly predict
their yield strengths from the alloy inputs (Bhandari et al., 2021a); and such ML-based predictors
could be trained using simulated data. Indeed, material sciences applications are often blessed by
developed simulation models, e.g., Maresca & Curtin (2020). However, such a blessing is often
compromised by the domain gap between the simulated data and the “ground-truth” experimental
data, often due to many inevitable simplifications in simulation modeling. For example, the yield
strength of a material can vary greatly based on processing and testing conditions as well as grain
size and texture (Toda-Carballo et al., 2014; Lin et al., 2014); yet simulation models commonly rely
on properties intrinsic to the alloy and do not incorporate variations in experimental conditions. The
lack of public datasets in this field also renders it difficult to benchmark ML models’ progress.

In this paper, we start by curating a large-scale benchmark, called X-Yield, that for the first time
combines experimental data with simulation data to address the problem of predicting yield strength
in HEAs. While using experimental data is always preferred since they are “high-quality” ground
truths, it is impractical to generate high quantities of data, especially for capturing yield strength
at elevated temperatures. Thus, simulation data can be acquired by massive quantities to fill the
gap, despite their relatively “low quality” due to inherent model misspecification or simplifica-
tion. The low-quality simulation data was selected to represent ternary-septenary systems from
an eleven-element palette consisting of mostly refractory elements (Al-Cr-Fe-Hf-Mo-Nb-Ta-Ti-V-
W-Zr). While there are existing experimental databases (Borg et al., 2020) and models to predict
high-temperature yield strength in HEAs (Maresca & Curtin, 2020), to our best knowledge, this is
the first multi-fidelity dataset in the public domain that combines real experimental measure-
ments and large quantities (over 100K) of simulation data for mechanical property prediction in
HEAs. This specialized data set should be able to predict high-temperature yield strength across a
broad range of HEAs. The predictions of this model could be used to pinpoint which alloys are the
strongest at elevated temperatures, allowing experiments to focus on pre-sorted candidates for future
study eliminating the need to spend several weeks testing a candidate without promise.
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Figure 1: Proposed two-stage workflow. The HEA yield strength prediction model is first pre-
trained on massive “low-quality” simulation data, and is then fine-tuned/transferred on few-shot
“high-quality” experimental data to optimize its prediction in this target domain. Note that the tool
of sparsity will be leveraged in both pre-training and fine-tuning stages, for the purposes of gaining
noise robustness/transferablity and enhancing data efficiency, respectively.

The new X-Yield benchmark is set to facilitate ML for HEA yield strength prediction, but learn-
ing from such a multi-fidelity dataset is highly non-trivial. To this end, we next conceptualize a
cross-quality few-shot transfer workflow: first pre-training the prediction model on the data-rich
yet “low-quality” source domain (simulated data), and then fine-tuning the model towards the data-
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scarce yet “high-quality” target domain (experimental data). However, this vanilla workflow is chal-
lenged by two issues: a significant quality gap between source and target domains, and an extreme
data scarcity of target data. Inspired by the recent success of sparsity regularizers, we propose to
incorporate sparsity to regularize both stages: sparsifying pre-training to improve the robustness and
cross-domain transferability of learned features (Guo et al., 2018; Sehwag et al., 2019; Chen et al.,
2022; Sehwag et al., 2020; Ding et al., 2022; Diffenderfer et al., 2021), and sparsifying fine-tuning
to overcome data shortfalls (Liu et al., 2020; Chen et al., 2021; Tao et al., 2022). We demonstrate
proof-of-concept experiments that even the simplest magnitude-based weight pruning could play
effective regularization roles in our workflow. Furthermore, to avoid the ad-hoc two-step pruning
as well as trial-and-error sparsity ratio selection at either stage, we propose a novel integrated opti-
mization framework termed Bi-Level Regularized Pre-training and Transfer (Bi-RPT), that jointly
learns optimal sparse masks and automatically allocates sparsity levels for both stages.

Our main contributions are summarized as follows:

• Dataset: We present X-Yield, the first public large-scale, multi-quality material science bench-
mark for HEA yield strength prediction, containing alloys’ compositions, processing tempera-
tures, and yield strengths. Specifically, the yield strengths of 240 HEAs are experimentally mea-
sured, while that of the remaining samples (over 100K) is calculated by simulations.

• Methodology: we formulate a cross-quality few-shot transfer workflow that can jointly exploit
the simulated and experimental data for accurate predictions, and we innovate to leverage sparsity
for addressing both the simulated/experimental domain gap and the scarcity of experimental data.
While ad-hoc magnitude-based weight pruning is already found to be helpful, we further formulate
an integrated bi-level optimization framework called Bi-RPT to automate the optimal sparse mask
generation and sparsity ratio allocation at both pre-training and fine-tuning stages.

• Results: Extensive experiments show that Bi-RPT can boost performance on the X-Yield bench-
mark alongside other synthesized testbeds. In particular, for the yield strength regression task, we
achieve a reduction of 19 ∼ 38% on the test mean squared error by merely using 5-10% of the
available experimental data. For the yield strength classification task, we achieve 0.98% ∼ 1.53%
of improvement in terms of the test accuracy.

2 RELATED WORK

2.1 MACHINE LEARNING IN MATERIALS RESEARCH

ML has been applied to solve a wide range of problems in materials science ranging from the fields
of inorganic chemistry (Kailkhura et al., 2019) to sustainability (Gomes et al., 2021), and metal-
lurgy (Stan et al., 2020), with the typical purposes to predict materials properties and accelerate
simulations (Pilania, 2021). In both cases, ML techniques are hailed as reducing computational
time in contrast to traditional materials science methods and are typically fast to develop (Wei et al.,
2019). Later on, deep learning has been successfully applied to problems in the field of HEAs, in
particular to predict phase formation (Lee et al., 2021b; Zhu et al., 2022). These approaches provide
significant increases in speed compared to phase predictions with CALculation of PHAse Diagrams
(CALPHAD) (Saunders & Miodownik, 1998), density functional theory (Parr, 1983), and molecular
dynamics methods (Shuichi, 1991) commonly used in materials science. Other properties predicted
with deep learning are crystal structures, elastic constants (Liu et al., 2023) and hardness (Bhandari
et al., 2021b). When it comes specifically to the yield strength of HEAs, its prediction has also been
previously explored with deep learning (Liu et al., 2023; Bhandari et al., 2021a). However, a major-
ity of these efforts are restricted to the development of specific alloys (Zheng et al., 2021; Bhandari
et al., 2021b) or consist solely of transition metals (Wen et al., 2019), and many studies also only
use a small experimental dataset for prediction (Wen et al., 2021). A generalized multi-fidelity ML
model to predict yield HEA strength at scale remains to be absent yet highly demanded.

