
Under review as a conference paper at ICLR 2021

CONSISTENT INSTANCE CLASSIFICATION FOR UNSU-
PERVISED REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we address the problem of learning the representations from images
without human annotations. We study the instance classification solution, which
regards each instance as a category, and improve the optimization and feature
quality. The proposed consistent instance classification (ConIC) approach simul-
taneously optimizes the classification loss and an additional consistency loss ex-
plicitly penalizing the feature dissimilarity between the augmented views from the
same instance. The benefit of optimizing the consistency loss is that the learned
features for augmented views from the same instance are more compact and ac-
cordingly the classification loss optimization becomes easier, thus boosting the
quality of the learned representations. This differs from InstDisc (Wu et al., 2018)
and MoCo (He et al., 2019; Chen et al., 2020c) that use an estimated prototype
as the classifier weight to ease the optimization. Different from SimCLR (Chen
et al., 2020b) that directly compares different instances, our approach does not re-
quire large batch size. Experimental results demonstrate competitive performance
for linear evaluation and better performance than InstDisc, MoCo and SimCLR at
downstream tasks, such as detection and segmentation, as well as competitive or
superior performance compared to other methods with stronger training setting.

1 INTRODUCTION

Learning good representations from unlabeled images is a land-standing and challenging problem.
The mainstream methods include: generative modeling (Hinton et al., 2006; Kingma & Welling,
2014), colorization (Zhang et al., 2016), transformation or spatial relation prediction (Doersch et al.,
2015; Noroozi & Favaro, 2016; Gidaris et al., 2018), and discriminative methods, such as instance
classification (Dosovitskiy et al., 2016; He et al., 2019), and contrastive learning (Chen et al., 2020b).

The instance discrimination methods show promising performance for downstream tasks. There are
two basic objectives that are optimized (He et al., 2019; Chen et al., 2020b; Yu et al., 2020; Wang
& Isola, 2020): contraction and separation. Contraction means that the features of the augmented
views from the same instance should be as close as possible. Separation means that the features of
the augmented views from one instance should lie in a region different from other instances.

The instance classification framework, such as InstDisc (Wu et al., 2018), and MoCo (He et al.,
2019; Chen et al., 2020c), adopts a prototype-based classifier, where the prototype is estimated as
the moving average of the corresponding features of previous epoches Wu et al. (2018) or as the
output of an moving-average network He et al. (2019); Chen et al. (2020c). The prototype-based
schemes ease the optimization of the classification loss in the challenging case that there is over one
million categories. BYOL (Grill et al., 2020) computes the prototype in a way similar to MoCo,
and only aligns the feature of augmented views with its prototype leaving the separation objective
implicitly optimized. The prototype, computed from a single view rather than many views and
from networks with different parameters, might not be reliable enough, making the contraction and
separation optimization quality not guaranteed.

The contrastive learning framework1, such as SimCLR (Chen et al., 2020b) and Ye et al. (2019),
simultaneously maximizes the similarities between each view pair from the same instance and min-

1InstDisc (Wu et al., 2018) and MoCo (He et al., 2019; Chen et al., 2020c) are also closely related to
contrastive learning and are regarded as contrastive learning methods by some researchers.

1

Under review as a conference paper at ICLR 2021

(a)

(b)

(c)

Figure 1: Visualizing the activation maps. (a) input image, (b) activation maps from our approach,
(c) activation maps from only optimizing the classification loss. One can see that our approach (b)
tends to more focus on the textured region.

imizes the similarities between the view pair from different instances. This framework directly
compares the feature of one view to a different view other than to a prototype, avoiding the unreli-
ability of the prototype estimation. It, however, requires large batch size for each SGD iteration to
compare enough number of negative instances for imposing the separation constraint2, increasing
the difficulty in large batch training.

We propose a simple unsupervised representation learning approach, consistent instance classifica-
tion (ConIC), to improve the optimization and feature quality. Our approach jointly minimizes two
losses: instance classification loss and consistency loss. The instance classification loss is formu-
lated by regarding each instance as a category. Its optimization encourages that different instances
lie in different regions. The consistency loss is formulated to directly compares the features of the
augmented views from the same instance and encourages high similarity between them.

One benefit from the consistency optimization is to directly and explicitly make the features of the
same instances compact and thus to accelerate the optimization of the classification loss. This is
different from Wu et al. (2018), He et al. (2019), heuristically estimating the classifier weights using
the prototypes and does not suffer from the prototype estimation reliability issue. On the other hand,
our approach does not rely on large batch training, that is essential for SimCLR (Chen et al., 2020b),
because the whole loss in our formulation can be decomposed as a sum of components each of which
only depends on one instance.

Furthermore, we observed that jointly optimizing the consistency and classification losses leads to
that the representation is more focused on the textured region, as shown in Figure 1. This implies
that the learned representation is more capable of characterizing the objects, and thus potentially
more helpful for downstream tasks like object detection and segmentation.

We demonstrate the effectiveness of our approach in unsupervised representation learning on Ima-
geNet. Our approach achieves competitive performance under the linear evaluation protocol. When
finetuned on downstream tasks, such as object detection on VOC, object detection and instance
segmentation on COCO, instance segmentation on Cityscapes and LVIS, as well as semantic seg-
mentation on Citeyscapes, COCO Stuff, ADE and VOC, our approach performs better than InstDisc,
MoCo and SimCLR, and competitively or superior compared to other methods with stronger training
setting (e.g., InfoMin and SwAV).

2 RELATED WORK

Generative approaches. Generative models, such as auto-encoders (Hinton et al., 2006; Kingma
& Welling, 2014; Vincent et al., 2008), context encoders (Pathak et al., 2016), GANs (Donahue &
Simonyan, 2019), and GPTs (Chen et al., 2020a), learn an unsupervised representation by faithfully
reconstructing the pixels. Later self-supervised models, such as colorization (Zhang et al., 2016)
and split-brain encoders (Zhang et al., 2017), improve generative models by withholding some part
of the data and predicting it.

2We will show one possible reason that it requires large batch.

2

Under review as a conference paper at ICLR 2021

Spatial relation prediction. The representation is learned by solving pretext tasks related to image
patch spatial relation prediction, such as predicting the spatial relation between two patches sampled
from an image, e.g., a patch is on the left of another patch, (Doersch et al., 2015); solving Jigsaw
Puzzles and determining the spatial configuration for the shuffled (typically 9) patches (Noroozi &
Favaro, 2016); and predicting the rotation (Gidaris et al., 2018).

