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ABSTRACT

Network pruning is a widely-used technique to reduce the computational cost of
over-parameterized neural networks. Conventional wisdom also regards pruning
as a way to improve generalization: by zeroing out parameters, pruning reduces
model capacity and prevents overfitting. However, this wisdom is facing chal-
lenges in a line of recent studies, which show that over-parameterization actually
helps generalization. In this work, we demonstrate the existence of a novel dou-
ble descent phenomenon in sparse regimes, namely, in the presence of label noise,
medium sparsity induced by pruning hurts model performance, while high sparsity
benefits. Through extensive experiments on noisy versions of MNIST, CIFAR-10
and CIFAR-100, We show that proper pruning could consistently promise non-
trivial robustness against label noise, which provides a new lens for studying net-
work pruning. Further, we reassess some common beliefs concerning the gen-
eralization of sparse networks, and hypothesize it is the distance from initializa-
tion that is key to robustness rather than sharpness/flatness. Experimental results
correlate with this hypothesis. Together, our study provides valuable insight on
whether, when and why network pruning benefits deep learning under label noise.

1 INTRODUCTION

Deep neural networks (DNNs) have more learnable parameters than training examples, and can
easily memorize entire random-labeled dataset (Zhang et al., 2017). With excessive learning capa-
bility, these networks are susceptible to mislabeled data and tend to overfit quickly during training.
Moreover, standard regularization techniques, like weight decay and dropout, are not sufficient to
eliminate overfitting by themselves (Song et al., 2020; Zhang et al., 2017). As noisy labels exist
pervasively in real world datasets (Shankar et al., 2020; Northcutt et al., 2021a;b), study on deep
network memorization and generalization behavior is crucial to enhance model robustness.

Prior studies have demonstrated that networks learn simpler patterns first and are less prone to mem-
orize noisy labels with limited capacity (Arpit et al., 2017; Li et al., 2020b), which accounts for the
success of early stopping and robust regularization methods in label-noise-learning scenarios (Azadi
et al., 2016; Tanno et al., 2019; Hu et al., 2020; Xia et al., 2020). Following Occam’s razor, network
pruning that aims to reduce parameter counts could also be regarded as some kind of regularization
on model capacity (LeCun et al., 1990; Hassibi & Stork, 1992). By restricting a subset of model
parameters to a value of zero, pruning imposes sparsity constraints on neural networks and penalizes
its redundant expressive power. Furthermore, there are other conjectures on how pruning can benefit
generalization, e.g., pruning creates sparsified versions of data representation, which introduce noise
and encourage flatness into neural networks (Han et al., 2017; Bartoldson et al., 2020), as flatness of
minima is usually correlated with good generalization (Keskar et al., 2017; Zhu et al., 2019).

Although pruning has been widely investigated at the target of storage and computational savings, it
still remains unclear whether pruning will provide an added edge on label-noise-learning robustness
(Hoefler et al., 2021). Given the discussion above, it is intuitive to suppose that pruning can enhance
model performance and prevent overfitting. However, we find that in the presence of label noise, the
generalization behavior of sparse neural networks diverge markedly from such intuition.

In this paper, we demonstrate the existence of double descent phenomenon in sparse regimes in the
presence of label noise (Figures 1 and 8). We show that at low sparsities model performance might
degrade as pruning, while at non-trivial sparsities, the behaviors of sparse networks resemble that of
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Figure 1: Double descent phenomenon in sparse regimes for ResNet-18 with three pruning strategies
and varying permuted fraction ε. Top: CIFAR-10. Bottom: CIFAR-100. We plot train accuracy
(solid lines in the upper sub-figures) and the last test accuracy of the final epoch (solid lines in the
lower sub-figures), as well as the best test accuracy across all epochs (dotted lines).

under-parameterized dense models, exhibiting a U-like curve of bias-variance tradeoff. Moreover,
at the "sweet-spot" sparsity, even with a majority of parameters removed by pruning, sparse neural
networks still classify clean labels correctly and neglect noisy labels, resulting in significant robust
performance at early stopping epoch and after that (Figure 2).