2.2 SPARSITY REGULARIZATION IN DEEP LEARNING

Sparsity or pruning was traditionally treated as a mainstream model compression approach in deep
learning (Han et al., 2015). Recently, sparse regularizers have been increasingly used to enhance
deep model robustness to various noise, malicious attacks, and distribution shifts. Guo et al. (2018);
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Sehwag et al. (2019); Gui et al. (2019) studied the intrinsic relationship between pruning and adver-
sarial robustness. Recently, Diffenderfer et al. (2021) comprehensively demonstrated the benefit of
model sparsification to improve robustness to distributional shifts (Hendrycks & Dietterich, 2019;
Bulusu et al., 2020). Sparse regularizers also exhibit promise in improving data efficiency. For ex-
ample, Zheng et al. (2019); Liu et al. (2020) proposed to learn model pruning strategies for few-shot
learning; Tian et al. (2020) combined model sparsification with meta-learning to improve few-shot
performance. Sparse regularizers have even been proven effective beyond few-shot image classifi-
cation, such as enhancing the data efficiency in image generation (Chen et al., 2021).

2.3 BI-LEVEL OPTIMIZATION

Bi-level optimization is a hierarchical framework where the variables in the upper-level optimiza-
tion problem are dependent on the lower-level problem. Finn et al. (2017); Rajeswaran et al. (2019)
formulated the meta-learning problem in the form of bi-level optimization, and solve it by using
first-order approximations. Other applications of bi-level optimization include data and label poi-
soning (Mehra et al., 2021; Huang et al., 2020), and adversarial training (Zhang et al., 2021). In this
work, we utilize bi-level optimization to formulate our two-stage workflow with sparsification and
find each stage’s optimal weights and sparse masks while considering their sequential dependency.

3 X-YIELD: A NEW BENCHMARK FOR HEA YIELD STRENGTH PREDICTION

Overview Conventional alloys typically have one principal element with small amounts of other
elements added to improve material properties (Ye et al., 2016) while HEAs can have multiple prin-
cipal elements. The discovery of HEAs opened the door to a significantly wider range of design
space to explore, most of which has yet to be examined (Miracle & Senkov, 2017). To address
the task of using ML to predict HEA yield strength, we focus on the sub-field of refractory HEAs
(RHEAs). These materials have been demonstrated to maintain excellent mechanical properties at
high temperatures (Li et al., 2020), making them ideal candidates for hypersonics and aerospace
industry applications. Prior work adopting ML to predict RHEA properties either uses solely exper-
imental data (Wen et al., 2021), or restricts predictions to only transition metals (Wen et al., 2019) or
specific alloys such as MoNbTaTiW (Bhandari et al., 2021a). Hence, a generalizable ML prediction
model for a broad range of RHEAs is still absent. As mentioned earlier, it is impractical to generate
high quantities of experimental data, especially for capturing yield strength at elevated temperatures.
There are also challenges specific to high-temperature measurements such as controlling oxidation,
confirming the heating profile and gradient within the samples, and use of more challenging experi-
mental techniques (crosshead displacement) than those at lower temperatures (extensometers).

This work develops X-Yield, the first publicly available, multi-fidelity dataset consisting of over
100K low-quality simulated points and 240 experimental data points to explore the RHEA design
space. In this study alone, the entire composition space of all alloys containing between ternary-
septenary systems from the Al-Cr-Fe-Hf-Mo-Nb-Ta-Ti-V-W-Zr family is examined. Since obtain-
ing real high-temperature yield strength data is challenging, a majority of the experimental yield
strength data in the literature was taken close to room temperature (Borg et al., 2020) even though
there is more interest in RHEA properties at the high-temperature end (Miracle & Senkov, 2017).
From X-Yield, a multi-fidelity ML model is expected to be trained to predict high-temperature yield
strength for a broad palette of RHEAs. The combination of high-temperature yield strengths from
the simulated dataset and experimental input can generate an ML model to accurately and efficiently
predict high-temperature yield strengths of alloys not included in the training set.

Dataset Construction The yield strength of the simulation data was predicted using the analytic
and parameter-free mechanistic yield strength model developed by Maresca & Curtin (2020). This
model describes body-centered cubic (BCC) multi-principal element alloy (MPEA) solid solution
strengthening associated with edge dislocations, in terms of elemental atomic volumes and elas-
tic moduli. The yield strength was predicted for all ternary (1% increments), quaternary (1% in-
crements), quinary (5% increments), senary (5% increments), and septenary (5% increments) al-
loys from the Al-Cr-Fe-Hf-Mo-Nb-Ta-Ti-V-W-Zr element family at temperatures between 300K-
2500K in increments of 100K. This resulted in over three billion data points of which approximately
100, 000 were randomly selected for inclusion in this study. Note that even this advanced simula-
tion model suffers from notable oversimplification and data quality issues. For example, The phase
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Figure 2: Left: the distribution of the yield stress; Middle: the distribution of the temperature; Right:
pairwise visualization of the yield stress.

stability and dislocation character were not used to filter alloys in the study and the model may
overpredict the yield strength of alloys with non-BCC phases and underpredict the yield strength of
alloys with different dislocation character, e.g. screw.

The high-quality experimental dataset was carefully filtered and curated from the database generated
by Borg et al. (2020) consisting of mechanical property information for MPEAs. All data points
were extracted that consisted solely of elements from the above element family, consisted only of
BCC phases, were at temperatures higher than 20°C, and contained a yield strength value.

Dataset Characteristics and “Quality Gap” As depicted in Figure 2, the simulation and exper-
imental yield stress have different distributions. In the low-quality simulation data, a considerable
portion of yield stress annotations is greater than 2, while the experimental data hardly contains
yield stress points beyond 2 (with one datapoint exception) due to the experimental condition con-
straints. The distribution of the simulated yield stress is also significantly more skewed than the
experimental ones. Pairwise visualization of the yield stress on the 240 high-quality experimental
samples suggests a substantial deviation between the simulation and experimental results. The dis-
tributions of the processing temperatures are also heterogeneous, i.e., the simulation data presents a
uniform pattern while the temperatures in the conducted experiments are in a bimodal shape. These
observations showcase the domain shifts or “quality gap” between simulations and experiments.

4 CROSS-QUALITY FEW-SHOT TRANSFER: A TWO-STAGE WORKFLOW
AIDED BY SPARSITY (TWICE)

In this section, we first introduce the basic two-sage workflow, upon which we propose sparsification
methods (a vanilla approach “Hand-Tune” and an improved principled framework “Bi-RPT”).
Basic Two-Stage Workflow: Pre-training then Fine-tuning Let us denote the high-quality target
domain (experimental data) by Dt, and the low-quality source domain (simulated data) by Ds. Our
goal is to learn a generalizable predictor over Dt while leveraging the aid of Ds. One naive idea is
to simply combine the two data domains and jointly train a supervised model. However, the large
domain gap between Ds and Dt, as well as the sample scarcity in Dt, will result in the jointly trained
predictor to fit Dt poorly. Instead, we propose to formulate our workflow as a two-stage pipeline:
first pre-training a model on Ds, and then fine-tuning to optimize the prediction over Dt.