Instance classification. Exemplar-CNN (Dosovitskiy et al., 2016) regards the views formed by
augmenting each instance as a class, and formulates an instance classification problem. InstDisc (Wu
et al., 2018), MoCo (He et al., 2019), CMC (Tian et al., 2019) and PIRL (Misra & van der Maaten,
2019) generalize exemplar-CNN by heuristically estimating the classifier weights using prototypes
for easing the optimization. Our proposed approach follows the instance classification approach,
and exploit an additional consistency loss to help optimization.

Instance clustering. Rather than regarding each instance as a category, the instance clustering
frameworks (Caron et al., 2018; 2019; 2020; Asano et al., 2020; Huang et al., 2019; Xie et al., 2016;
Yan et al., 2020; Yang et al., 2016) learn representations in which the instances are well optimized.
DeepCluster (Caron et al., 2018) simply adopt the k-means clustering method by simultaneously
optimizing the network parameters, and uses k-means assignments as pseudo-labels to learn repre-
sentations. SwAV (Caron et al., 2020) simultaneously clusters the data while enforcing consistency
between cluster assignments for different views of the same instance.

Contrastive learning. Contrastive predictive coding (van den Oord et al., 2018; Hénaff et al., 2019)
predicts the representations of patches below a certain position from those above it by optimizing
contrastive loss. DIM (Hjelm et al., 2019) and ANDIM (Bachman et al., 2019) achieves global-to-
local/local-to-neighbor patch representation prediction (overlapping) across augmented views using
the contrastive loss.

The contrastive learning framework (Ye et al., 2019; Chen et al., 2020b) formulates a contrastive
loss encouraging the high similarity between the augmented views from the same instance, and
low similarity between the instance and other instances. Wang & Isola (2020) presents a novel
formulation based on two measures: alignment and uniformity, and shows that it is an alternative of
contrastive loss. Yu et al. (2020) connects contractive and contrastive learning, cross-entropy, and
so on, and provides theoretical guarantees for learning diverse and discriminative features.

Consistency in semi-supervised learning. Consistency regularization, enforcing the similarity be-
tween the predictions or features of different views for the same unlabeled instance, has been widely
applied in semi-supervised learning, such as Π Model (Laine & Aila, 2017), Temporal Ensem-
ble (Laine & Aila, 2017), and Mean Teacher (Tarvainen & Valpola, 2017). We exploit the consis-
tency loss to help optimize the classification loss for unsupervised representation learning.

3 APPROACH

Given a set of image instances without any labels, I = {I1, I2, . . . , IN}, the goal is to learn a fea-
ture extractor (a neural network) x = f(I). The discrimination approach expands each image In to
a set of augmented views {I1n, I2n, . . . , IKn }, and formulates the problem in a way that the features
of the augmented views of each instance are similar (contraction) and the features of different in-
stances are distributed separately (separation). In the following, we first review three related instance
classification methods, then we introduce our approach and present the analysis.

3.1 INSTANCE CLASSIFICATION

Exemplar CNN. Exemplar-CNN (Dosovitskiy et al., 2016) formulates unsupervised representation
learning as an instance classification problem. The augmented views from one instance are regarded
as one category, and the augmented views from different instances are regarded as different cate-
gories. The softmax loss is used and written for the kth view of the nth instance:

`s(x
k
n) = − log

ew
>
n x̃kn/τ∑N

j=1 e
w>
j x̃kn/τ

, (1)

where τ is the temperature. Exemplar-CNN uses the standard backpropagation algorithm to learn
the network f(·) and the classification weights {w1,w2, . . . ,wN}.

3

Under review as a conference paper at ICLR 2021

(a) (b)

Figure 2: Visualizing learned feature distributions for
2D toy examples. Each color corresponds to augmented
views of the same instance. (a) jointly optimize the con-
sistency and classification losses. (b) only optimize the
classification loss.

0.5 1.5 2.5 3.5 4.5 5.5

5.46

5.48

5.50 s

c

0.034

0.036

0.038

0.040

Figure 3: Illustration of the fi-
nal classification loss and consis-
tency loss values in training.

InstDisc. The InstDisc approach (Wu et al., 2018) optimizes the network parameters, and heuris-
tically estimates the classifier weights {w1,w2, . . . ,wN} in each epoch using a feature moving
average scheme, i.e., compute the exponential averages of the features of the corresponding in-
stances (stored in a memory bank) in the previous epochs. The heuristic weight estimation scheme
eases the network optimization.

MoCo. MoCo (He et al., 2019) instead adopts a network moving average scheme. In each SGD
iteration, MoCo updates a momentum network whose parameters are moving average of the previous
network parameters. It computes the features from the momentum network as the classifier weights,
which are further maintained by a queue. This leads to better classifier weight estimates.

3.2 CONSISTENT INSTANCE CLASSIFICATION

We introduce a consistency loss to explicitly penalize the dissimilarity between augmented views
from the same instance. Let sim(u,v) = u>v/‖u‖‖v‖ denote the inner product between `2 nor-
malized u and v, i.e. cosine similarity. The consistency loss for two views xin and xjn from the
image In is formed as

`c(x
i
n,x

j
n) = (1− sim(xin,x

j
n))2 = (1− x̃in

>x̃jn)2. (2)

Here, we normalize the feature vector x̃ = x/‖x‖2 as done in InstDisc and MoCo. The consistency
loss for the N images each with K augmented views is written as

Lc =
∑N

n=1

∑K

i,j=1,i6=j
`c(x

i
n,x

j
n) =

∑N

n=1

∑K

i,j=1,i6=j
(1− x̃in

>x̃jn)2. (3)

The classification loss for the N images each with K augmented views is written as

Ls =
∑N

n=1

∑K

k=1
`s(x

k
n) = −

∑N

n=1

∑K

k=1
log

ew
>
n x̃kn/τ∑N

j=1 e
w>
j x̃kn/τ

. (4)

where we let the classifier weight be an `2-normalized vector: ‖w‖2 = 1, which is similar to
normalizing the prototype vector as done in InstDisc and MoCo.

