
Under review as a conference paper at ICLR 2021

GENERATING UNOBSERVED ALTERNATIVES: A CASE
STUDY THROUGH SUPER-RESOLUTION AND DECOM-
PRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider problems where multiple predictions can be considered correct, but
only one of them is given as supervision. This setting differs from both the re-
gression and class-conditional generative modelling settings: in the former, there
is a unique observed output for each input, which is provided as supervision; in
the latter, there are many observed outputs for each input, and many are provided
as supervision. Applying either regression methods and conditional generative
models to the present setting often results in a model that can only make a single
prediction for each input. We explore several problems that have this property,
which naturally arise in image processing, and develop an approach that can gen-
erate multiple high-quality predictions given the same input. As a result, it can be
used to generate high-quality outputs that are different from the observed output.

1 INTRODUCTION

Supervised learning is centred around prediction. In the classification or regression setting, only a
single label/target is assumed to be correct, and the goal is predict the label with high confidence
or generate a prediction that is as close as possible to the target. In settings such as multi-label
prediction or class-conditional generative modelling, there could be multiple prediction targets for
the same input that are all correct. For example, in class-conditional generative modelling, the input
is the class label and all data points that belong to that class are correct prediction targets. Multiple
prediction targets for the same input are given as supervision, and the goal is to generate all such
prediction targets for the same input (class label).

In this paper, we consider a different problem setting with the following properties: (1) for the same
input, there could be multiple prediction targets that are correct, but (2) only a single prediction
target per input is given as supervision. The goal is still to generate all prediction targets for the
same input. See Table 1 for a comparison of the problem setting we consider to other common
settings. Note that we focus on the case of continuous prediction targets and leave discrete labels to
future work.

Problem Setting Label Type Prediction Supervision

Regression Continuous One-to-one One-to-oneClassification Discrete

Class-conditional Generative Modelling Continuous One-to-many One-to-manyMulti-label Prediction Discrete

Present Setting Continuous One-to-many One-to-one

Table 1: Comparison of the problem setting we consider to other common settings.

When do such prediction problems arise? They often come up in inverse problems, which require
generating more information from less information, information that is not present in the input.
For example, consider the problem of super-resolution, which aims to generate a high-resolution
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image from a low-resolution image. The high-frequency details are completely missing from the
low-resolution image, but they must be generated in the high-resolution image.

Inverse problems are typically ill-posed, that is, the input cannot uniquely determine the output and
so there could be multiple valid outputs for the same input. However, only one of them is actually
observed. Concretely, in the case of super-resolution, there are many ways to generate details in the
high-resolution image, and the observed high-resolution image used for training represents only one
of these ways. This combination of one-to-many prediction and one-to-one supervision characterizes
the problem setting we consider.

The problem essentially requires us to generate alternatives that were never observed, so a natural
question is why it should be possible at all. After all, if there were a valid alternative output that
was never realized, how do we know whether it exists, and why should the model generate such
an alternative if there is no indication that it exists? The answer lies in an observation that holds
true across many natural problems: which of the many valid prediction targets is observed is usually
arbitrary, and so while a valid alternative for the current input may not be observed, we expect an
analogous version of it for some other input to be observed. Therefore, the hope is for the model to
generalize across different inputs to produce the full range of alternative predictions for all inputs.

In this paper, we take an initial step towards addressing this problem and propose an approach for
it based on Implicit Maximum Likelihood Estimation (IMLE) (Li & Malik, 2018). We demonstrate
on three problems that the approach can produce different alternative predictions for the same input,
even though only one prediction target is given for each input.

2 AN ILLUSTRATIVE EXAMPLE USING MNIST

(a) Samples (b) KDE

Figure 1: Example unseen input digits and outputs from our method. Top row is the input, middle
row is the predictions and bottom row is the observed output.

To illustrate the problem setting, we will start with a simple illustrative example using MNIST.
We consider the problem of predicting from the first ten principal components of a data point the
values of the remaining ones. More concretely, we perform principal component analysis (PCA)
and project each data point onto the PCA basis. The input is the image reconstructed from the first
ten coordinates and the observed output is the original image.

This prediction problem is inherently one-to-many, but only one-to-one supervision is available.
Specifically, given the first ten coordinates of a real data point, there are many possible ways to fill
in the values of the remaining coordinates that will result in plausible MNIST digits. However, only
one of these is observed, namely the original real data point.

To illustrate what the unobserved alternatives could be, we visualize the results of our method (the
details of which will be discussed later) in Figure 1a. All the predictions share the same first ten
coordinates, but differ in the remaining ones. As shown, all predictions are plausible, but differ from
the observed output.