Incorporating Bi-Stage Sparsity: A Vanilla Approach. However, the features learned from Ds

will inevitably suffer from domain gap and noise when applied towards Dt, and the extreme data
scarcity of Dt remains as another challenge. Inspired by the recent success of sparse regularizers
in improving both robustness/transferability and data efficiency, we attempt to incorporate sparsity
into both stages to address the two-fold challenges.

We first prove our concepts by proposing a vanilla ad-hoc approach, which we refer to as Hand-
Tune. Starting from pre-training over Ds, we perform the standard iterative magnitude pruning
(IMP) (Frankle & Carbin, 2019) during pre-training. In particular, we alternate between (re-)training
and pruning; each time, we prune the 20% smallest-magnitude weights from the existing non-zero
weights by default and continue (re-)training the remaining non-zero weights. Such a “prune-and-
retrain” routine is repeated for Ns rounds to obtain the final sparse mask ms (1 denotes the element
to be non-zero and 0 to be pruned) associated with the pretrained model weight. Then, we move on
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to fine-tuning over Dt, and start another round of IMP on top of the pre-trained model: note that
this second-stage IMP continues only on the subset of current non-zero weights, i.e., the 1-valued
regions in ms. IMP in fine-tuning repeats another Nt round (with the identical protocol as the first
stage), yielding another sparse mask mt. The final model uses the joint sparse mask ms ⊙ mt

where ⊙ represents the point-wise product.

Hereby, Ns and Nt are hyperparameters that control the sparsity allocation between two stages.
Intuitively, while certain sparsity may contribute to noise resilience, an overly large Ns will cause
the pre-trained model to be over-sparsified, limiting its capacity to learn sufficiently informative and
transferable features. Fine-tuning has a similar trade-off. Therefore, Ns and Nt have to be manually
tuned for the two-stage workflow to achieve good performance (see Appendix B.2).

Principled Bi-Stage Sparsity Integration with Bi-RPT. Hand-Tune has some apparent flaws: (1)
it removes weight elements by merely using weight magnitude information, which is not explicitly
task-driven; (2) the two sparse masks ms and mt are decided in a sequential manner rather than
jointly optimized, e.g., learning mt will passively suffer from any artifact in learning ms; (3) the
sparsity ratios assigned in both stages, as controlled by Ns and Nt, need to be manually tuned,
without any obvious insight beyond exhaustive hyperparameter search.

We, therefore, devise a more principled framework that can jointly learn the optimal sparse masks as
well as sparsity allocations for both stages, termed Bi-Level Regularized Pre-training and Transfer
(Bi-RPT). The optimization problem is expressed as follows (γ is a coefficient):

min
θ,ms,mt

E
(xt,yt)∼Dt

[Lt((ms ⊙mt)⊙ θ,xt, yt|θ∗,m∗
s)] + γR(m∗

s ⊙mt) (1)

s.t. {θ∗,m∗
s} = argmin

θ,ms

E
(xs,ys)∼Ds

Ls(ms ⊙ θ,xs, ys), (2)

where Ls/Lt represents the objective functions for the two stages, respectively, θ represents the
models’ parameters, and R represents the sparsity regularizer. Seemingly complicated at the first
glance, the bi-level optimization formulation of Bi-RPT actually admits a clear physics “workflow”
interpretation. Let us start from the lower-level problem (2) which instantiates the sparsity regular-
ized pre-training stage over Ds: its outputs include the pre-trained weight θ∗ and the corresponding
sparse mask ms. Then, the upper-level problem (1) depicts the sparsity regularized fine-tuning over
Dt, which inherits both θ∗ and m∗

s as its starting point. It continues to modify the weight as well
as to evolve another sparse mask mt. Eventually, a sparsity-promoting function R enforces the
total sparsity over the joint mask ms ⊙ mt, and the final model weights could be represented as
(ms ⊙mt)⊙ θ.

Importantly, the lower- and upper-level problems in Bi-RPT are solved in an end-to-end manner,
meaning that even the fine-tuning depends on θ∗ and m∗

s , it can, in turn, provide feedbacks for
adjusting the latter: hence a synergistic optimization is achieved between two stages. The sparse
mask selection now directly hinges on the end task (target domain loss Lt) rather than heuristics
such as weight magnitudes. Lastly, the sparsity levels of ms and mt do not need to be separately
designated nor manually controlled: we automatically learn the sparsity ratio allocation, under only
the total sparsity regularizer R.

To practically solve the bi-level optimization of Bi-RPT, we derive algorithms whose details can be
found in Appendix A. For the sparsity regularizer R, we adopt the smoothed ℓ0 term (Guo et al.,
2021) to facilitate differentiable training: a gate function gϵ(x) = x2/(x2 + ϵ), whose outputs are
almost binary when the ϵ is small, is used. In general, for the lower-level optimization problem, we
update the models’ parameters θ by gradients to minimize Ls; for the upper-level optimization, we
utilize the gradient unrolling to develop update rules for θ.

4.1 PROOF-OF-CONCEPT EXPERIMENTS ON IMAGE DATA

For proof-of-concept, we conduct experiments on a synthesized testbed of image classification, to
compare Hand-Tune and Bi-RPT. We adopt two source-domain dataset options: ImageNet (Deng
et al., 2009) and ImageNet-C (Hendrycks & Dietterich, 2019), the latter more noisy and corrupted.
Two target-domain options are also accompanied: CUB-200 (Wah et al., 2011) and CUB-200 (10-
shot), the latter designed to be rigorously “few-shot” where each class has only 10 training samples.
Different combinations of Ds/Dt allow us to conduct controlled experiments for stretch-testing
various algorithm options’ noise robustness as well as data efficiency.
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Several baselines are compared to Hand-Tune and Bi-RPT: (1) Pretrain-and-transfer: the basic
workflow of pre-training on Ds followed by finetuning on Dt, with no sparsity involved; (2) Pretrain
sparsity only /transfer sparsity only: following our proposed pretrain-and-transfer workflow, but
conducting IMP to only the pre-training/finetuning stage; (3) No Pretraining: directly training on Dt

without using Ds; (4) Mix Training: training one model on Ds and Dt combined. For those methods
with IMP involved, we hand-select the sparsity ratio(s) for either or both stages that yield the highest
generalization performance on Dt, i.e., from hyperparameter grid search via cross-validation.