To verify the ubiquity of such phenomenon, we conduct thorough experiments with several com-
monly implemented pruning heuristics across different datasets and network architectures. Since
finetuning a pruned network might confine it to sub-optimal minima, we utilize the technique pro-
posed in lottery ticket hypothesis (Frankle & Carbin, 2019) to train a network from near initialization.
We implement three common pruning heuristics and prune networks to a wide range of sparsities, in
order to assess the pruning efficacy and label-noise robustness. The superior performance of highly
sparse networks under label noise suggests a new lens for studying network pruning, and also opens
new avenues to leverage existing pruning heuristics to facilitate robust training.

Furthermore, we investigate the possible causes for the benefits brought by pruning. We hypothesize
that the robustness of highly sparse networks could be mainly ascribed to their incapability to move
far from initialization, rather than the flatness in final solutions. To test this hypothesis, we adopt
a re-dense training methods: after training a sparse network, we recover its pruned weights for a
further retraining. The phenomenon that networks escape from highly sparse solutions during re-
dense training, even with a small learning rate, provides evidence against the conjecture regarding
flatness in minima. In contrast, experimental results establish a correlation between the distance
from initialization and test performance of sparse and re-dense neural networks, supporting our
hypothesis to a certain extent.

Our main contributions are summarized as follows:

• We demonstrate the double descent phenomenon in sparse regimes, where inappropriate sparsity
leads to severe overfitting, while high sparsity promises significant label-noise robustness.

• We show that magnitude-based pruning enables models to withstand the least remained parameters
without losing training performance; whereas gradient-based pruning attains top early-stopping
test accuracy, which manifests potentials of preserving first-order information for robust pruning.

• We hypothesize that high sparsity traps optimizer into minima near initialization, and underline
the critical role of the distance from initialization in the robustness of highly sparse networks. We
present experimental evidence for this hypothesis.
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2 RELATED WORK

Modern deep networks have the ability to memorize noise (Zhang et al., 2017), yet in practice,
they do not learn via pure memorization and often achieve higher generalization performance than
their compact counterparts (Arpit et al., 2017; Neyshabur et al., 2015). Such property of over-
parameterized neural networks results in a double descent in test risk as we increase the model size
(Belkin et al., 2019; Nakkiran et al., 2020). Furthermore, the superiority of over-parameterization
casts doubt on the widely held viewpoint that pruning reduces model capacity thus helps generaliza-
tion (LeCun et al., 1990; Hassibi & Stork, 1992; Molchanov et al., 2017a; Hoefler et al., 2021).

To explain the success of numerous pruning methods in pratice (Han et al., 2015; 2016; Liu et al.,
2017; Molchanov et al., 2017a; Louizos et al., 2018; Frankle & Carbin, 2019), Bartoldson et al.
(2020) propose that benefits of pruning for generalization attribute to the regularization effect of
noise injection, which does not depend on parameter removal. Nevertheless, they mainly focus on
low sparsities where pruned networks still reach full training performance. Whether reducing model
capacity to a non-trivial extent can prevent overfitting and improve generalization is still unanswered.

The recent work by Chang et al. (2021) also affirms that pruned models exhibit a double descent
phenomenon, which is seemingly identical to our claims. However, there are essential differences
between their studies and ours on the basis of research focuses and methodologies. They grow the
width of original model but fix the parameter count of pruned model, in order to manifest the advan-
tages of over-parameterization in network pruning. While we conduct pruning on the same original
network and compress it to increasing sparsities, to investigate the impact of reduced capacity on
sparse networks under label noise.

So far, the relationship between sparsity, learning dynamics and generalization remains as open
question and has received growing attention from researchers. Emerging studies from the per-
spective of loss landscape provide enlightening insight into understanding the behaviors of sparse
regimes. Evci et al. (2020) reveal the existence of bad solutions in sparse subspace (namely, the
sparsity pattern found by pruning), and illustrate the difficulty of escaping from bad solutions to
good ones. And Lin et al. (2021) provide theoretical justification that sparsity can deteriorate the
loss landscape by creating spurious local minima or spurious valleys. Our work is motivated by
these findings, and what’s more, moves a step further by empirically demonstrating that the reshap-
ing effect on loss landscape by network pruning is actually beneficial in the presence of label noise.

