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ABSTRACT

The paradigm of worst-group loss minimization has shown its promise in avoid-
ing to learn spurious correlations, but requires costly additional supervision on
spurious attributes. To resolve this, recent works focus on developing weaker
forms of supervision—e.g., hyperparameters discovered with a small number of
group-labeled samples with spurious attribute annotation—but none of the meth-
ods retain comparable performance to methods using full supervision on the spu-
rious attribute. In this paper, instead of searching for weaker supervisions, we
ask: Given access to a fixed number of group-labeled samples, what is the best
achievable worst-group loss if we “fully exploit” them? To this end, we propose
a pseudo-attribute-based algorithm, coined Spread Spurious Attribute (SSA), for
improving the worst-group accuracy. In particular, we leverage samples both with
and without spurious attribute annotations to train a model predicting the spuri-
ous attribute, then use the pseudo-attribute predicted by the trained model as a
supervision on the spurious attribute to train a new robust model having minimal
worst-group loss. Our experiments on various benchmark datasets show that our
algorithm consistently outperforms the baseline methods using the same number
of group-labeled samples. We also demonstrate that the proposed SSA can achieve
comparable performances to methods using full (100%) spurious attribute super-
vision, by using a much smaller number of group-labeled samples—from 0.6%
and up to 1.5%, depending on the dataset.

1 INTRODUCTION

Machine learning models trained on datasets containing spurious correlation (also known as “short-
cuts”) often end up learning such shortcuts instead of intended solutions (Geirhos et al., 2020). For
example, consider an image classification dataset of ‘cows’ and ‘camels,’ in which most images of
cows appear on grasslands and camels on deserts. When trained on such a dataset, models often
learn to make predictions based on the landscape instead of the object (Beery et al., 2018). This
phenomenon can lead to very low test accuracies on groups underrepresented in the training set.

Various approaches have been proposed to resolve this gap, and the idea of minimizing the worst-
group loss—e.g., Sagawa et al. (2020)—has arisen as one of the most promising solutions. This
approach forces high performances on both the majority group (e.g., cows standing on grasslands)
and the minority group which contradicts the spurious correlation (e.g., cows standing on deserts).
Despite its effectiveness, the worst-group loss minimization approach has a drawback: The learner
requires supervision on which group each training sample belongs. For example, the learner needs
to know that sample belongs to both the ‘cow’ and the ‘desert’ categories to utilize such group infor-
mation to perform worst-group loss minimization. Even if we put aside the issue of identifying the
spuriously correlated attributes (‘desert’ and ‘grass’) in the first place, one still needs to collect addi-
tional annotation on such spurious attributes. Acquiring such fine-grained annotation is presumably
more expensive to collect, as the annotator needs a clear understanding of both the target attribute
(‘cow’ and ‘camel’) and the spurious attribute (‘desert’ and ‘grass’).

∗Work done at KAIST

1



Published as a conference paper at ICLR 2022

Acknowledging this difficulty, recent works propose worst-group loss minimization algorithms that
require a smaller number of group-labeled training samples (i.e., training samples with spurious
attribute annotations) (Nam et al., 2020; Liu et al., 2021). At a high level, these works share a simi-
lar strategy (Fig. 1, Left): The methods first use a specialized mechanism to identify minority group
samples among group-unlabeled training samples, and train a model in a way that puts more empha-
sis on identified-as-minority samples, e.g., by upweighting. A small set of group-labeled samples
are used to tune hyperparameters of this procedure; as Liu et al. (2021) shows, the performance of
trained models are very sensitive to these hyperparameters, indicating the high dependency of such
algorithms on the availability of the group-labeled samples. Although these methods achieve higher
worst-group accuracy than completely annotation-free approaches, e.g., Sohoni et al. (2020), they
fail to perform comparably to the algorithms which use full annotations on spurious attributes, e.g.,
Sagawa et al. (2020). This performance gap gives rise to the following question: Can we closely
achieve the full-annotation performance using a partially annotated dataset, if we use group-labeled
samples more actively than hyperparameter-tuning?