Table 1 reports the accuracies of all methods over various source/target combinations, on the same
testing set of CUB-200 in Table 1. All methods use the same ResNet-18 backbone. We high-
light several key observations: (1) incorporating Ds in general helps both CUB-200 and CUB-200
(10-shot), and the improvement margin is much more substantial for the few-shot case; (2) models
trained by Mix Training fail to generalize on Dt - in fact even worse than No Pretraining, showcas-
ing the negative influence of the quality gap; (3) in the same regime of pre-training then fine-tuning,
adding appropriate sparsity helps, and two-stage sparsity can help more; (4) Bi-RPT stably outper-
forms Hand-Tune (especially, very notably in few-shot cases), despite the best efforts in tuning the
latter’s hyperparameters. More observations and analysis can be found in Appendix B (Tables A5
- A8, and Figure A4): including but unlimited to the backfiring effect of “over-sparsification”, and
the compound influence of per-stage IMP sparsity allocation in Hand-Tune.

Table 1: Experiments on image data: testing accuracy of fine-tuned ResNet-18 on CUB-200 / CUB-
200 (10-shot) as Dt, after pretraining on ImageNet and ImageNet-C as Ds, respectively.

Dt Methods Two-stage ms mt
Ds

ImageNet ImageNet-C

CUB-200

No Pretraining ✗ ✗ ✗ 44.27% / 7.98%
Mix Training ✗ ✗ ✗ 30.88% / 6.72% 27.32%/6.89%

Pretrain-and-transfer ✓ ✗ ✗ 74.16% / 38.66% 71.59% / 32.14%

/ CUB-200 (10-shot) Pretrain sparsity only ✓ ✓ ✗ 76.01% / 40.73% 73.70% / 38.76%
Transfer sparsity only ✓ ✗ ✓ 74.16% / 38.90% 71.83% / 32.53%

Hand-Tune ✓ ✓ ✓ 76.01% / 40.78% 74.01% / 39.94%
Bi-RPT ✓ ✓ ✓ 78.60% / 51.55% 76.29% / 47.01%

5 MAIN EXPERIMENTS ON THE X-YIELD BENCHMARK

5.1 IMPLEMENTATION DETAILS

Task Definition. The most naturally defined task on X-Yield is the regression, i.e., predicting the
yield strength of alloys, and calculating the error between the model prediction and “ground-truth”
(experimental results). Besides the regression task, we formulate another surrogate classification
task by constructing five categorical labels based on the bin intervals where the ground-truth yields
strength fall in. These intervals are: [0, 0.5), [0.5, 1), [1, 1.5), [1.5, 2), and [2,∞).

Data Representations. We featurize each HEA by mapping its composition and temperature into
a “pseudoimage” (please refer to Appendix B.5 and Figure A5). The pseudoimages have two chan-
nels: the first channel is constructed from the alloys’ composition using the randomized periodic
table structure (Feng et al., 2021). As the temperatures are originally recorded in Kelvin, we convert
and normalize them by Tnormalized = (K − 273.15)/2000 where K is the temperature in Kelvin, and
then embed the converted temperature as the second channel in pseudoimages.

Architectures and Baselines. The structure of the ML predictor we use is a convolutional neural
network. It consists of 3 convolutional layers, each of which has a kernel size of 3, followed by
Batch Normalization (Ioffe & Szegedy, 2015) and ReLU (Glorot et al., 2011) activation. A multi-
layer perceptron is appended after the convolutional neural network to generate the final prediction
for both the regression and classification tasks. We focus on comparing our main proposal, Bi-RPT,
with two baselines of No Pretraining and Pretrain-and-transfer, same as defined in Section 4.1.

Evaluation Metrics and Data Splits. We evaluate each method in two ways. Besides the widely
used 10-fold cross-validation, we explore two challenging extreme few-shot settings: we sample 5%
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(and 10%) of experimental data from each alloy type (ternary, quaternary, quinary and senary) as
our training set, and the rest are left as the test set. Note that these classes are not the classification
labels. Eventually, we have only 23(11) training samples and 217(229) testing samples. All the
low-quality (simulated) data is used for pretraining where applicable. For the regression task, we
report the best mean squared error (MSE) on the test splits; and for the classification task, we report
models’ test split accuracy to measure their performance.

Training Hyperparameters We pretrain the ML predictor on the simulation data for 10 epochs.
During the pretraining, we use the Adam optimizer (Kingma & Ba, 2014) with an initial learning
rate of 1 × 10−4 and a cosine annealing schedule (Loshchilov & Hutter, 2016). For the transfer
stage, we fine-tune the pretrained model on the experimental data for 90 epochs. The optimizer we
use is the SGD optimizer with an initial learning rate of 1 × 10−3. We also decay the learning rate
by 10 for every 30 epoch. The batch sizes for pretraining and fine-tuning are 16 and 4, respectively.

5.2 MAIN RESULTS

Classification and regression with extreme few-shot settings. We first apply Bi-RPT to solve the
regression and classification tasks under the two extreme few-shot settings where only 5% and 10%
experimental data are available, respectively. Table 2 shows that: (1) pretraining on simulation data
can benefit the ML predictor consistently on both the regression (over 10% reduction in MSE) and
classification (over 11% improvement in accuracy) tasks, especially when the data is more scarce;
(2) the integration of sparsity into the pretraining and transfer workflow can further strengthen the
predictor’s generalization, improving accuracy by 0.98% and reducing MSE by 8.91% using merely
10% training experiment data, and the improvement also becomes even more significant with 5%
training data (1.53% increase in terms of the accuracy and 19.75% reduction in terms of the MSE).

Table 2: Test accuracy on the testing set of different splits of high-fidelity alloy data. The experi-
ments are repeated 10 times, and we report both the mean and the 95% confidence interval.

Method 10% train samples 5% train samples

Test MSE Test Accuracy Test MSE Test Accuracy

No Pretraining 0.114± 0.007 54.84± 1.59% 0.212± 0.041 47.25± 0.80%
Pretrain-and-transfer 0.101± 0.001 65.85± 0.88% 0.162± 0.002 62.84± 1.96%

Bi-RPT 0.092± 0.011 66.83± 1.41% 0.130± 0.006 64.37± 1.10%

Classification and regression with 10-fold cross-validation. On the slightly “data-rich” 10-fold
cross-validation setting, we have observed a similar trend: the bi-stage regime of pretraining and
transfer out-performs the single-stage training pipeline, and incorporating sparsity can consistently
provide remarkable improvement to the ML predictor, particularly in the regression performance.

Table 3: Classification and regression performance under the ten-folded cross-validation settings.