While our focus has been on the characteristics of highly sparse neural networks under noisy labels,
there are other research hot-spots concerning label-noise learning, e.g., designing state-of-the-art
robust training algorithms (Han et al., 2018; Jiang et al., 2018; Li et al., 2019; 2020a). Among
these methods, we find CDR proposed by Xia et al. (2020) particularly related regarding the way
to hinder memorization. Using a similar criterion to gradient-based pruning, they identify non-
critical parameters and penalize them during optimization. By deactivating redundant parameters,
memorization of noisy labels is hindered, and test performance before early stopping is enhanced.
While our results reveal that, with a large proportion of parameters being removed permanently,
performance after early stopping could also be boosted greatly.

Finally, our findings are consistent with existing literature that discovers sparsification impairs mem-
orization (Molchanov et al., 2017a; Lee et al., 2019; Hooker et al., 2019; Goel & Chen, 2021). Yet,
to the best of our knowledge, we are the first to thoroughly investigate the label-noise robustness of
pruned networks across a wide range of sparsities, and conduct further investigation into the reasons
behind it. In this work, we do not chase state-of-the-art accuracy nor the computing resource effi-
ciency; thus we simply apply unstructured iterative pruning techniques with static sparsity patterns,
for they are easily adjusted to different tasks, architectures and pruning fractions.

3 PRELIMINARIES AND METHODOLOGY

3.1 NETWORKS AND DATASETS

We conduct experiments on image classification task. To verify the ubiquity of double descent
phenomenon, we test manually corrupted version of three commonly used datasets, i.e., MNIST
(LeCun et al., 1998), CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009). We train Lenet-300-
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100 on MNIST, ResNet-18 on CIFAR-10 and CIFAR-100. We use the SGD optimizer and adopt
commonly used hyperparameters for training and pruning. The model architectures and training
details can be found in Appendix A.1. We repeat experiments five (MNIST) or three (CIFAR-10
and CIFAR-100) times with different seeds and plot the mean and standard deviation.

We consider symmetric label noise in this paper, which is generated by randomly permuted the
labels for a fraction ε of the training data. The permuted fractions ε are set to 20%, 40% and 80%.
Following work of Stephenson et al. (2021) we divide the dataset into four subsets as follows:

• Permuted samples: the subset of training data with labels randomly replaced by all possible labels
with uniform probability. Though a small part of samples may be assigned to labels identical
to their original ones after permutation, by flipping labels in each class uniformly, this subset
contains no information of correct labels. Hence, high classification accuracy of permuted samples
indicates a high degree of rote memorization in networks.

• Unpermuted samples: the subset of training data with labels that are correct and never permuted.
Samples having labels assigned to the correct class after random permutation are not counted.
This subset could reflect the ability of networks to learn generalized features.

• Restored samples: the subset of training data with examples identical to permuted samples, while
keeping their original, correct labels. The more restored samples are correctly classified, the more
robust the model is to label noise.

• Test samples: the test data that are held out for evaluation. All test samples have correct labels.

3.2 PRUNING AND RETRAINING TECHNIQUES

Network pruning is an effective technique to enhance the efficiency of deep networks with lim-
ited computational budget, by removing dispensable weights, filters or other structures from neural
networks. A common approach to recover network performance after pruning is retraining, which
means training the pruned networks for some extra epochs. The typical retraining based pruning pro-
cedure consists of three stages (Liu et al., 2019): 1) train a large, dense neural network to completion,
2) prune structures of the trained network according to certain heuristic, 3) retrain the network for
t epochs to mitigate accuracy loss. Pruning and retraining can be repeated iteratively, or conducted
only in one shot (Han et al., 2015).

Given a dataset D = {(xi,yi)}ni=1, we define a neural network classifier function as f(w;D),
where w ∈ Rd is the set of weights, and d is the total number of weights. As pruning removes
structures from a network, we introduce binary masks m ∈ {0, 1}d as auxiliary to represent the
remained weights w�m and the function under sparsity constraints f(w�m;D), where � is the
element-wise product. The sparsity of a pruned network is calculated as: 1−∑d

i=1 mi/d.