We combine the two losses together,

L = Ls + αLc, (5)

where α is a weight for the consistency loss to balance the two losses, avoiding over-optimizing the
consistency loss or merely optimizing the classification loss.

Consistency helps optimizing the classification loss. In general, when the features for each class
are more compact, different classes are more easily separated and the softmax classification are more
efficiently optimized. Our approach has the benefits: the feature distribution for the same instance is
compact and the distributions for different instances are well separable, because of maximizing the
consistency. Figure 2 (a) illustrates the benefit from simultaneously optimizing the consistency loss
and the classification loss. Figure 2 (b) shows the insufficiency of only optimizing the classification
loss. One can see that the distributions of different instances in Figure 2 (a) are better separated and
the distribution for each instance is more compact.

4

Under review as a conference paper at ICLR 2021

(a)
64 128 256 512 1024

batch size
62.0

62.5

63.0

63.5

64.0

64.5

65.0

65.5

to
p-

1
ac

cu
ra

cy

(b)
64 128 256 512 1024

batch size
81.0

81.2

81.4

81.6

81.8

82.0

82.2

82.4

VO
C

AP
50

(c)
64 128 256 512 1024

batch size

34.6

34.8

35.0

35.2

35.4

35.6

35.8

36.0

CO
CO

st
uf

f m
Io

U

Figure 4: Performance with different batch sizes: (a) Linear evaluation on ImageNet, (b) VOC
detection, and (c) COCO-stuff segmentation. The performances with batch sizes 256, 512 and 1024
are similar.

Let’s see how the consistency term makes the gradient of the classifier weight more effective.
We have the gradient for the classification loss `s(xkn) with respect to the classifier weight wn:
∂`s(x

k
n)

∂wn
= (P knn − 1)x̃kn, where P knn = ew

>
n x̃kn/τ∑N

r=1 e
w>
r x̃kn/τ

. The gradient from two views xin and xjn is

gw =
∂`s(x

i
n)

∂wn
+
∂`s(x

j
n)

∂wn
= (P inn − 1)x̃in + (P jnn − 1)x̃jn. (6)

According to the law of cosines, ‖x̃in‖2 = 1 and ‖x̃jn‖2 = 1, we have

‖gw‖22 = (P inn − 1)2 + (P jnn − 1)2 + 2|(P inn − 1)||(P jnn − 1)|x̃in>x̃jn. (7)

When the consistency term is included, x̃in and x̃jn are very close, implying that x̃in
>x̃jn is larger. In

the case P inn and P jnn are not changed, the magnitude ‖gw‖2 is larger, and accordingly the classifier
weight wn is updated effectively and quickly. In contrast, when the consistency term is not included,
x̃in and x̃jn might be very diverse as discussed (see the discussion in “Optimizing the classification
loss is not direct to optimize the consistency loss.”) This results in that ‖gw‖2 is smaller, and thus
the classifier weight wn is updated less effectively and less quickly.

Figure 3 shows the final classification loss Ls and consistency loss Lc value with different consis-
tency loss weights. We can see that increasing the consistency weight when smaller than 2.5 helps
optimizing the classification loss, and when larger than 2.5 harms the classification loss optimiza-
tion. In Appendix B, we discuss the reason: over-weighting the consistency loss could lead to a
trivial solution. In our experiments, we set α to 2.5 in which case the training classification loss is
minimum.

Optimizing the classification loss is not direct to optimize the consistency loss. Optimizing the
classification loss intuitively expects that each instance lies in a different region. We expect that the
augmented views of an instance xn are assigned to the nth region and compactly distributed. We find
that merely optimizing the classification loss Ls is not easy to make the features of the augmented
views of the same instance contractive, consequently the features are not compactly distributed.

The reason is that larger similarity between augmented views is not explicitly encouraged, and is im-
plicitly imposed through the classifier weight. The angle between x̃in and x̃jn, θ(x̃in, x̃

j
n) (reflecting

the similarity between x̃in and x̃jn, θ(x̃in, x̃
j
n)), is upbounded:

θ(x̃in, x̃
j
n) ≤ θ(x̃in,wn) + θ(wn, x̃

j
n). (8)

Minimizing the classifier loss Ls if given wn, it is possible that the numerators (e.g, w>n x̃
i
n and

w>n x̃
j
n), are larger and accordingly the upbound θ(x̃in,wn)+θ(wn, x̃

j
n) is smaller. However, we find

that there exist many transformations R so that the upbound is the same: w>n (R x̃in) = w>n x̃
i
n, and

θ(x̃in,wn) = θ(Rx̃in,wn). In this case, θ(x̃in, x̃
j
n) is likely to be very different from θ(Rx̃in, x̃

j
n).

This implies that there is still a gap between optimizing the upbound θ(x̃in,wn) + θ(wn, x̃
j
n) and

directly optimizing θ(x̃in, x̃
j
n). As a result, merely optimizing the classification loss is not easy to

make the features for one instance compactly distributed in the corresponding region.

Batch size. We present rough analysis showing that instance classification, including our approach,
MoCo, and InstDisc, does not require large batch (see He et al. (2019) and the empirical validation
in Figure 4 for our approach). We rewrite the loss function in Equation 5 as

L =
∑N

n=1
[α
∑K

i,j=1,i6=j
(1− sim(xin,x

j
n))2 +

∑K

k=1
log

ew
>
n x̃kn/τ∑N

j=1 e
w>
j x̃kn/τ

]. (9)

5

Under review as a conference paper at ICLR 2021

The reformulation indicates that the loss can be decomposed to the sum of components, where
each component depends on a different instance. The separation between instances is got through
the classifier weights each of which encodes the information of the corresponding instance. The
decomposability property leads to that the optimization of L using SGD behaves similarly to the
standard classification problem with SGD: large batch size is not necessary. Figure 4 shows that the
performances with batch sizes 256, 512 and 1024 are similar.

In contrast, the contrastive loss over all the N instances in SimCLR, is

L =
∑N

n=1
(log

ex̃
1
n
>x̃2

n/τ∑N
j=1 e

x̃1
n
>x̃1

j/τ + ex̃
1
n
>x̃2

j/τ
+ log

ex̃
2
n
>x̃1

n/τ∑N
j=1 e

x̃2
n
>x̃1

j/τ + ex̃
2
n
>x̃2

j/τ
). (10)

We can see that this can not be decomposed as a sum of components each of which depends on a dif-
ferent instance, which is a general requirement for SGD. Each instance depends on other instances.
We believe that this is the reason why SimCLR needs large batch size (Chen et al., 2020b).