Contribution. This paper proposes a worst-group loss minimization algorithm, coined Spread Spu-
rious Attribute (SSA). At a high level, SSA consists of two phases—pseudo-labeling and robust
training—that are designed to make a full use out of the group-labeled samples (Fig. 1, Right):

• Pseudo-labeling: SSA trains a spurious attribute predictor, using both group-labeled and group-
unlabeled samples (i.e., samples lacking spurious attribute annotations). We find that group im-
balances underlying the dataset can render pseudo-labels to be biased towards the majority group,
which can be detrimental to the performance (as in Kim et al. (2020)), and propose using group-
wise adaptive thresholds to mitigate this problem. The predictions are used as pseudo-labels (Lee,
2013) on the group-unlabeled samples.

• Robust training: Based on the pseudo-labeled training set, SSA trains a model which predicts the
target attribute, using the worst-group loss minimization algorithms developed for fully supervised
cases. We use Group DRO (Sagawa et al., 2020) as a default choice, and re-use group-labeled
samples for the hyperparameter tuning.

Our experimental results suggest that SSA is a general yet effective framework for worst-group loss
minimization. On various benchmark datasets, SSA consistently achieves performances comparable
to fully supervised Group DRO and outperforms other baseline methods even when using only 5%
of the group-labeled samples compared to the baselines. To be more specific, SSA requires less than
1.5% (as little as 0.6%) of group-labeled samples—993 out of 182637 on CelebA, and 4123 out of
288637 on MultiNLI—to achieve a worst-group accuracy similar to that of 100% usage. Moreover,
we find that such benefits of SSA persist when combined with other robust training methods, such as
Correct-N-Contrast (CNC1; Zhang et al. (2021)), the supervised contrastive learning with contrastive
batch sampling using group information. Finally, we also empirically observe that the group-wise
adaptive thresholding technique—which we proposed for better pseudo-labeling—enjoy a broader
usage for addressing the general problem of semi-supervised learning under class imbalance; exist-
ing pseudo-labeling techniques (Kim et al., 2020; Wei et al., 2021) require certain assumptions in
datasets to work well for the task, while ours does not.

2 RELATED WORKS

Improving worst-group accuracy with group annotations. It has been known in various literature
that machine learning models often perform significantly worse on the samples from groups with
a relatively small number of training samples than on samples from the majority group. The class
imbalance problem (Japkowicz, 2000; Johnson & Khoshgoftaar, 2019) is one of the representative
cases of this phenomenon. Here, class labels naturally define group identities and thus do not re-
quire any additional group annotations. In this context, popular strategies to improve worst-group
performances are using re-weighted loss for each group (Huang et al., 2016; Khan et al., 2017) and
re-sampling the given dataset to balance the group distribution of the training dataset (Chawla et al.,
2002; He & Garcia, 2009). This paper, in contrast, considers a setup where the group is defined
as a combination of the label (target attribute) and the spuriously correlated attribute; unlike the
class imbalance literature, the availability of the full group identity information is not guaranteed,

1We use the term CNC to refer to its supervised contrastive learning procedure with contrastive batch sam-
pling only, rather than the entire process which includes spurious attribute annotation estimation via ERM.
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Figure 1: Comparison of prior approaches (left) and the proposed SSA (right). Left: Prior works
use group-labeled samples only for hyperparameter tuning. Right: The proposed SSA uses group-
labeled samples for both training and validation of the model.

as spurious attributes may not have proper annotations. Under the setting where spurious attribute
annotations are available on all samples, Sagawa et al. (2020) gives an online optimization algorithm
that shows promising results on minimizing the worst-group loss.