Pruning strategies. We use three existing pruning heuristics summed up by Blalock et al. (2020).
Magnitude-based pruning is one of the most commonly used baselines, and has been shown to
achieve comparable performance to many complex techniques (Han et al., 2015; 2016; Gale et al.,
2019). Gradient-based pruning preserves training dynamics and provides possibility to prune a
network early in training (Lee et al., 2019; 2020). And random pruning is often regraded as a naive
method, setting the performance benchmark that any elaborately designed method should surpass
(Frankle et al., 2021). We prune weights in a network globally by comparing them across layers with
the mentioned heuristics, and the details are listed below. We mainly present and discuss results of
magnitude-based pruning, unless otherwise specified.

• Magnitude-based pruning: prunes the weights with the lowest absolute magnitudes |w|.
• Gradient-based pruning: prunes the weights with the lowest absolute values of magnitude multi-

plies gradient | ∂L∂w �w|, with L be the loss function evaluated on a random batch of inputs.

• Random pruning: issues each weight with a random score sampled independently from the uni-
form distribution U(0, 1), and prunes the weights with the lowest scores.

Retraining methods. Along side the sparse structures induced by different pruning strategies, re-
training methods also affect network performance by determining which point on the optimization
landscape to start training from, i.e., near initialization or close to the final weights; or which learn-
ing rate schedule to utilize. In this work, we investigate the performance of lottery ticket rewinding
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(LTR), which rewinds the unpruned weights by setting their value back to early iteration k in the
original training phase, and retrains the sparse network from there using the same learning rate
schedule as iteration k (Frankle & Carbin, 2019; Frankle et al., 2020). Networks are pruned and
retrained iteratively, and during each iteration, 20% of weights will be pruned.

Sparsities. We divide sparsities into four ranges. Different from previous works (Frankle et al.,
2020; 2021), we delimit boundaries with respect to particular pruning technique, depending on both
training and test accuracy after retraining. Trivial sparsities are low sparsities where the network is
so overparameterized that pruned network can still reach full training accuracy. Critical sparsities
lie in a interval around the interpolation threshold (Nakkiran et al., 2020) where training accuracy
starts to drop and test accuracy might decrease or increase when increasing sparsity. High sparsities
are robust sparsities where test accuracy can significantly be boosted. Extreme sparsities are those
beyond. To display of our results in detail, for Figures 2, 3 and 4, we sample five sparsities, i.e., the
zero sparsity (dense model), the sparsity where the last test accuracy degrades the most (overfitting
model), the sparsities where the best test accuracy or the last test accuracy reaches a peak (sweet-spot
models), and the sparsity where both the best and the last test accuracy suffer (underfitting model).

3.3 RE-DENSE TRAINING AND LOSS FUNCTION VISUALIZATION APPROACH

Pruning induces sparsity constraints into the objective function optimization problem, which move
the optimization to a lower-dimension space. To empirically investigate the impact of sparsity con-
straints, we present studies which allow pruned weights to return to the model, and utilize the loss
surface visualization for analysis.

Dense, sparse, and re-dense training flow. Conventional wisdom believes that sparsity regularizes
the neural networks and moves the optimization to a better local minima where the loss surface is
flatter. To test this hypothesis in label-noise settings, we adopt the re-dense training step in the work
by Han et al. (2017): after training a pruned network for t epochs, we recover pruned weights in
the network, initialized them to zero, and retrain entire network for another t epochs with the fixed
learning rate. We set the learning rate in re-dense training equal to the last learning rate of sparse
training. Other learning hyperparameters (batch size, momentum, weight decay, etc.) are kept the
same as original training process.

1-D loss function visualization. Visualizing the loss landscape can provide an empirical characteri-
zation of the geometry of neural network minimizers (e.g., their sharpness/flatness, or the structures
of surrounding parameter space). We present linear interpolation plots of the training loss function
along a line segment θ between sparse solutions θs and re-dense solutions θr using the strategy
proposed by Goodfellow & Vinyals (2015). We define θ(α) = (1 − α)θs + αθr for α ∈ [0, 1]
with increment of 0.01. If there exists a monotonically decreasing objective from sparse solutions
to re-dense solutions, we may conjecture that sparsity obstructs the optimization process with less
trainable parameters. We further plot 1-D loss function over a center minimizer θ using filter-wise
normalized directions as introduced by Li et al. (2018), to visualize the loss curvature of θ and make
comparisons between different minimizers.