4 IMPLEMENTATION DETAILS

Data augmentation. We adopt the augmentation scheme similar to SimCLR (Chen et al., 2020b).
We randomly crop the input image with the crop scale (0.15, 1) and resize it to 224× 224. Then we
apply random horizontal flipping, color jittering, grayscale, and Gaussian blur.

Network architecture. We use ResNet-50 (He et al., 2016) to extract features. Following SimCLR
we adopt the same projection head consisting of a two-layer batch-normalized MLP (Linear→BN→
ReLU→Linear→BN) and reduce the feature dimension from 2048 to 128 in pretraining.

Training. We use the SGD algorithm with momentum optimizer. We set the momentum parameter
to 0.9, the weight decay parameter to 1e − 4, the batch size to 512, and the epoch number to 200.
We adopt the cosine learning rate schedule, with the initial learning rate 0.06. Each instance in
the current mini-batch is augmented into two views during training. The temperature τ is set to be
0.1. We use SyncBN. For ablation study, we train all the models for 100 epochs. The training is
performed on 8 NVIDIA V100 GPUs. We use the PyTorch 1.3 platform (Paszke et al., 2019) .

Sampling classifier weight update. The analysis is based on the standard SGD algorithm. For
clarity, we assume each iteration samples 1 instance with two augmented views. The analysis can be
easily extended to sampling more instances with more augmented views. The loss function becomes

L = 2(1− sim(x1
n,x

2
n))−

∑2

k=1
log

ew
>
n x̃kn/τ∑N

j=1 e
w>
j x̃kn/τ

. (11)

It can be seen that the denominator in the second term on the right-hand side,
∑N
j=1 e

w>
j x̃kn/τ , is

a summation of N elements, and thus the complexity is Θ(N). We propose to approximate it by
summing fewer (N ′ = 65536 is the same to the queue size in MoCo He et al. (2019)) elements:

ew
>
n x̃kn/τ + β

∑N ′

j=1
e
w>
sj

x̃kn/τ , (12)

where we let the sampling compensation weight β = N−1
N ′ for a better approximation (See Ap-

pendix A.1). This approximation reduces the forward loss computation complexity to Θ(N ′).

The normal iteration process needs to update all the N classifier weights in each iteration, imply-
ing the complexity is still Θ(N). Fortunately, through derivation (see Appendix A.2), we find that
we do not need to compute the gradients and update the classifier weights corresponding to the in-
stances that are not sampled. We can delay the update to the iteration that the instances are sampled.
In other words, at each iteration we only compute the gradients and update the classifier weights
corresponding to the instances that are sampled. Consequently, the gradient computation and the
classifier weight update, and accordingly each iteration takes Θ(N ′) time.

In our implementation, rather than sampling all the N ′ classifier weights at each iteration, we only
use the classifier weights, which correspond to the (e.g., 512) instances in a mini-batch, to replace
the classifier weights that are the earliest sampled. The potential benefit is to reduce the IO cost if
we store the weights in the disk or the CPU memory and only store the sampled weights in the GPU
memory, which is practically valuable for very large scale cases (e.g., 1B or more images).

6

Under review as a conference paper at ICLR 2021

Table 1: Illustrating how the consistency weight α influences the performance The observations are
consistent to the one about the classification loss shown in Figure 3.

α LE
VOC Det. COCO Det. COCO Keypoint DensePose Instance Seg. Semantic Seg.

VOC07+12 Mask-R 1× Mask-R 2× DP-R City. LVIS City. Stuff ADE VOC Context
APbb APbb

50 APbb APmk APkp APkp
50 APdp APmk APmk mIoU mIoU mIoU mIoU mIoU

0 63.6 54.9 80.7 38.4 34.9 65.8 87.2 63.7 31.6 24.2 76.7 33.4 41.5 75.2 47.2
0.5 65.0 56.1 81.5 39.0 35.3 66.2 87.3 64.5 32.4 24.7 76.9 33.6 41.0 76.3 33.6
1.5 65.1 56.7 82.0 39.3 35.5 66.3 87.1 64.4 32.3 24.4 77.3 34.3 41.7 77.2 48.7
2.5 65.1 56.4 81.9 39.2 35.5 66.3 87.1 64.4 33.1 25.4 77.9 35.3 41.7 77.1 49.4
3.5 64.6 56.6 81.6 39.3 35.5 66.3 87.2 65.0 33.2 24.9 77.9 34.5 42.0 76.9 48.8
4.5 64.7 56.1 81.8 39.2 35.4 66.0 87.2 64.4 32.6 24.6 77.0 34.3 42.1 77.0 48.9

base w/o comp w/ comp
linear evaluation

62

63

64

65

to
p-

1
ac

cu
ra

cy

base w/o comp w/ comp
COCO detection

38.0

38.5

39.0

39.5

40.0

AP
bb

base w/o comp w/ comp
COCO dense pose

63.0

63.5

64.0

64.5

65.0

AP
dp

base w/o comp w/ comp
LVIS

23.5

24.0

24.5

25.0

25.5

AP
m

k

base w/o comp w/ comp
ADE20k

40.5

41.0

41.5

42.0

42.5

m
Io

U

Figure 5: Illustrating the effect of sampling classifier weight update. Three results, the baseline w/o
sampling, sampling update w/o sampling compensation, and sampling update w/ sampling compen-
sation, are reported. The results show that sampling update w/ sampling compensation performs
better than w/o sampling compensation and similar to the baseline w/o sampling.

5 EXPERIMENTS

We conduct the evaluation by training the models on ImageNet (Deng et al., 2009) w/o using the
labels. We follow He et al. (2019) and adopt two protocols, linear evaluation on ImageNet, and
downstream task performance with fine-tuning.

Ablation study: consistency. Figure 3 shows how the consistency weight parameter α influences
the classification loss. The results are as our expectation and suggest that the classification loss
decreases when the parameterα increases to a certain value 2.5 that choose to use in our experiments,
and then the classification loss increases. The results on the downstream tasks and linear evaluation
shown in Table 1 indicate consistent observations: the overall performance when α = 2.5 performs
satisfactorily, and better than the performance w/o consistency (α = 0).