We can visualize the marginal distribution over the 11th and 12th coordinates of the predictions and
compare to those of the real data point. As shown in Figure 1b, the real data point lies in a high
density region of the prediction distribution, suggesting the method is able to predict the real data
point (or at least the 11th and 12th coordinates). Note that there is only a single data point we can
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observe for the given input, because other data points in the dataset have different coordinates along
the first 10 principal components and therefore differ from the given input.

As a proxy for other data points that could have been observed for the given input, we visualize
ten data points whose first 10 principal components are the closest to the given input. While they
technically do not match the given input (because the first 10 principal components are different from
the given input), they are hopefully similar to unobserved alternatives and can therefore give us a
sense of how the unobserved alternatives would be distributed. As shown, the prediction distribution
has moderately high density at most of these points, indicating that they can be predicted by the
method.

(a) Input (b) Output

Figure 2: Example unseen input image and output from our method (HyperRIM). Click on (b) to
see output of model while it trains, demonstrating stable training.

3 METHOD

One-to-many prediction problems can be naturally formulated in probabilistic terms. If we use x to
denote the input, y to denote the prediction, our goal is to learn p(y|x). Ideally p(y|x) should assign
high probability density to both observed and unobserved valid predictions, and low probability
density elsewhere. So, each mode of p(y|x) corresponds to a valid prediction.

Regression models take the form of a deterministic function from x to y, and so p(y|x) is always
a delta. In order to produce non-deterministic predictions, the most direct way to extend regression
models is to add a latent random variable as an input to the deterministic function. More precisely,
a prediction is given by y := Tθ(x, z) where z ∼ N (0, I). This is variously known as an implicit
generative model (Mohamed & Lakshminarayanan, 2016), a neural sampler (Nowozin et al., 2016)
or a decoder-based model (Wu et al., 2016).

Such a model can be trained as a conditional GAN, where Tθ(·, ·) is interpreted as the generator. In
practice, due to mode collapse, some valid predictions cannot be produced by the generator. This
problem is exacerbated in the presently considered setting with one-to-one supervision: since there
is only one observed output y for each input x, there is only one mode to collapse to. As a result,
all samples of the generator conditioned on thee same input x are identical and the random variable
z is effectively ignored. Hence, the generator becomes a deterministic mapping from x to y, akin to
a vanilla regression model.
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To obtain non-determinsitic predictions y despite the availability of only a single observation, we
propose training the model using Implicit Maximum Likelihood Estimation (IMLE), which avoids
mode collapse.

3.1 IMPLICIT MAXIMUM LIKELIHOOD ESTIMATION (IMLE)

Implicit Maximum Likelihood Estimation (IMLE) (Li & Malik, 2018) is a method for training im-
plicit generative models. Compared to GANs, there are two differences: it explicitly aims to cover
all modes, and optimizes a non-adversarial objective. To achieve the former, IMLE reverses the
direction in which generated samples are matched to real data: rather than making each generated
sample similar to some real data point, it makes sure each real data point has a similar generated
sample. To achieve the latter, it removes the discriminator (which matches generated samples to real
data implicitly) and instead explicitly performs matching using nearest neighbour search. The latter
can be done efficiently using DCI (Li & Malik, 2016; 2017), which avoids the curse of dimension-
ality.

More precisely, if we denote the generator parameterized by θ as Tθ(·), which takes in a random
code zj and outputs a sample, IMLE optimizes the following objective:

min
θ

Ez1,...,zn∼N (0,I)

[
n∑
i=1

min
j∈{1,...,m}

d(Tθ(zj),yi)

]
,

where yi is a real data point, d(·, ·) is a distance metric and m is a hyperparameter.

3.2 CONDITIONAL IMLE

IMLE can be extended to model conditional distributions by separately applying IMLE to each
member of a family of distributions {p(y|xi)}ni=1. If we denote the generator as Tθ(·, ·), which
takes in an input xi and a random code zi,j and outputs a sample from p(·|xi), the method optimizes
the following objective:

min
θ

Ez1,1,...,zn,m∼N (0,I)

[
n∑
i=1

min
j∈{1,...,m}

d(Tθ(xi, zi,j),yi)

]
,

where yi is the observed output that corresponds to xi, d(·, ·) is a distance metric and m is a hyper-
parameter. We use LPIPS perceptual distance (Zhang et al., 2018) as our distance metric.