4 DOUBLE DESCENT PHENOMENON IN SPARSE REGIMES

Here, we demonstrate a novel double descent phenomenon with respect to model sparsities under
label noise settings. Contradict to common beliefs that pruning reduces overfitting and helps gener-
alization, our experiments reveal the similarities between pruned sparse networks and small dense
networks, e.g., they both present a peak in test error near the interpolation threshold under label
noise (Figure 1). Nevertheless, sparse neural networks reach the interpolation threshold with less
parameter count, and possess non-trivial robust performance at high sparsities compared with dense
networks (Nakkiran et al., 2020).

Observation 1: Medium sparsities hurt generalization, while high sparsities enhance label-noise
robustness.

Figures 1 and 8 summarize the double descent behavior of sparse neural networks across different
datasets, permuted label fractions and pruning strategies. In most cases except for those with extreme
label noise, increasing sparsity of networks results in a first decrease and then increase in the last test
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Figure 2: Training dynamics w.r.t. epochs at five sparsities across different permuted fractions ε.
Models are ResNet-18 pruned with magnitude-based strategy. Left: CIFAR-10. Right: CIFAR-
100. We plot results of dense, overfitting, two swet-spot and underfitting models.

accuracy. Note that this increase is not caused by incomplete training of models, for models across
all sparsities are able to converge to steady states (Figure 2).

The enhanced performance could be explained by the reduced capability of fitting random labels.
Taking magnitude-based pruning results on CIFAR-100 with ε = 40% as an example (the lower
center plot in Figure 1): the rapid rise period of test accuracy (or the drastic decrease period of
training accuracy) w.r.t. sparsity lies in the interval between about 96.48% and 98.56%. During this
period, training accuracy on permuted samples is greatly decreased, while the reduction of accuracy
on unpermuted samples is relatively milder (Figure 3), showing that sparsity primarily impacts on
memorization of noisy labels before on the ability of learning generalized features.

Observation 2: Larger permuted fraction of training data requires lower sparsities for interpola-
tion, and higher sparsities for robustness.

Here we illustrate how the memorization effect of sparse neural networks is influenced by dataset
itself (Figure 1). As it is in the double descent phenomenon (Nakkiran et al., 2020), increasing the
fraction of permuted samples shift the interpolation threshold towards models with larger capacity,
which is to say, lower sparsities. On the other hand, in order to combat the side effects brought by
the existence of heavier labels noise, more parameters in the network need to be pruned. Moreover,
by comparing the ceiling value of test accuracy across a range of permuted fractions, we show that
the depressed test performance of neural networks under high label-permuted fraction settings could
not be simply recovered by sparsification. Though restricting model capacity hinders memorization,
the existence of noisy labels damages test performance anyway.

Observation 3: Higher pruning efficacy doesn’t necessarily guarantee better label-noise-learning
robustness. Magnitude-based approach enables models to withstand the most parameters to be
removed without losing training performance; whereas gradient-based method attains top early-
stopping test accuracy among almost all tasks.

Here, we first demonstrate the impact made by different pruning strategies on model capacity. For
illustration, we introduce the term of pruning efficacy: the largest sparsity a pruning strategy can
reach without hurting training performance of neural networks, and regard pruning efficacy as a
quantitative measure of the pruning impact on model capacity. As is shown in Figures 1 and 8, for
experiments on all datasets, magnitude-based pruning possesses the most striking efficacy, which
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Figure 3: Memorization measured by train accuracy on unpermuted, permuted and restored samples.
Models are ResNet-18 on CIFAR-100 with ε = 40%. We plot dense, overfitting, two swet-spot and
underfitting results from left to the right.

preserves model capacity despite a large fraction of parameters is removed. And random pruning has
the least efficacy, suggesting that the inherent structures might be partly disrupted when randomly
disabling connections in a network.

However, the efficacy of pruning does not necessarily correlates with robustness of pruned networks.
At high sparsities, the performance of gradient-based pruning consistently surpass magnitude-based
pruning and random pruning, i.e., higher test accuracy at the best and the last epoch, or wider range
of sparsities to hold robustness. Neither the ability to maintain training accuracy (high pruning effi-
cacy) nor the resistance against losing parameters (low pruning efficacy) is adequate for explaining
the superiority of gradient-based methods. Thus, expect for the ability to reduce parameters while
minimize accuracy loss, we need to discuss properties of pruning strategies more comprehensively.