Ablation study: sampling classifier weight update. We evaluate how sampling classifier weight
update and sampling compensation affect the performance. Figure 5 indicates that sampling com-
pensation makes the results w/ the sampling scheme overall similar to the results w/o the sampling
scheme and better than w/o sampling compensation (β = 1).

Comparison with state-of-the-arts. We compare our approach, consistent instance classification
(ConIC) to recent state-of-the-art solutions: Exemplar-CNN, InstDisc, PIRL, MoCov1, MoCov2,
AlignUniform, SwAV, and InfoMin3. The pretrained models of MoCo v1/v2, AlignUniform, SwAV,
and InfoMin are obtained from GitHub provided by the corresponding authors. The PIRL pretrained
model is obtained from PyContrast4. We implement Exemplar-CNN and InstDisc using the same
setup with ours, including `2 normalization and data augmentation. The comparison to these meth-
ods is fair as the models are pretrained with almost the same setting, e.g., #epochs is all 200, data
augmentation is almost the same, the backbone is the same, and each instance is augmented to two
views. We fine-tune all the models using the same setting for the downstream tasks.

The results for downstream tasks are given in Table 2. The overall performance of our approach
(ConIC) is the best, and the overall performance of our approach w/ sampling classifier weight
update (ConIC w/sampling) is the second best. In contrast, the best one among the previous methods,
AlignUniform (Wang & Isola, 2020) performs satisfactorily for most tasks and unsatisfactorily for
the segmentation tasks on Cityscapes, ADE20k, and Pascal-VOC. The superiority of our approach
shows that minimizing the consistency loss improves the capability of characterizing the objects and
the feature transferability.

3The results of other methods for downstream tasks are given in Appendix F.
4https://github.com/HobbitLong/PyContrast

7

https://github.com/HobbitLong/PyContrast

Under review as a conference paper at ICLR 2021

Table 2: Comparison of our approach ConIC with recent state-of-the-art solutions. We highlight the
best and second-best scores among the approaches w/o strong setup in red and blue, respectively.

Method Instance Seg. Semantic Segmentation COCO Keypoint
City. LVIS City. Stuff ADE VOC Context APkp APkp

50

Exemplar-CNN (Dosovitskiy et al., 2016) 32.4 25.3 77.1 34.0 41.5 77.0 48.6 66.1 87.2
InstDisc (Wu et al., 2018) 31.9 24.6 76.8 33.9 41.3 76.9 49.0 65.8 86.9
PIRL (Misra & van der Maaten, 2019) 32.2 25.0 75.4 34.1 40.2 75.3 47.6 66.2 86.9
MoCo v1 (He et al., 2019) 32.7 25.2 77.5 34.3 41.4 76.2 47.3 66.3 87.0
MoCo v2 (Chen et al., 2020c) 33.0 25.6 77.6 35.4 41.6 78.3 50.3 66.5 87.5
AlignUniform (Wang & Isola, 2020) 33.5 25.6 76.7 35.9 40.7 74.2 50.8 66.4 87.3
ConIC 33.6 25.6 78.5 36.0 42.1 78.9 50.9 66.5 87.3
ConIC w/ sampling 33.5 25.0 78.2 35.5 41.9 78.5 50.8 66.2 87.2
Approaches with stronger setup
SwAV (Caron et al., 2020) 33.6 25.7 74.8 33.1 42.4 77.3 47.2 65.7 86.7
InfoMin Aug. (Tian et al., 2020) 33.7 25.6 78.2 36.2 42.3 78.7 51.1 66.5 87.5
SimCLR Chen et al. (2020b) 31.5 26.1 59.4 11.1 37.8 32.0 20.2 65.3 86.8

Method
VOC Detection COCO Detection DensePose

VOC07 VOC07+12 Mask-R 1× Mask-R 2× DP-RCNN
APbb APbb

50 APbb APbb
50 APbb APmk APbb APmk APdp

Exemplar-CNN (Dosovitskiy et al., 2016) 47.1 75.0 53.9 80.1 38.7 35.0 41.4 37.4 64.4
InstDisc (Wu et al., 2018) 46.9 75.1 56.0 81.8 38.8 35.3 41.4 37.4 64.0
PIRL (Misra & van der Maaten, 2019) 45.9 73.9 55.4 81.0 38.7 35.1 41.4 37.4 64.3
MoCo v1 (He et al., 2019) 46.6 74.9 55.9 81.5 39.4 35.6 41.7 37.5 64.3
MoCo v2 (Chen et al., 2020c) 48.2 76.3 57.0 82.4 39.7 36.0 41.9 37.8 65.1
AlignUniform (Wang & Isola, 2020) 48.6 77.0 57.2 82.4 39.7 35.9 41.9 37.8 64.6
ConIC 48.8 76.8 57.5 82.4 39.9 36.0 41.9 37.9 64.9
ConIC w/ sampling 48.8 76.5 57.3 82.7 39.7 36.0 42.0 37.9 64.8
Approaches with stronger setup
SwAV (Caron et al., 2020) 42.5 75.0 54.9 81.9 40.9 37.0 42.7 38.5 62.6
InfoMin Aug. (Tian et al., 2020) 48.6 77.0 57.6 82.7 40.6 36.7 42.5 38.4 65.6
SimCLR Chen et al. (2020b) 25.5 56.8 39.1 72.2 39.7 36.1 42.2 38.2 62.7

Table 3: Comparison for linear evaluation on ImageNet. Our approach gets comparable results to
MoCov2, A-U, and others that train models using similar setup. See Appendix F for more discus-
sions.

M
et

ho
d

C
on

IC

C
on

IC
-S

Lo
ca

l A
gg

.
E-

C
N

N

In
st

D
is

c

PI
R

L

C
M

C

C
PC

v2

M
oC

o
v1

M
oC

o
v2

Si
m

C
LR

A
-U

PI
C

PC
L

v1

PC
L

v2

B
ow

N
et

Se
La

In
fo

M
in

Sw
AV

Si
m

C
LR

B
Y

O
L

#Epochs 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 280 280 800 800 1000 1000
Top-1 acc 67.6 67.4 60.2 64.4 65.1 61.7 66.2 63.8 60.6 67.5 66.6 67.7 67.6 61.5 67.6 62.1 68.8 73.0 75.3 69.3 74.3

In addition, we report the results of three approaches w/ stronger setup, InfoMin, SwAV, and Sim-
CLR. We got the pretrained models provided by the authors. (1) InfoMin performs similarly to
our approach, but it adopts stronger augmentation, RandomAugment (Cubuk et al., 2020) that is
learned from supervised learning. (2) SimCLR (1000 epochs) performs inconsistently and surpris-
ingly poorly5. (3) SwAV performs much better than our ConIC for COCO detection, and much
worse for VOC detection, DensePose, semantic segmentation on Cityscapes, COCO stuff, Pascal-
VOC, and Pascal-Context.