3.3 MODEL ARCHITECTURE

Different types of generative models require different architectures due to differences in be-
haviour (e.g.: mode seeking vs. covering) and training dynamics (e.g.: adversarial vs. non-
adversarial) (Van den Oord et al., 2016; Vahdat & Kautz, 2020; Radford et al., 2015). In this paper,
we introduce a new architecture for IMLE which substantially outperforms prior IMLE architec-
tures (Li & Malik, 2018; Li et al., 2020). As we will show later, this is critical to generating high
quality images.

The model architecture relies on a backbone consisting of two branches. The first branch mainly
consists of a sequence of residual-in-residual dense blocks (RRDB) (Wang et al., 2018a), which
is a sequence of three dense blocks (Fig. 4b) connected by residual connections (Fig. 4a). The
second branch consists of a mapping network Karras et al. (2019) produces a scaling factor and an
offset for each of the feature channels after each RRDB in the first branch. Additionally we added
weight normalization (Salimans & Kingma, 2016) to all convolution layers. While various design
motifs are inspired by other works, combining them in a way that gave good performance when
trained with IMLE was non-trivial and required thorough experimentation. We found the optimal
hyperparameter settings to differ substantially between GAN-based and IMLE-based architectures.
For example, we reduced the number of RRDB blocks by a factor of 4 and substantially expanded
the number of channels compared to ESRGAN. What is new is not the design motifs themselves, but
the development of an architecture for IMLE that can generate high-quality images. We expect this
to be of practical interest in broader contexts, because this architecture combined with IMLE can
offer benefits that cannot be obtained with other methods, such as training stability, mode coverage,
fast sampling and high-quality samples.
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Figure 3: Details of the architecture backbone. See Figure 4a for the inner workings of RRDB
blocks.

(a) Residual-in-Residual Dense Block (RRDB) (b) Dense Block

Figure 4: (a) Inner workings of Residual-in-Residual Dense Blocks (RRDBs), which comprises of
dense blocks (details in (b)). β is the residual scaling parameter. (b) Inner workings of dense blocks.

4 SUPER-RESOLUTION

Single-image super-resolution (SISR) is a classic problem in image processing. Applications span
consumer and industrial use cases, and range from photo enhancement to medical imaging. Most
methods consider moderately low upscaling factors (e.g. 2− 4×). We consider an upscaling factor
of 16×, where the width and height are both increased by 16 times, and so the number of pixels
is increased by 256 times. Under this setting, the input contains much less information about the
output, and so there could be a lot more valid output images for the same input image. The problem
therefore represents an ideal testbed for our method.

4.1 PROGRESSIVE UPSCALING

We adopt an approach of progressively upscaling, where we upscale the image by 2 times at a time.
We chain together four backbone architectures which become sub-networks in a larger architecture,
as shown in Figure 5. Each sub-network takes a latent code and the output of the previous sub-
network, or if there is no previous sub-network, the input image.

Figure 5: Our HyperRIM model consists of multiple sub-networks, each of which upscales by a
factor of 2 and concatenates a random code to its input.

We add intermediate supervision to the output of each sub-network, so that the distance metric in
IMLE is chosen to be the sum over LPIPS distances between the output of each sub-network and
the original image downsampled to the same resolution.

Additionally, we use a hierarchical sampling procedure to generate the pool of samples IMLE oper-
ates over. Because conditional IMLE only uses the sample that is most similar to the observed output
for backpropagation, we can improve the sample efficiency by sampling only in the region likely to
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Figure 6: Visualization of different samples generated by our method (HyperRIM) and the baselines.
As shown, (a) generates near-identical samples, (b) generates diverse samples that are less visually
plausible and less faithful to the colours of the input, (c) generates samples that are both diverse and
consistent with the input.

be close to the observed output, which can be viewed as a way of increasing the effective number
of samples. To this end, we generate a set of latent codes for the first sub-network and select the
latent vector that corresponds to the sub-network output that results in a sample that is most similar
to the downsampled observed output. Then for each subsequent sub-network, we fix the latent codes
for all previous sub-networks and generate a set of latent codes only for the current sub-network,
effectively drawing samples conditioned on the selected latent codes for lower resolutions.

4.2 EXPERIMENTAL SETTING

We used a subset of three categories from the ILSVRC-2012 dataset consisting of 3900 images. To
obtain the input and target output images, we downsampled them anisotropically to 512 × 512 and
32× 32 respectively using a bilinear filter. The train and test images are disjoint.