Classification Regression

No Pretraining 67.50± 5.16% 0.226± 0.027
Pretrain-and-transfer 82.09± 3.86% 0.206± 0.026

Bi-RPT 82.50± 2.93% 0.068± 0.009

Performance comparison on alloys at various temperatures. Based on the trained model with
10% experimental data, we predict the yield strength of three alloys, MoNbTaTi, MoNbTaTiW and
HfMoNbTaTiZr, at different temperatures. Table 4 shows the predicted yield stress on these three
alloys using Bi-RPT and baselines. On the quinary and senary alloy systems, Bi-RPT shows ex-
ceptional precision in predicting the experimental yield stress. More scrutiny of those predictions
reveals several findings that neatly align with our material science expertise. For example, it is
known that screw dislocations are more likely to be dominant than the edge in MoNbTi and NbTaTi
ternaries (shown from the ternary comparison in the Citrine database (Borg et al., 2020)). Thus it
makes sense that the model under-predicts the MoNbTaTi and MoNbTaTiW cases: our model seems
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Figure 3: Prediction MSE under different temperatures. We compare the results of three methods:
No Pretraining (NP), Pretrain-and-transfer (PT), and Bi-RPT.

to correctly pick up these differences and predicts a higher yield strength. Another example is that
our model over-predicts HfMoNbTaTiZr at lower temperatures (300K ∼ 900K). Since all our col-
lected experimental samples are 100% body-centered cubic (which shows, admittedly, a limitation
of X-Yield compared to the tremendous variations in real-world HEAs), it is likely that a non-BCC
phase will appear at lower temperatures, hence lowering the yield strength.

Table 4: Predicted yield stress of different alloys under different temperatures. Only 10% of the
experimental data are available during fine-tuning. We compare the predicted yield stress generated
by Bi-RPT with our “No Pretraining” (NP) and “Pretrain-and-transfer” (PT) baselines and the sim-
ulation. The numbers with the smallest error are marked in bold.

Alloys Temperature (K) Predicted Yield Stress (GPa) Experimental (GPa)
Bi-RPT NP PT Simulation

MoNbTaTi

293.15 1.078 1.170 1.062 0.475 1.210
473.15 0.965 1.004 0.902 0.381 0.868
673.15 0.746 0.772 0.731 0.282 0.685
873.15 0.508 0.642 0.584 0.472 0.593

1273.15 0.425 0.570 0.488 0.114 0.539

MoNbTaTiW

298.15 1.268 1.031 1.068 0.814 1.399
873.15 0.677 0.569 0.607 0.372 0.689

1073.15 0.618 0.520 0.523 0.294 0.674
1273.15 0.536 0.530 0.486 0.232 0.620

HfMoNbTaTiZr

296.15 1.527 1.051 1.132 1.849 1.515
873.15 0.861 0.556 0.685 1.178 0.973

1073.15 0.762 0.536 0.612 0.516 0.791
1273.15 0.662 0.563 0.573 0.421 0.753

Performance at high temperatures. One of the important tasks in the alloy design community
is to find alloys that are capable of withstanding stress at high temperatures. To verify if Bi-RPT can
provide reliable recommendations to help the community achieve this goal, we look deeper into the
predictive performance in high-temperature regimes. We train our model with 10% data, predict the
yield stress for the rest 90%, and compare the predictive quality of models at high temperatures in
Figure 3. We can see that Bi-RPT significantly outperforms other baselines, especially at tempera-
tures greater than 1400K. These results suggest Bi-RPT could serve as a strong tool for designing
HEAs with superior yield stress at elevated temperatures.

6 CONCLUSIONS

To address the important yet challenging problem of HEA yield stress prediction, we curated and
released X-Yield, the first large-scale, multi-fidelity benchmark. To effectively leverage this bench-
mark, we also designed a two-stage cross-quality few-shot transfer workflow and proposed to utilize
sparsity to tackle both challenges of low data quality at pretraining and scarcity at transfer. Besides
ad-hoc methods, we formulated a principled bi-level optimization framework to automatically learn
the optimal sparse masks and sparsity allocation between two stages. Extensive experiments on both
image data testbeds and X-Yield demonstrate the Bi-RPT showed a substantial improvement over

9



Accepted as a workshop paper of ML4Materials at ICLR 2023

existing baselines. Moving forward, we are now closely working with material scientists to validate
our ML prediction results based on their domain expertise, and the team has already identified some
alloy candidates that appear promising to be experimentally validated.
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A MORE DETAILS ON METHODS

In this section, we present the technical details of our proposed method and framework (“Hand-
Tune” and “Bi-RPT”).

A.1 HAND-TUNE

Hand-Tune decides sparse masks for the two stages in an iterative way as explained in Algorithm 1.

Algorithm 1 Hand-Tune

Input: Initialization weights θ0, low-quality pretraining dataset Ds, high-quality fine-tuning
dataset Dt, number of IMP rounds Ns for the pretraining stage and Nt for the fine-tuning stage.
Output: the trained weights θ∗, the sparse mask ms for the pretraining stage, and the sparse
mask mt for the fine-tuning stage.
Initialize the sparse masks ms for the pretraining stage to be a all “1” mask.
Initialize the model’s weight as θ0 and train the weights on Ds to obtain θs.
for i = 1, 2, . . . , Ns do ▷ IMP at the pre-training stage

Prune 20% of the smallest-magnitude weights from the non-zero regions of ms ⊙ θs, by
setting the values at corresponding positions to those weights in ms to “0”.

(Re-)train the sparse weights ms ⊙ θs on Ds. Only θs is updated.
end for
Initialize the sparse masks at the fine-tuning stage mt to be all “1” masks and freeze ms.
Initialize model’s weight as ms ⊙ θs, and train on Dt to obtain ms ⊙ θt.
for i = 1, 2, . . . , Nt do ▷ IMP at the fine-tuning stage

Prune 20% of the smallest-magnitude weights from the non-zero regions of weights (ms ⊙
mt)⊙ θs, by setting the values at corresponding positions to those weights in mt to “0”.

(Re-)train the sparse weights (ms ⊙mt)⊙ θt on Dt. Only θt is updated.
end for
Obtain the final sparse weights (ms ⊙mt)⊙ θ∗ and return θ∗, ms and mt.

A.2 BI-RPT

We now build the techniques to solve the bi-level optimization problem formulated in Bi-RPT.

Formulation

min
θ,ms,mt

E
(xt,yt)∼Dt

[Lt((ms ⊙mt)⊙ θ,xt, yt|θ∗,m∗
s)] + γR(m∗

s ⊙mt)

s.t. {θ∗,m∗
s} = argmin

θ,ms

E
(xs,ys)∼Ds

Ls(ms ⊙ θ,xs, ys).

Lower-level problem We solve the lower-level problem through a p-step SGD unrolling. Let θ(k)

be the model weights, and m
(k)
s be the mask for the pretraining stage. The superscript (k) indicates

they have been updated on the upper-level for k steps.