Linear evaluation results on ImageNet are in Table 3. Our approach performs competitively in
comparison to MoCo v2, PIC, and PCL v2 whose training setup is similar to our approach. Other
approaches, e.g, InfoMin, SwAV, BYOL, training the models using stronger augmentation, more
views, more epochs, respectively, get higher performance. See more analysis in Appendix F.

6 CONCLUSION

We exploit the consistency loss minimization to help the optimization of the instance classification
loss. The benefits include: the representations of different views of the same instance are more com-
pact; the representations of different distances are more separable; the representations characterize
more about the textured region in an image. These lead to high capability on downstream tasks like
object detection and segmentation.

5We contacted the authors to see if we use the models correctly for some downstream tasks, and the feedback
is they did not check the performance for those downstream tasks.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Yuki M. Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling via simultaneous clustering
and representation learning. In ICLR, 2020.

Philip Bachman, R. Devon Hjelm, and William Buchwalter. Learning representations by maximiz-
ing mutual information across views. In NeurIPS, 2019.

Holger Caesar, Jasper R. R. Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and stuff classes in
context. In CVPR, 2018.

Yue Cao, Zhenda Xie, Bin Liu, Yutong Lin, Zheng Zhang, and Han Hu. Parametric instance classi-
fication for unsupervised visual feature learning. CoRR, abs/2006.14618, 2020.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsu-
pervised learning of visual features. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu,
and Yair Weiss (eds.), ECCV, 2018.

Mathilde Caron, Piotr Bojanowski, Julien Mairal, and Armand Joulin. Unsupervised pre-training of
image features on non-curated data. In ICCV, 2019.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Un-
supervised learning of visual features by contrasting cluster assignments. CoRR, abs/2006.09882,
2020.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. CoRR, abs/1706.05587, 2017.

Mark Chen, Alec Radford, Rewon Child, Jeff Wu, Heewoo Jun, Prafulla Dhariwal, David Luan, and
Ilya Sutskever. Generative pretraining from pixels. In ICML, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework
for contrastive learning of visual representations. CoRR, abs/2002.05709, 2020b.

Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. CoRR, abs/2003.04297, 2020c.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In CVPR, 2016.

Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical automated
data augmentation with a reduced search space. In CVPR Workshop, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised visual representation learning by
context prediction. In ICCV, 2015.

Jeff Donahue and Karen Simonyan. Large scale adversarial representation learning. In NeurIPS, pp.
10542–10552, 2019.

Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springenberg, Martin A. Riedmiller, and Thomas
Brox. Discriminative unsupervised feature learning with exemplar convolutional neural networks.
TPAMI, 38(9):1734–1747, 2016.

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John M. Winn, and Andrew Zisser-
man. The pascal visual object classes (VOC) challenge. IJCV, 88(2):303–338, 2010.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. In ICLR, 2018.

Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick Pérez, and Matthieu Cord. Learning
representations by predicting bags of visual words. In CVPR, 2020.

9

Under review as a conference paper at ICLR 2021

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Daniel Guo, Mohammad Ghesh-
laghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own
latent: A new approach to self-supervised learning. CoRR, abs/2006.07733, 2020.

Riza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. Densepose: Dense human pose estimation
in the wild. In CVPR, 2018.

Agrim Gupta, Piotr Dollár, and Ross B. Girshick. LVIS: A dataset for large vocabulary instance
segmentation. In CVPR, 2019.

Bharath Hariharan, Pablo Arbelaez, Lubomir D. Bourdev, Subhransu Maji, and Jitendra Malik.
Semantic contours from inverse detectors. In Dimitris N. Metaxas, Long Quan, Alberto Sanfeliu,
and Luc Van Gool (eds.), ICCV, 2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. In ICCV, 2017.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast for
unsupervised visual representation learning. CoRR, abs/1911.05722, 2019.

Olivier J. Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, S. M. Ali Eslami,
and Aäron van den Oord. Data-efficient image recognition with contrastive predictive coding.
CoRR, abs/1905.09272, 2019.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18(7):1527–1554, 2006.

R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In ICLR, 2019.

Jiabo Huang, Qi Dong, Shaogang Gong, and Xiatian Zhu. Unsupervised deep learning by neigh-
bourhood discovery. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), ICML, 2019.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In ICLR, 2017.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In ECCV, 2014.

Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J. Be-
longie. Feature pyramid networks for object detection. In CVPR, 2017.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representa-
tions. CoRR, abs/1912.01991, 2019.

Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler,
Raquel Urtasun, and Alan L. Yuille. The role of context for object detection and semantic seg-
mentation in the wild. In CVPR, 2014.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. CoRR, abs/1603.09246, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. CoRR, abs/1912.01703, 2019.

Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros. Context
encoders: Feature learning by inpainting. In CVPR, 2016.

10

Under review as a conference paper at ICLR 2021

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time
object detection with region proposal networks. TPAMI, 39(6):1137–1149, 2017.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning results. In NeurIPS, 2017.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. CoRR,
abs/1906.05849, 2019.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning. CoRR, abs/2005.10243, 2020.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. CoRR, abs/1807.03748, 2018.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In William W. Cohen, Andrew McCal-
lum, and Sam T. Roweis (eds.), ICML, 2008.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. CoRR, abs/2005.10242, 2020.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In CVPR, 2018.

Junyuan Xie, Ross B. Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering
analysis. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.), ICML, 2016.

Xueting Yan, Ishan Misra, Abhinav Gupta, Deepti Ghadiyaram, and Dhruv Mahajan. Clusterfit:
Improving generalization of visual representations. In CVPR, 2020.

Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsupervised learning of deep representations
and image clusters. In CVPR, 2016.