Improving worst-group accuracy without group annotations. To reduce additional annotation
costs, recent works aim to train a robust model without requiring group annotations for all training
samples. These works utilize models trained with standard procedure to identify samples that dis-
agree with spurious correlations. Nam et al. (2020) train a model to be intentionally biased using
the generalized cross entropy loss, and use it to identify-and-upweight high-loss samples for train-
ing another model. Liu et al. (2021) train a standard ERM model for a few epochs and upweight
samples misclassified by this model to train the second model. Although these approaches do not
use any group information for training, they still use a small number of group-labeled samples for
hyperparameter tuning, which is critical to their worst-group performance. In this paper, we design
a method to utilize group-labeled samples more efficiently. We note that, in the class imbalance lit-
erature, another line of works proposes to use group-labeled samples more actively; they use labeled
samples for determining sample weights for the training set through meta-learning (Ren et al., 2018)
or training a model to predict sample weights (Shu et al., 2019).

3 PROBLEM SETUP

Consider the learning a classifier in the presence of spurious correlations in the training set. Fol-
lowing the prior work of Sagawa et al. (2020), we cast this problem as minimizing the worst-group
loss, where the group identity is determined by the target attribute (that we want to predict) and
the spurious attribute (that we want to ignore). We assume that we do not have spurious attribute
annotations of the samples in the training set (group-unlabeled set), but have an access to additional
set of samples with both spurioust attribute and target attribute annotations (group-labeled set).

More formally, we let each sample be a triplet consisting of an input x ∈ X , a target attribute
y ∈ Y , and a spurious attribute a ∈ A. Our goal is to train a parameterized model fθ : X → Y
that minimizes the worst-group expected loss on test samples; for the purpose of avoiding learning
spurious correlations, we define the group as an attribute pair g := (y, a) ∈ Y × A =: G. In other
words, we aim to minimize

R(θ) = max
g∈G

E(x,y,a)∼Pg
[`(fθ(x), y)], (1)

for some loss function ` : Y × Y → R, where Pg denotes the group-conditioned data-generating
distribution. Note that, as we focus on the group defined by the attribute pairs, Pg is deterministic
on y and a, and stochastic only on x.

We assume that the learner has access to two types of samples for training: The group-unlabeled set
consists of n samples without spurious attribute annotations, i.e., DU := {(x1, y1), . . . , (xn, yn)},
and the group-labeled set consists of m samples with spurious attribute annotations, i.e., DL :=
{(x̃1, ỹ1, ã1), . . . , (x̃m, ỹm, ãm)}. We assume that the group-labeled samples are much more costly
to collect, and thus we have n� m.

3



Published as a conference paper at ICLR 2022

4 SPREAD SPURIOUS ATTRIBUTE

We now describe the algorithm we propose, Spread Spurious Attribute (SSA). At a high level, SSA
consists of two phases: pseudo-labeling and robust training. In the pseudo-labeling phase, SSA
trains a model to predict the spurious attribute. In particular, we use both group-labeled and group-
unlabeled samples to generate pseudo-labels on the group-unlabeled training samples (Section 4.1),
with an adaptive thresholding technique for balancing the number of samples in each group (Sec-
tion 4.2). Then, in the robust training phase, SSA uses generated pseudo-labels to train a model that
predicts the target attribute with a small worst-group loss (Section 4.3). We use Group DRO (Sagawa
et al., 2020) as our default robust training method, but SSA also performs well when combined with
other existing algorithms that use full spurious label supervisions (see Section 5.3).

4.1 PSEUDO-LABELING USING GROUP-LABELED AND GROUP-UNLABELED SAMPLES

Using both group-labeled set DL and group-unlabeled set DU , we train a model to predict spurious
attributes on the group-unlabeled samples. The predictions will be used to generate artificial spuri-
ous attribute labels on the group-unlabeled training samples, called pseudo-labels (Lee, 2013). We
emphasize that we also use DU for training the model, instead of training solely based on DL. In
fact, as we shall see in Section 5.2, the additional use of training set brings a significant performance
boost. More specifically, we first partition both the group-labeled and group-unlabeled set into two:

DL = D◦L ∪ D•L, DU = D◦U ∪ D•U . (2)