θ(k) and m
(k)
s will be the starting points for the lower-level optimization problem. θ(t)

l and m
(t)
s,l are

the weights and mask, respectively, after being updated for t steps on the lower-level optimization
problem (implying θ

(0)
l = θ(k) and m

(0)
s,l = m

(k)
s ). The update rules can be written as

θ
(0)
l = θ(k),θ

(p)
l = θ

(p−1)
l − λl∇θLs|θ=θ

(p−1)
l

, (3)

m
(0)
s,l = m(k)

s ,m
(p)
s,l = m

(p−1)
s,l − λm,l∇mLs|m=m

(p−1)
s,l

, (4)

where λl is the learning rate for the model weight θ, and λm,l is the learning rate for the mask m
(t)
s,l

at the lower-level optimization problem.
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Upper-level problem and Sparse Regularization Loss The upper-level problem is the sum of
two losses: a normal training loss Lt and a sparse regularization loss R (γ is a coefficient).

We first develop update rules for the training loss Lt. The weights θ∗(:= θ
(p)
l ) and masks m∗

s(:=
m

(p)
s,l ) from the lower-level problem after p unroll steps will serve as the initialization of the upper-

level problem. We update the model weight θ and masks at the upper level by applying gradient-
based methods (take SGD as an example):

θ(k+1) = θ∗ − λu
dLt

dθ∗ (5)

= θ∗ − λu(
∂Lt

∂θ∗ +
∂Lt

∂m∗
s

∂m∗
s

∂θ∗ ),

where λu is the learning rate for the weights for the upper-level optimization problem. The gradient
on mt is easy enough: ∂Lt

∂mt
, while the gradient on ms is slightly complicated:

dLt

dm∗
s

=
∂Lt

∂m∗
s

+
∂Lt

∂θ∗
∂θ∗

∂m∗
s

. (6)

We expand the latter terms in Eqn. 5 and Eqn. 6 based on the first-order approximation (picking
p = 1) on the lower-level problem:

∂θ∗

∂m∗
s

=
∂(θ

(0)
l − λl∇θLs)

∂(m
(0)
s,l − λm,l∇ms

Ls)
=

∂(θ
(0)
l − λl∇θLs)

∂θ
(0)
l

∂θ
(0)
l

∂(m
(0)
s,l − λm,l∇ms

Ls)
+ (7)

∂(θ
(0)
l − λl∇θLs)

∂m
(0)
s,l

∂m
(0)
s,l

∂(m
(0)
s,l − λm,l∇ms

Ls)

= (I− λl∇2
θLs)(−λm,l∇msθLs)

−1+

(−λl∇msθLs)(I− λm,l∇2
ms

Ls)
−1,

∂m∗
s

∂θ∗ =
∂(m

(0)
s,l − λm,l∇ms

Ls)

∂(θ
(0)
l − λl∇θLs)

= (I− λl∇2
θLs)

−1(−λm,l∇msθLs)+

(−λl∇msθLs)
−1(I− λm,l∇2

ms
Ls).

(8)

Further approximations can be made to avoid the matrix inverse and save computation:

∂θ∗

∂m∗
s

≈ −λl∇msθLs ,
∂m∗

s

∂θ∗ ≈ −λm,l∇msθLs.

Based on the rules, ms and mt can be optimized by:

m̂
(k+1)
t = m

(k)
t −λm

∂Lt

∂mt
|
mt=m

(k)
t

, m̂(k+1)
s = m(k)

s −λm
∂Lt

∂ms
+λmλl

∂Lt

∂θ∗∇msθLs|ms=m
(k)
s

,

(9)
where the superscript (k) means the steps updated.

We then focus on the latter term. We choose ℓ0 loss (i.e. the number of non-zero elements) as the
sparse regularizer R, which is not differentiable and difficult to optimize. Therefore, we follow Guo
et al. (2021) to use the smoothed ℓ0 formulation to facilitate differentiable training. Specifically,
a gate function gϵ(x) := x2

x2+ϵ , where ϵ is a small positive number, is used to replace the binary
masks, which are instead parameterized by gϵ(ms) and gϵ(mt). We decay the value of ϵ every

A15



Accepted as a workshop paper of ML4Materials at ICLR 2023

epoch, and the gate function will gradually output only polarized numbers (i.e., 0 and 1). We further
apply the proximal-SGD (Nitanda, 2014) to minimize the ℓ0 loss: after we update the ms and mt

with respect to Lt by gradient descent-based methods (Eqn. 9), we use the proximal operator to
alternatively update each mask. For ms, the formulation can be written as:

proxλmγR(m(k+1)
s ) = argmin

ms

1

2
∥m(k+1)

s ⊙m̂
(k+1)
t −m̂(k+1)

s ⊙m̂
(k+1)
t ∥22+λmγ∥m(k+1)

s ⊙m̂
(k+1)
t ∥0.

We follow (Guo et al., 2021) to solve it by relaxing it to the ℓ1 norm problem, which has a closed
form solution:

ms,i =


m̂

(k+1)
s,i − γλm

m̂
(k+1)
t,i

, m̂
(k+1)
s,i ≥ γλm

m̂
(k+1)
t,i

m̂
(k+1)
s,i + γλm

m̂
(k+1)
t,i

, m̂
(k+1)
s,i ≤ − γλm

m̂
(k+1)
t,i

0, − γλm

m̂
(k+1)
t,i

< m̂
(k+1)
s,i < γλm

m̂
(k+1)
t,i

, (10)

where ms,i is the i-th element in ms (the same for mt,i).

Similarly, we derive the update for mt:

m
(k+1)
t,i =


m̂

(k+1)
t,i − γλm

m̂
(k+1)
s,i

, m̂
(k+1)
t,i ≥ γλm

m̂
(k+1)
t,i

m̂
(k+1)
t,i + γλm

m̂
(k+1)
s,i

, m̂
(k+1)
t,i ≤ − γλm

m̂
(k+1)
t,i

0, − γλm

m̂
(k+1)
s,i

< m̂
(k+1)
t,i < γλm

m̂
(k+1)
s,i

. (11)

Finally, we combine all these components into Algorithm 2.

Algorithm 2 Solving Bi-RPT

Input: Initialization weights θ0, training loss functions for two stages Ls and Lt, low-quality
pretraining dataset Ds, high-quality fine-tuning dataset Dt, number of steps for gradient unroll p.
Output: Trained model weights θ, sparse masks ms and mt.
Train θ0 on Ds to get weights θ.
while not converged do

Given the fixed ms, update the weights θ on Ds by gradient unrolling (Eqn. 3)
Update the weights θ by Eqn. 5
Update the masks ms and mt by Eqn. 9.
Update the masks ms and mt by Eqn. 10 and Eqn. 11.

end while

B MORE EXPERIMENTS DETAILS AND RESULTS

B.1 BASELINES AND HYPERPARAMETERS

We list the hyper-parameters we used for all the baselines in this section.