Mang Ye, Xu Zhang, Pong C. Yuen, and Shih-Fu Chang. Unsupervised embedding learning via
invariant and spreading instance feature. In CVPR, 2019.

Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. Learning diverse
and discriminative representations via the principle of maximal coding rate reduction. CoRR,
abs/2006.08558, 2020.

Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful image colorization. In ECCV, 2016.

Richard Zhang, Phillip Isola, and Alexei A Efros. Split-brain autoencoders: Unsupervised learning
by cross-channel prediction. In CVPR, pp. 1058–1067, 2017.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ADE20K dataset. In CVPR, 2017.

Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local aggregation for unsupervised learning
of visual embeddings. In ICCV, 2019.

11

https://github.com/facebookresearch/detectron2

Under review as a conference paper at ICLR 2021

A SAMPLING CLASSIFIER WEIGHT UPDATE

A.1 THE CHOICE OF β

We approximate the part (corresponding to the negative instances) of the denominator in the classi-

fication loss Ls =
∑2
k=1 log ew

>
n x̃kn/τ∑N

j=1 e
w>
j

x̃kn/τ
, by sampling a subset of classifier weights. That is

β
∑N ′

j=1
e
w>
sj

x̃kn/τ ≈
N∑

j=1,j 6=n

ew
>
j x̃kn/τ . (13)

Assume that the classifier weights corresponding to the (N − 1) negative instances,
{w1, . . . ,wn−1,wn+1, . . . ,wN}, are i.i.d., we want that the expectations of the term on the left
hand side and the right hand side are the same:

E[β
∑N ′

j=1
e
w>
sj

x̃kn/τ] = E[

N∑
j=1,j 6=n

ew
>
j x̃kn/τ]. (14)

The term on the left hand side is

E[β
∑N ′

j=1
e
w>
sj

x̃kn/τ] = βN ′ E[ew
>x̃kn/τ], (15)

where w has the same distribution with wj (j 6= n). Similarly, the term on the right hand side
becomes

E[

N∑
j=1,j 6=n

ew
>
j x̃kn/τ] = (N − 1) E[ew

>x̃kn/τ]. (16)

Thus, we have β = N−1
N ′ . During the SGD iterations, the i.i.d. assumption does not hold. But our

experiments show that the choice, β = N−1
N ′ , improves the performance, better than β = 1. We

think that tuning β manually might lead to superior performance.

A.2 DELAY UPDATE OF THE UNSAMPLED CLASSIFIER WEIGHTS

Consider a classifier weight w that is sampled at the (s)th iteration and at the (s+k)th iteration, and
is not sampled from the (s + 1)th iteration to the (s + k − 1)th iteration. We have (1) the gradient
of the loss L with respect to w is zero, ∂L∂w = 0, (2) the gradient of the `2 regularizer R = λ

2 ‖w‖
2
2

is ∂R
w = λw, and thus the gradient becomes: gw(s) = λw.

The update equation of SGD with momentum becomes[
v
(s+1)
w

w(s+1)

]
=

[
m λ

−η(s+1)m (1− η(s+1)λ)

] [
v
(s)
w

w(s)

]
, (17)

from which we get:[
v
(s+k)
w

w(s+k)

]
=

[
m λ

−η(s+k)m (1− η(s+k)λ)

]
. . .

[
m λ

−η(s+1)m (1− η(s+1)λ)

] [
v
(s)
w

w(s)

]
. (18)

This means that we do not need to really compute w at the iterations in which it is not sampled, and
only need to update it at the iteration in which it is sampled again,

In addition, we observe that w (unsampled) is updated independently and does not influence the
update of other classifier weights. Consequently, we are safe to delay the update of the classifier
weights that are not sampled to the iteration in which the weight is sampled again.

B MORE ANALYSIS

Trivial solution for merely optimizing the consistency loss. Let us look at the consistency loss in
Equation 3. It is obvious that Lc ≥ 0. We can see that the minimum Lc = 0 holds, if the features

12

Under review as a conference paper at ICLR 2021

of all the augmented views for an image are the same: x̃in = x̃jn. It also holds in theory when that
different images can have different representations: x̃in 6= x̃jm. However, we empirically observe
that merely optimizing the consistency loss always leads to the trivial solution: the representations
of all the augmented views for all the images are the same, x̃in 6= x̃jm.

Hard sample mining. It is known that the softmax loss has a benefit: hard samples contribute more
to the gradient and thus the parameter update. We show that the consistence term has a similar
property. The gradient of the consistence term `c in Equation 2 with respect to x̃in is

∂`c
∂x̃in

= −2(1− x̃in
>x̃jn)x̃jn. (19)

In the hard sample case, the similarity x̃in
>x̃jn is smaller and far from 1, (1 − x̃in

>x̃jn) is larger,
implying the gradient magnitude is larger. This means more contribution to the gradient. In the easy
sample case, the contribution would be smaller.

C EVALUATION SETUP

C.1 EVALUATION ON DOWNSTREAM TASKS

We perform object detection, COCO keypoint detection, COCO DensePose estimation and Instance
segmentation experiments on Detectron2 (Wu et al., 2019) framework.

Object detection. We perform object detection on Pascal VOC (Everingham et al., 2010) and
COCO (Lin et al., 2014) datasets. For Pascal VOC, we use Faster-RCNN (Ren et al., 2017) with
R50-C4 backbone as the detector. Following He et al. (2019), extra BNs are added in newly initial-
ized layers. We fine-tune all layers (including BN layers) in object detection experiments. Initial
learning rate is 0.02. Two training schemes are adopted: (i) the model is trained on train2007
set for 9k iterations, with learning rate decay at 6k and 8k iteration. (ii) the model is trained on
trainval07+12 set for 24k iterations, with learning rate decay at 18k and 22k iterations. We
report APbb50 and standard COCO-style APbb. For COCO object detection, we use Mask-RCNN (He
et al., 2017) with R50-FPN (Lin et al., 2017) backbone as the detector. SyncBN is adopted in back-
bone, FPN and ROI Heads. The model is fine-tuned on train2017 set and evaluated on val2017
set. We use standard 1× and 2× fine-tune schedule. Standard COCO-style bounding box APbb and
mask APmk are reported.