We compare our method, HyperRIM, to leading GAN-based and IMLE-based methods, namely
ESRGAN (Wang et al., 2018a) and SRIM (Li et al., 2020). ESRGAN is a conditional GAN trained
with the relativistic GAN objective (Jolicoeur-Martineau, 2018) and also uses two auxiliary losses
on raw pixels and VGG features. Since ESRGAN was originally designed for 4× upscaling, we
stack two separate ESRGAN models to upscale the input image by 16×. To make the generator
capable of producing non-deterministic predictions, we concatenate a random code to the inputs of
both models.

4.3 QUANTITATIVE RESULTS

We evaluate all methods according to two metrics, Fréchet Inception Distance (FID) (Heusel et al.,
2017) and faithfulness-weighted variance (Li et al., 2020). The former measures perceptual quality
of the output images, while the latter measures the diversity of the different output images for the
same input image weighted by their consistency with the original image.

As shown in Table 7a, HyperRIM outperformed both baselines in terms of FID, indicating that
it produces higher-quality images than both. As shown in Table 2, HyperRIM achieved higher
faithfulness-weighted variance than the baselines at all but the highest bandwidth parameters. At
higher bandwidth parameters, there is a lower penalty on producing outputs that are inconsistent
with the original image. So, the outputs of our method are more diverse and consistent with the
original image.

4.4 QUALITATIVE RESULTS

We show the results of our method and the baselines in Appendix C . As shown, HyperRIM generates
better quality results than all baselines. Figure 6 shows a video of the different outputs for the same
input produced by each method. As shown, the outputs generated by HyperRIM are more realistic
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2xESRGAN SRIM HyperRIM

FID 21.61 28.85 19.31

(a) Super-Resolution

Pix2Pix HyperRIM

FID 110.80 94.84

(b) Image Decompression

Figure 7: Comparison of Fréchet Inception Distance (FID) to the target of the samples generated by
our method (HyperRIM) and the baselines. Lower values of FID are better. We compare favourably
on this perceptual metric (FID).

σ 2xESRGAN SRIM HyperRIM

0.3 2.83× 10−2 4.90× 10−2 4.84× 10−2

0.2 1.48× 10−3 4.09× 10−3 4.25× 10−3

0.15 5.30× 10−5 1.88× 10−4 2.04× 10−4

Table 2: Comparison of faithfulness weighted variance of the samples generated by our method
(HyperRIM) and the baselines. Higher value shows more variation in the generated samples that
are faithful to the observed output. σ is the bandwidth parameter for the Gaussian kernel used to
compute the faithfulness weights.

and diverse than those generated by the baselines. We also visualize the precision and recall of
various methods in Appendix A.

In Figure 2, we visualize the output of HyperRIM for a test input image while training. As shown,
the quality of output improves steadily during training, thereby demonstrating training stability.

5 IMAGE DECOMPRESSION

Most images are stored in a compressed format such as JPEG, and the original uncompressed images
are lost. Significant artifacts may result when the images are decompressed using JPEG; to restore
the original quality of images that are only stored in compressed form, it would be beneficial to
learn to generate the original image from the compressed version. The input does not contain enough
information to uniquely determine the output, and so it would be useful to produce multiple plausible
uncompressed images and allow the user to choose one to their liking.

We choose a single backbone network as our architecture with one change: we removed the upsam-
pling layer because the input and output resolutions are the same for decompression.

5.1 EXPERIMENTAL SETTING

To generate training data, we compressed each image from the RAISE1K (Dang-Nguyen et al.,
2015) dataset using JPEG with a quality of 1. We compare our method to Pix2Pix (Isola et al.,
2017), given the lack of a dedicated method for image decompression 1.

5.2 RESULTS

We compare the results to the baseline in terms of FID in Table 7b. Our method, HyperRIM,
achieves a lower FID than the baseline, demonstrating better perceptual quality. We visualize the
outputs of our method and Pix2Pix in Figure 8. As shown, our method was able to remove most
blocky artifacts, including those on the face and shoulder of the statue. Additionally, our method
can recover different output images with different colour tones. This makes sense, because JPEG
compression can cause global colour distortions.

1Not to be confused with learned image compression methods, which changes the way the image is encoded.
In this setting, we are given the JPEG encoded image, and so compression methods cannot be used.
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Figure 8: Visualization of compressed input, decompressed output images from Pix2Pix and our
method (HyperRIM) and the observed target image. As shown, the Pix2Pix output contains large
pixel blocks whereas HyperRIM output successfully removes most artifacts.

6 RELATED WORK

The proposed problem setting is related to multi-label prediction (Hsu et al., 2009) and mixture
regression (Wedel & Kamakura, 2000). Both aim to predict multiple targets. In the former, the
labels are usually discrete and multiple labels per input are given as supervision. In the latter, while
the labels are continuous, a fixed number of modes is assumed for every input.