Here we’d like to propose an intuitive explanation for the different behaviors between magnitude-
based pruning and gradient-based pruning. Motivated by previous works (Molchanov et al., 2017b;
Lee et al., 2019), we use the change in loss ∆Lj to measure the impact of removing weights i on loss
at pruning iteration j. We utilize the binary mask as an indicator of pruned weights with mi,j = 1
and mi,j+1 = 0. And for simplicity, we denote the derivative of L(w �mj ;D) with respect to its
parameters w�mj as gj(w;D). We phrase pruning as an optimization process and make a locally
linear approximation near mj . Hence, based on Taylor expansion, the change in loss can be written
as:

∆Lj = L (w �mj+1,;D)− L (w �mj ;D) ≈ gTj (w;D) (w � (mj+1 −mj)) (1)

Recall the pruning heuristics in Section 3.2, gradient-based method removes weights with the small-
est |g�w|, hence minimizing the loss change during pruning iterations. Given the favorable learning
behavior where training loss starts to suffer as we discussed above, we may conjecture that smooth-
ing the curve of training loss (or accuracy) is beneficial for robustness. During the prolonged stage
of downgrade in training performance, networks gradually forget hard-to-generalize patterns, and
the early-stopping performance gains. Therefore, the smoother the training curve is w.r.t sparsity,
the wider range of sparsities that contributes to robust early-stopping performance can be. And a
flatter accuracy-sparsity curve also makes it possible to search for the robust sparsities with a larger
pruning ratio per iteration.

On the other hand, magnitude-based pruning removes parameters with small absolute magnitude,
which have the minimal affect on objective, and keeps objective near zero at relatively high sparsi-
ties, therefore achieves remarkable pruning efficacy. Though such intuitive explanations are quite
simple and straightforward, and do not cover complex cases like retraining with LTR, however, we
can still see a coincidence between our analysis and experimental results, despite the diminished
distinction between two methods with extreme permuted fraction of data (Figure 1).

5 SPARSE LOSS LANDSCAPE ANALYSIS

We have demonstrated that pruning could hinder the memorization of label noise and lead to ro-
bust solutions at high sparsity. In this section, we empirically explore the possible causes for this
phenomenon.

Previous works hypothesize that pruning encourages the optimizer to move towards flatter minima
that benefit generalization, and this benefits do not depend on permanent parameter removal (Han
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Figure 4: Accuracy as a function of epochs during sparse and re-dense training process. Models are
ResNet-18 on CIFAR-100, with permuted fraction at 40%. Pruned weights are recovered at epoch
160, and trained for another 160 epochs with a fixed learning rate of 0.001. We present models at
dense, overfitting, two swet-spot and underfitting sparsities from left to the right.
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Figure 5: Linear interpolation plots. Models are ResNet-18 on CIFAR-100 with ε = 40%. α = 0
corresponds to sparse solutions and α = 1 corresponds to the re-dense solutions. The blue lines are
loss curves and the red lines are accuracy curves; solid lines indicate training data set and dashed
lines indicate testing data set. For re-dense models, sparsity is measured before recovering weights.

et al., 2017; Bartoldson et al., 2020). Here, we’d like to investigate whether flatness can explain the
robustness to label noise at high sparsities, and whether the robustness could still be maintained if
we bring back the pruned connections to networks.

Re-dense training escapes highly sparse solutions. We apply the re-dense training approach as
introduced in Section 3.3. If the optimizer reaches a flat basin of local minima during sparse training,
we may suspect that a small learning rate in the re-dense training stage will continually attract
optimizer around this basin, and the final re-dense solutions will have comparable generalization
performance to the sparse ones. However, as is shown in Figure 4, solutions at high sparsities are
not stable in dense subspace. Once the sparsity constraints are removed, the objective will escape
from pruned solutions and overfit to label noise severely.