General Settings. When pre-training the models on Ds (ImageNet and ImageNet-C), we use the
SGD optimizer and a learning rate is 4 × 10−1. We linearly warm-up the learning rate within 5
epochs, and then decay it by 10 for every 30 epochs. Models are pretrained for 95 epochs on Ds,
with a batch size of 1024. On Dt, i.e., CUB-200 and CUB-200 (10-shot), we set the initial learning
rate as 1 × 10−3. The learning rate is decayed by 10 every 30 epochs, and the model is trained for
90 epochs with a batch size of 64.

For Hand-Tune, we train the models with 95 epochs from scratch on Ds to get a densely pretrained
models. The number of training epochs is reduced to 45 after the pretrained model is derived. After
the pretraining stage ends, we continue to transfer the model on Dt following the above hyper-
parameters. The number of epochs is also reduced to 45 after we prune the weights.

For No-Pretraining, we train the model using an initial learning rate of 1 × 10−2 and a batch size
of 64. For Mix-Training, as the number of classes is different for ImageNet and CUB-200, we use

A16



Accepted as a workshop paper of ML4Materials at ICLR 2023

two fully-connected layers on top the normal ResNet-18 backbone, and train them simultaneously.
We sample batches from the two domains (Ds and Dt) using the same batch size of 64. The initial
learning rate for these methods are 1× 10−2, and it is decayed by 10 every 30 epochs.

For Bi-RPT, we follow the same learning rate settings despite some additional hyper-parameters are
newly introduced. The learning rate for the lower-level problem (λl) is 1 × 10−3, the same as the
learning rate for upper-level problem (λu). The value of γ is set to 1× 10−4, which are determined
through ablation studies in Table A10. The value of λm are set to 3.5, which are also determined
through ablation studies in Table A11.

B.2 PERFORMANCE OF HAND-TUNE UNDER DIFFERENT LEVELS OF SPARSITY

We report the performance of the Hand-Tune method under different levels of sparsity. We con-
duct experiments with Ns = {0, 1, 2, 3, 4, 5} and Nt = {0, 1, 2, 3, 4}, resulting sparsity levels
at pre-training stage of {0.00%, 20.00%, 36.00%, 48.80%, 59.04%, 67.23%} and sparsity levels at
transfer stage of {0.00%, 20.00%, 36.00%, 48.80%, 59.04%}. We conduct experiments over all the
combinations of pretraining and transfer pruning rounds. More specifically, we first perform IMP
on Ds for Ns rounds, and continue to perform IMP on Dt for another Nt rounds. The experiment
results over various source and target combinations are shown in Table A5 to Table A8. Note that
all the models are evaluated on the testing samples in Dt.

From this series of tables we observe that: (1) sparsity at pretraining helps improve the model’s
performance on Dt after fine-tuning, and the performance gain is larger when Ds contains more
noise and has larger domain shifts; (2) sparsity at transfer is also beneficial to the performance
after fine-tuning, and the improvement is more significant when the Dt is more “data-scarce”; (3)
the optimal sparse levels for the two stages vary for different combinations of pretrain and transfer
domains, highlighting the importance of choosing the correct pruning rounds for both stages.

Table A5: Test accuracy of fine-tuned ResNet-18 on CUB-200 after pretrained on ImageNet, under
different levels of sparsity at pretraining and sparsity at transfer.

Sparsity At Transfer Sparsity At Pretraining

0.00% 20.00% 36.00% 48.80% 59.04% 67.23%

0.00% 74.16% 76.01% 75.77% 75.87% 74.99% 74.35%
20.00% 74.15% 75.54% 75.82% 75.98% 74.73% 74.46%
36.00% 74.13% 75.08% 75.56% 75.73% 74.06% 73.94%
48.80% 73.84% 74.01% 74.56% 74.46% 72.37% 72.16%
59.04% 73.61% 73.77% 73.61% 72.89% 70.66% 70.56%

Table A6: Test accuracy of fine-tuned ResNet-18 on CUB-200 after pretrained on ImageNet-C,
under different levels of sparsity at pretraining and sparsity at transfer.

Sparsity At Transfer Sparsity At Pretraining

0.00% 20.00% 36.00% 48.80% 59.04% 67.23%

0.00% 71.59% 71.89% 73.44% 73.70% 73.63% 73.52%
20.00% 71.83% 72.44% 73.97% 74.01% 73.52% 73.39%
36.00% 71.68% 72.80% 73.46% 73.47% 72.95% 72.70%
48.80% 71.13% 71.87% 72.14% 72.40% 71.87% 71.28%
59.04% 69.26% 70.31% 70.61% 70.73% 70.11% 69.38%

B.3 MORE ABLATIONS ON IMAGE DATA

Effects of sparsity at two stages. We conduct a set of ablation experiments to study the effects of
two sparse masks in the Bi-RPT formulation on ResNet-18 (pretrained by ImageNet-C, fine-tuned
on CUB-200). We compare against three baselines: fixing ms, fixing mt, and fixing both of them.
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Table A7: Test accuracy of fine-tuned ResNet-18 on CUB-200 (10-shot) after pretrained on Ima-
geNet, under different levels of sparsity at pretraining and sparsity at transfer.

Sparsity At Transfer Sparsity At Pretraining

0.00% 20.00% 36.00% 48.80% 59.04% 67.23%

0.00% 38.66% 35.88% 38.30% 39.23% 40.73% 39.14%
20.00% 38.90% 36.56% 38.66% 40.14% 40.78% 39.33%
36.00% 38.42% 36.31% 38.95% 40.14% 40.32% 38.97%
48.80% 38.13% 35.23% 37.80% 38.02% 38.37% 35.69%
59.04% 37.02% 33.21% 35.83% 35.54% 35.55% 32.78%

Table A8: Test accuracy of fine-tuned ResNet-18 on CUB-200 (10-shot) after pretrained on
ImageNet-C, under different levels of sparsity at pretraining and sparsity at transfer.

Sparsity At Transfer Sparsity At Pretraining

0.00% 20.00% 36.00% 48.80% 59.04% 67.23%

0.00% 32.14% 34.29% 38.07% 36.12% 38.21% 36.85%
20.00% 32.53% 35.99% 39.63% 37.92% 39.94% 37.66%
36.00% 32.52% 36.07% 38.99% 38.56% 39.07% 36.95%
48.80% 31.69% 34.85% 37.59% 36.45% 36.69% 34.79%
59.04% 30.64% 32.55% 34.79% 33.31% 33.72% 32.64%

The performance comparison is shown in Table A9, where we can see that learning masks at both
stage yields the highest performance.