In terms of the underlying technique, the proposed approach relies on implicit generative models,
and so related are work on GANs (Goodfellow et al., 2014; Gutmann et al., 2014; Mirza & Osindero,
2014; Odena et al., 2017; Isola et al., 2017) and IMLE (Li & Malik, 2018; Li et al., 2020).

In terms of the tasks, there is a large body of work on super-resolution, most of which consider
upscaling factors of 2 − 4×. See (Yang et al., 2014; Nasrollahi & Moeslund, 2014; Wang et al.,
2020) for comprehensive surveys. Most relevant are methods based on regression and conditional
GANs, such as (Dong et al., 2014; Kim et al., 2016; Ledig et al., 2017; Sajjadi et al., 2017; Wang
et al., 2018a). However, they can only produce a single output for the same input, either due to
the deterministic nature of the model or mode collapse. Also related are methods that progressively
upscale the input through a number of intermediate resolutions, e.g.: (Park et al., 2018; Lai et al.,
2018; Wang et al., 2018b). Concurrently to this work, there has been work on extreme super-
resolution which tries to upscale a fairly large image by 16× (Shang et al., 2020), for which no
implementation is publicly available. The challenges are however different, because the input image
already contains rich structure and a fair amount of details.

There is relatively little work on image decompression to our knowledge; however, more work was
done on image compression (Agustsson et al., 2018; 2019), which changes the encoding of the
compressed image itself.

7 CONCLUSION

In this paper, we considered a setting where the prediction problem is inherently one-to-many, but
where the supervision is only one-to-one. This differs from traditional settings like regression or
class-conditional generative modelling – in the former, both prediction and supervision are one-to-
one, whereas in the latter, both are one-to-many. We explored several problems with this characteris-
tic and demonstrated that our approach was able to generate different plausible outputs for the same
input, even though only one output per input is available as supervision. Moreover, we introduced an
architecture for IMLE which outperformed GAN-based methods and can offer benefits like training
stability and the lack of mode collapse.
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Figure 9: Visualization of output images from each method while traversing the space of random
codes using gradient descent to reach the observed output image. As shown, (a) fails to reach the
observed output, (b) comes close to the observed output but does not quite reach it, and (c) reaches
the observed output and only encounters images with plausible content and texture. This reveals
both the (i) precision and (ii) recall of each method, i.e.: the ability of each method to generate (i)
only plausible images and (ii) all plausible images, which include the observed output. Since (a)
cannot generate the observed output, its recall is low. Since (b) cannot reach the observed output, its
recall is also unsatisfactory. Since (c) can reach the observed output and does so smoothly without
generating an implausible image, the recall and precision of (c) are high.

A PRECISION AND RECALL

In Figure 9, we evaluate the precision and recall of each method, i.e.: whether the trained model can
generate (a) only valid outputs, and (b) all valid outputs. Since only images that have a corresponding
latent code z can be generated, we can explore the space of latent codes, which should be equivalent
to the space of images that can be generated. We perform the following experiment: for a test image,
we optimize over the latent code to try to find an image that is as close as possible to the original
high-resolution image as measured by LPIPS and visualize the images we encounter along the way.
For an ideal model, traversing the space of latent codes should (a) only pass through valid outputs
(i.e. achieves high precision), and (b) be able to reach any valid image, including the original image
(i.e.: achieves high recall). We find that HyperRIM is able to achieve better precision and recall than
the baselines.

B CONDITIONAL IMLE PSEUDOCODE

Algorithm 1 Conditional IMLE Training Procedure

Require: The set of inputs {xi}ni=1 and the set of corresponding observed outputs {yi}ni=1
Initialize the parameters θ of the generator Tθ
for p = 1 to N do

Pick a random batch S ⊆ {1, . . . , n}
for i ∈ S do

Randomly generate i.i.d. m latent codes z1, . . . , zm
ỹi,j ← Tθ(xi, zj) ∀j ∈ [m]
σ(i)← argminj d(yi, ỹi,j) ∀j ∈ [m]

end for
for q = 1 to M do

Pick a random mini-batch S̃ ⊆ S
θ ← θ − η∇θ

(∑
i∈S̃ d(yi, ỹi,σ(i))

)
/|S̃|

end for
end for
return θ
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(a) Input (b) Bicubic (c) 2xESRGAN

(d) SRIM (e) HyperRIM (f) Observed Output

C MORE SAMPLES
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