COCO keypoint detection. We perform human pose estimation on COCO keypoint (Lin et al.,
2014) dataset. We use Mask-RCNN (He et al., 2017) (keypoint version) with R50-FPN backbone
as the detector. SyncBN is adopted in backbone, FPN and ROI Head. The model is fine-tuned on
train2017 set and evaluated on val2017 set. Standard 2× fine-tune schedule is applied. We
report APkp and APkp50 .

COCO DensePose estimation For DensePose (Güler et al., 2018) estimation, We use Dense-
Pose R-CNN with R50-FPN backbone. SyncBN is adopted in backbone, FPN and ROI Box
Head. The model is trained on train2014 + valminusminival2014 and evaluated on
minival2014. We use ”s1×” fine-tune schedule (improved baseline “R 50 FPN s1x” in De-
tectron2). We report APdp of DensePose GPS metric.

Instance segmentation. We perform instance segmentation on COCO (Lin et al., 2014),
Cityscapes (Cordts et al., 2016), and LVIS (Gupta et al., 2019) datasets. COCO instance seg-
mentation is jointly-trained with COCO object detection with Mask-RCNN model. We use Mask-
RCNN with R50-FPN for fine-tuning. SyncBN is adopted in backbone, FPN and ROI Heads. For
Cityscapes, the model is trained on cityscapes fine instance seg train and evaluated
on cityscapes fine instance seg val for 24k iterations. For LVIS, the model is trained
on lvis v0.5 train and evaluated on lvis v0.5 val with 2× schedule. Standard APmk is
reported.

Semantic segmentation. We perform semantic segmentation on Cityscapes (Cordts et al., 2016),
COCO-stuff (Caesar et al., 2018), ADE20k (Zhou et al., 2017), Pascal-VOC (Everingham et al.,
2010), and Pascal-Context (Mottaghi et al., 2014) datasets. We use DeeplabV3 (Chen et al., 2017)

13

Under review as a conference paper at ICLR 2021

with R50-dilated8 backbone. We use SGD with momentum optimizer and lambda poly learning rate
schedule for semantic segmentation experiments. We employ cross entropy loss on both the final
output of DeeplabV3 and the intermediate feature map output from stage3, where the weight over
the final loss is 1 and the auxiliary loss is 0.4. Single-scale testing is adopted for all experiments. For
Cityscapes experiments, we train the model for 40k iterations with batch size 8, initial learning rate
0.01, input size 1024×512. For COCO-stuff experiments, we train the model for 60k iterations with
batch size 16, initial learning rate 0.01, input size 520× 520. For ADE20k experiments, the model
is trained for 150k iterations with batch size 16, initial learning rate 0.02, input size 520× 520. For
Pascal-VOC experiments, we use train aug2012 set (augmented by Hariharan et al. (2011))
as training set. The model is trained for 60k iterations with batch size 16, initial learning rate 0.001
and input size 513 × 513. For Pascal-Context experiments, the model is trained for 30k iterations
with batch size 16, initial learning rate 0.001 and input size 520 × 520. Standard mIoU metric is
reported.

C.2 LINEAR EVALUATION

We freeze the pretrained backbone and train a linear classifier on the frozen feature. The classifier
is trained for 100 epochs with initial learning rate 75 and a cosine learning rate schedule. We set
weight decay to 0. The data augmentation is the same as supervised ImageNet classification.

D IMPLEMENTATION DETAILS OF THE TOY EXAMPLE

Figure 2 shows the learned feature distributions for 2D toy examples. We train the models (with
a ResNet-50 encoder) on a toy dataset, containing 8 ImageNet images. We apply RandomCrop
(0.7,1) on the images to generate augmented views. The models are trained for 200 epochs with
a cosine schedule and initial learning rate 0.0001. We use batch size 8 and weight decay 1e − 6.
The dimension of features output from projection head is 2. For the classification only experiment,
we set α = 0. For the jointly optimization of the consistency loss and classification loss, we set
α = 0.1. After training, the learned features of 20 random augmented views of each image are
recorded. We apply kernel density estimation with a Gaussian kernel of std 0.04 on the recorded
features for visualization. Each color represents the learned feature distribution of augmented views
from an image.

E DATA AUGMENTATION

We provide the PyTorch pseudo code of the data augmentation we adopted, as follows:

1 augmentation = [
2 transforms.RandomResizedCrop(224, scale=(0.15, 1.)),
3 transforms.RandomHorizontalFlip(),
4 transforms.RandomApply([
5 transforms.ColorJitter(0.8, 0.8, 0.8, 0.2)
6], p=0.8),
7 transforms.RandomGrayscale(p=0.2),
8 transforms.RandomApply([GaussianBlur([.1, 2.])], p=0.5),
9 transforms.ToTensor(),

10 normalize]

F EXPERIMENT RESULTS OF OTHER METHODS

The abbreviations in Table 3 are explained in the following: ConIC-S = ConIC w/ sampling, Local
Agg. = Local Aggregation (Zhuang et al., 2019). E-CNN = Exemplar-CNN (Dosovitskiy et al.,
2016). A-U = AlignUniform (Wang & Isola, 2020). BowNet = Gidaris et al. (2020).

Table 4 shows the results of on VOC object detection form some other methods that are not included
in Table 2. The results are got from the corresponding papers. BYOL, PCL, BowNet, SeLa adopted
different evaluation setups and thus their results are not reported. Because of time limitation, cur-

14

Under review as a conference paper at ICLR 2021

rently we are not able to re-implement these algorithms or use their provided pretrained models and
evaluate them on other downstream tasks.

Table 4: VOC object detection results for other methods that are not included in Table 2.

Method
VOC Detection

VOC07 VOC07+12
APbb APbb

50 APbb APbb
50

Local Aggregation (Zhuang et al., 2019) 69.1
PIC (Cao et al., 2020) 57.1 82.4
CPC v2 (Hénaff et al., 2019) (ResNet-161) 76.6
ConIC 48.8 76.8 57.5 82.4
ConIC w/ sampling 48.8 76.5 57.3 82.7

15

	Introduction
	Related Work
	Approach
	Instance classification
	Consistent instance classification

	Implementation Details
	Experiments
	Conclusion
	Sampling classifier weight update
	The choice of
	Delay update of the unsampled classifier weights

	More Analysis
	Evaluation setup
	Evaluation on downstream tasks
	Linear evaluation

	Implementation details of the toy example
	Data augmentation
	Experiment results of other methods