High Sparsity reshapes loss landscape and creates local minima. Moreover, with linear interpo-
lation of loss function, we find a monotonically decreasing path from the high-loss point to low-loss
point (Figures 5 and 14). The existence of such path demonstrates that these highly sparse solu-
tions are no longer minimizers in high dimensions, thus allowing for the escape phenomenon during
re-dense training process. Moreover, the final solutions of re-dense training does not possess good
generalization behavior, and have higher sharpness than the original dense models trained from
scratch (see the 1-D visualization of solutions at various sparsities in Figure 6). Such phenomenon
provides evidence against that highly sparse solutions stick around flat basins of minimizers.

Hypothesis for label-noise robustness of pruned networks. Given the above findings, we propose
the following hypothesis: High sparsities obstruct the objective decreasing path, and discourage
optimizers to move away from initialization, which lessens model vulnerability to label noise. As is
known that neural networks need to stray far from initialization to memorize noisy labels (Li et al.,
2020b; Stephenson et al., 2021), we may suspect that the distance from initialization could explain
the robustness behavior of highly sparse networks to a certain extent.

Optimizers are attracted by minimizers near initialization in sparse subspace. We measure the
`2 distance from initialization with all trainable parameters from convolutional and linear layers.
In order to illustrate the relationship between the `2 distance and model performance, we plot both
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Figure 7: `2 distance from initialization and test accuracy as functions of sparsities. Left: LeNet-
300-100 on MNIST with ε = 20%. Middle: ResNet-18 on CIFAR-10 with ε = 20%. Right:
ResNet-18 on CIFAR-100 with ε = 40%. The blue lines are `2 distance curves and the red lines
are accuracy curves; solid lines are results for re-dense solutions and dashed lines are for sparse
solutions. The vertical lines indicate where the curves of sparse and re-dense results come to cross,
and signs of their relative difference shift.

the distance and test accuracy against sparsity (Figure 7). Note that when increasing sparsity, both
the "sparse distance" (`2 distance from initialization of sparse networks) and "re-dense distance"
(`2 distance of re-dense networks) decline continuously. This phenomenon reveals that sparsity
restricts the movement of optimizers, and traps them around sharp minimizers near initialization,
which would be normally skipped when training dense networks.

Correlations between `2 distance and robustness. Surprisingly, the "sparse distance" with repect
to sparsities of LeNet-300-100 models also exhibits a double-descent-like trend (seen in Figure 7,
the left); furthermore, the curves of distance and accuracy are almost mirror images of each other for
both sparse and re-dense networks, which suggests a strong correlation between parameter distance
and model robustness. With regard to more complex architectures (ResNet-18 with convolution and
batch-normalization layers) and more difficult datasets (CIFAR-10 and CIFAR-100), such correla-
tion is not obvious in their absolute value. However, if we focus on the relative difference between
sparse and re-dense results w.r.t. the same sparsity, we can confirm an similar conclusion that stay-
ing closer to initialization guarantees better robustness: at low sparsities, sparse solutions are located
farther from initialization than re-dense ones, and presents an inferior performance, while at high
sparsities, sparse minimizers stay closer to initial points and manifest robustness. This observation
supports our proposed hypothesis, and is consistent with prior theoretical studies (Li et al., 2020b).

6 CONCLUSION

In this paper, we reassess some common beliefs concerning the generalization properties of sparse
networks and illustrate the inapplicability of these viewpoints under label noise at high sparsities.
Instead, our proposed hypothesis that highly sparse solutions are stuck near initialization thus stay
invulnerable to noisy labels, correlates with empirical findings, and accounts for the robustness at
high sparsities to a certain extent. We provide some insight into the optimization dynamics and
memorization capability of sparse regimes, which we hope will guide progress towards more robust
training and pruning algorithms for deep learning under label noise.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

We adopt standard implementations of LeNet-300-100 from OpenLTH1. LeNet-300-100 is a fully-
connected network with 300 units in the first layer and 100 units in the second hidden layer, and
ReLU activations.

Network of ResNet-18 is a modified version of PyTorch model. To adapt ResNet-18 for CIFAR-10
and CIFAR-100, the first convolutional layer is equipped with filter of size 3x3 and the max-pooling
layer that follows has been eliminated. CIFAR-10 and CIFAR-100 are augmented with per-channel
normalization, randomly horizontal flipping , and randomly shifting by up to four pixels in any
direction.