Effects of γ We conduct a set of ablation experiments to study the effects of different γ
again on ResNet-18 (pretrained by ImageNet-C, fine-tuned on CUB-200).We vary γ with in i.e.,
{0.5, 1, 2, 3} × 10−4, and we present the results in Table A10. We show that 1 × 10−4 yields the
highest performance among all the choices.

Effects of learning rates. We conduct a set of ablation experiments on ResNet-18 (pretrained
by ImageNet-C, fine-tuned on CUB-200) to study the effects of different learning rate on ms and
mt. The learning rates we study in this ablation experiments are {2.5, 3.0, 3.5, 4.0, 4.5, 5.0}. We
present the test accuracies in Table A11, and we observe that Bi-RPT can stably outperform baselines
(74.01%) within a wide range of λm.

Table A9: Ablation study on dif-
ferent sparse masks on image data.
“Fixed” means the value of h un-
changed. We study the combina-
tion of pretraining on ImageNet-C
and transferring to Birds.

Mask Type Test Accuracy

Fixed ms and mt 71.58%
Fixed ms 72.09%
Fixed mt 75.53%

Ours (Bi-RPT) 76.29%

Table A10: Ablation study on the
effects of different γ on the image
data. Test accuracy of fine-tuned
ResNet-18 on CUB-200 after pre-
trained on ImageNet-C is reported.

γ Test Accuracy

0.5×10−4 72.32%
1×10−4 76.29%
2×10−4 65.42%
3×10−4 52.59%

Table A11: Ablation study on the
effects of different learning rate on
ms and mt on image data. Test
accuracy of fine-tuned ResNet-18
on CUB-200 after pretrained on
ImageNet-C is reported.

λm Test Accuracy

2.5 72.88%
3.0 75.73%
3.5 76.29%
4.0 75.94%
4.5 73.69%
5.0 73.34%

B.4 VISUALIZATION

We visualize the sparsity pattern learned by Bi-RPT at two stages in Figure A4.
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CUB-200, ImageNet CUB-200, ImageNet-C

CUB-200 (10-shot), ImageNet CUB-200 (10-shot), ImageNet-C

Combined

Figure A4: Layerwise sparsity learned by Bi-RPT on CUB-200 and Birds-S with ImageNet and
ImageNet-C pretraining. We report the sparsity level of the two masks, as well as their combined
sparsity (note that Bi-RPT allows for the two masks to partially overlap).

B.5 HEA DATA REPRESENTATIONS

The raw inputs for our ML predictor are the alloy’s composition and the temperature where the
experiment is conducted; therefore, they are 11-dimensional vectors. We map these vectors into 2D
images following the pipeline shown in Figure A5. Given a formulation of an alloy, the periodic
table representation (PTR) sets the percentage of each element into a specific position according to
its position in the periodic table; and the randomized periodic table representation (RPTR) sets the
percentage of each element with a pre-defined shuffled periodic table. In our experiments, we use
the RPTR to map values in a more balanced way.

C ADDITIONAL EXPERIMENTS

C.1 UNCERTAINTY QUANTIFICATION

We provide additional analysis of uncertain quantification. We ensemble ten models trained with
Bi-RPT and pretrain-and-transfer (PT) methods by averaging their predictions (Lakshminarayanan
et al., 2017), and calculate the standard deviation of the predictions as the uncertainty. The results
after ensemble are shown in Table A12.

we show that an ensemble of sparse models provides more reliable results compared to the pretrain-
and-transfer baseline. Compared with the ensemble of dense models (PT), the ensemble of sparse
models also exhibits strong correlation between the uncertainty and the prediction error.

D DATASET COMPARISON

We have provided a comparison between different relevant datasets in Table A13. We elaborate
more on the differences:

1. Maresca & Curtin (2020) have only sparse data from the Mo-Nb-Ta-V-W element family.

2. Lee et al. (2021a) has released a database of the predicted yield strength of 10 million alloys
from the Al-Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr family at 1300 K. Our dataset contains alloys
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Figure A5: The pipeline for converting a raw input into a pseudoimage. The temperature is embed-
ded as the value of the second channel.

from Al-Cr-Fe-Mo-Nb-Ta-V-W-Hf-Ti-Zr family at temperatures from 300 K to 2500 K.
Our simulation data are significantly larger (over 3 billion samples). The whole simulation
data will be available, while only 100K are included for training the ML models in this
study.

3. Borg et al. (2020) compiles experimental data from published material science articles since
2004. The dataset contains 630 samples with different crystal structures. Our experimen-
tal dataset also compiles experimental data from published material science articles too,
but we have also sub-selected the data points using material science domain knowledge.
Specifically, we only focus on alloys with BCC structures in contrast to Borg et al. (2020).
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Table A12: Uncertainty estimation calculated by ensembling independently trained models. We
study two methods: pretrain-and-transfer (PT) and Bi-RPT. The results after ensemble are reported
as PT-Ensemble and Bi-RPT-Ensemble, respectively. The estimated uncertainty is reported in brack-
ets.

Alloys Temperature (K) Predicted Yield Stress (GPa) Experimental (GPa)
Bi-RPT Bi-RPT-Ensemble PT PT-Ensemble

MoNbTaTi

293.15 1.078 1.158 (0.083) 1.062 1.054 (0.011) 1.210
473.15 0.965 1.046 (0.087) 0.902 0.908 (0.015) 0.868
673.15 0.746 0.850 (0.085) 0.731 0.740 (0.026) 0.685
873.15 0.508 0.674 (0.103) 0.584 0.604 (0.021) 0.593

1273.15 0.425 0.482 (0.088) 0.488 0.501 (0.018) 0.539

MoNbTaTiW

298.15 1.268 1.268 (0.098) 1.068 1.062 (0.011) 1.399
873.15 0.677 0.798 (0.102) 0.607 0.624 (0.022) 0.689

1073.15 0.618 0.681 (0.111) 0.523 0.528 (0.013) 0.674
1273.15 0.536 0.567 (0.124) 0.486 0.496 (0.017) 0.620

HfMoNbTaTiZr

296.15 1.527 1.392 (0.122) 1.132 1.142 (0.021) 1.515
873.15 0.861 0.864 (0.098) 0.685 0.698 (0.017) 0.973

1073.15 0.762 0.747 (0.105) 0.612 0.624 (0.022) 0.791
1273.15 0.662 0.646 (0.134) 0.573 0.587 (0.022) 0.753

Table A13: Comparison between different datasets.

Dataset Alloy Family Number of data points Temperature

Maresca & Curtin (2020) Mo-Nb-Ta-V-W Sparse N/A
Lee et al. (2021a) Al-Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr 10 million 1300 K
Borg et al. (2020) N/A 630 N/A

X-Yield (Ours) Al-Cr-Fe-Mo-Nb-Ta-V-W-Hf-Ti-Zr 3 billion 300 K - 2500 K
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