In pruning experiments, for LeNet-300-100, we consider all weights from linear layers except for the
last layer as prunable parameters; for ResNet-18, all weights from convolutional and linear layers are
set as prunable. We do not prune biases nor the batch normalization parameters. For convolutional
and linear layers, the weights are initialized with Kaiming normal strategy and biases are initialized
to be zero.

We run all our experiments on single 2080Ti GPU with CUDA 10.1, and provide the training hyper-
parameters used in our experiments as follows. Our code is available in the supplementary material.

Network Dataset Epochs Batch Opt. Mom. LR LR Drop Drop Factor LR(re-dense) Weight Decay Rewind Iter
LeNet-300-100 MNIST 200 128 SGD — 0.1 — — 0.1 — 0

ResNet-18 CIFAR-10 160 128 SGD 0.9 0.1 80, 120 0.1 0.001 1e-4 1000
ResNet-18 CIFAR-100 160 128 SGD 0.9 0.1 80, 120 0.1 0.001 1e-4 1000

A.2 ADDITIONAL EXPERIMENT RESULTS AND DISCUSSION

Here, we will present additional results that are not included in the main body for page limit.

A.2.1 MNIST RESULTS
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Figure 8: Double descend phenomenon in sparse regimes for LeNet-300-100 on MNIST with three
pruning strategies and varying permuted fraction ε.

1https://github.com/facebookresearch/open_lth
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Figure 9: Training dynamics w.r.t. epochs at five sparsities across different permuted fractions ε.
Models are LeNet-300-100 for MNIST pruned with magnitude-based strategy.

0 100 200
Epochs

0.0

0.5

1.0

T
ra

in
A

cc
u

ra
cy

Sparsity=0.0

Unpermuted Permuted Restored

0 100 200
Epochs

Sparsity=89.26%

0 100 200
Epochs

Sparsity=98.85%

MNIST LeNet-300-100 with ε = 20%

0 100 200
Epochs

0.0

0.5

1.0

T
ra

in
A

cc
u

ra
cy

Sparsity=0.0

Unpermuted Permuted Restored

0 100 200
Epochs

Sparsity=67.23%

0 100 200
Epochs

Sparsity=98.85%

MNIST LeNet-300-100 with ε = 40%

Figure 10: Memorization measured by train accuracy on unpermuted, permuted and restored sam-
ples. Models are LeNet-300-100 on MNIST with different permuted fraction. We plot dense, over-
fitting, swet-spot results.
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Figure 11: Accuracy curve of the sparse and re-dense training process. We recover pruned weights
at epoch 200, and training them from value of zero for another 200 epochs using the last learning
rate of sparse training, which is 0.1 for LeNet-300-100.
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A.2.2 CIFAR-10 RESULTS
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Figure 12: Memorization measured by train accuracy on unpermuted, permuted and restored sam-
ples. Models are ResNet-18 on CIFAR-10 with ε = 20%. We plot dense, overfitting, two swet-spot
and underfitting results from left to the right. Memorization capability of neural networks is dam-
aged as pruning.
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Figure 13: Accuracy curve of the sparse and re-dense training process. We recover pruned weights
at epoch 160, and training them from value of zero for another 160 epochs using the last learning
rate of sparse training, which is 0.001 for ResNet-18.
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Figure 14: Linear interpolation plots. Models are ResNet-18 on CIFAR-10 with ε = 20%. α = 0
corresponds to sparse solutions and α = 1 corresponds to the re-dense solutions. The blue lines
areloss curves and the red lines are accuracy curves; solid lines indicate training data set and dashed-
lines indicate testing data set.

A.2.3 ADDITIONAL DISCUSSION

We’d like to further discuss why the double descent phenomenon is rarely exhibited in existing
pruning literature. Several possible explanations might account for its imperception: (1) not enough
points are reported in the accuracy-sparsity tradeoff curve; (2) performance loss is offset by noise
injection regularization effect brought by pruning; (3) retraining techniques like finetuning keep the
network trapped near initial pruned solutions. Nevertheless, under label noise settings, we can am-
plify the impact of reduced capacity on model performance brought about by sparsity, and reconcile
the conventional understanding and the modern practice of network pruning.
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