We use D◦L,D◦U to train the spurious attribute predictor that make prediction on D•U , and validate
the model with D•L.2 To train this predictor, we use a loss function consisting of two terms: the
supervised loss for the samples inD◦L, and the unsupervised loss for samples inD◦U . The supervised
loss is simply the standard cross entropy loss. For the unsupervised loss, we use the cross entropy
loss between the prediction and the pseudo-labels, i.e., labels generated by taking the argmax of
predictions. Following prior works (e.g., Sohn et al. (2020)), we apply the loss only if the confidence
of the prediction exceeds some threshold τ ≥ 0. More formally, let us denote the class probability
estimate of the predictor on the attribute a given the input x as p̂(a|x), and the pseudo-label from
this prediction as â(x) = argmaxa∈A p̂(a|x). Then, the supervised and unsupervised losses are

`sup(x, y, a) = CE(p̂(·|x), a), `unsup(x, y) = 1
{
max
a∈A

p̂(a|x) ≥ τ
}
· CE (p̂(·|x), â(x)) , (3)

where CE(p̂(·|x), a) denotes the cross-entropy loss between the prediction p̂(·|x) and label a. The
total loss is then given as the sum of the supervised and unsupervised loss

L = ED◦L [`sup(x, y, a)] + ED◦U [`unsup(x, y)] (4)

As we will describe in Section 4.2, we additionally use group-wise adaptive thresholds for pseudo-
labeling (i.e., set different τ for each group). The thresholds are determined in a way that balances
the pseudo-group (i.e., the pair ĝ = (y, â(x))) population of the samples with confidence exceeding
the group-wise threshold. This strategy helps the model to avoid making a pseudo-label prediction
biased toward the majority group. Also, we note that we make predictions only on samples in D•U
and not on samples in D◦U ; empirically, we observe that this “splitting” of group-unlabeled samples
is beneficial for performance comparing to using the whole DU for training (at the cost of running
pseudo-labeling multiple times). For more discussions and ablation studies, see Appendix A.2.

4.2 BALANCING GENERATED PSEUDO-LABELS VIA ADAPTIVE THRESHOLDS

As we train the spurious attribute predictor with the loss (Eq. (4)), the prediction confidence of the
model on each sample gradually increases. Ideally, we want the number of highly-confident samples
(i.e., with confidence greater than τ ) to increase uniformly over all pseudo-groups so that each
pseudo-group contributes evenly to weight updates. However, if the underlying group population
is severely imbalanced—as is common with spurious attributes—samples from the majority group
often attains high prediction confidence significantly faster than samples from minority groups, by
receiving more frequent gradient updates. This training imbalance leads to a severer imbalance in
the pseudo-labels, resulting in detrimental effects on the downstream training.

2We write ◦ to denote that samples are “visible” during the training phase, and • to denote that they are not.
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To mitigate this majority group bias, we set different thresholds for each pseudo-group, so that the
same number of samples from each group is used for training with Eq. (4). To do this, we first
set a fixed threshold τgmin

for the group with the smallest population in the training split of the
group-labeled set, i.e., the group defined as

gmin = argmin
g∈Y×A

|D◦L(g)| , where D◦L(g) :=
{
(x, y, a) ∈ D◦L

∣∣ g = (y, a)
}
. (5)

Next, we count the number of samples in D◦U which (a) belongs to gmin after pseudo-labeling, and
(b) the prediction confidence exceeds τgmin . Then, we set thresholds for other groups to have same
number of samples from each group. Concretely, let D◦U (g, τg) be the set of samples in the training
split of the group-unlabeled set with pseudo-group g and confidence greater than equal to τg , i.e.,

D◦U (g, τg) :=
{
(x, y) ∈ D◦U

∣∣ g = (y, â(x)), max
a∈A

p̂(a|x) ≥ τg
}
. (6)

Then, for each group g 6= gmin, we set τg to be the smallest real number such that

|D◦L(g)|+ |D◦U (g, τg)| ≤ |D◦L(gmin)|+ |D◦U (gmin, τgmin
)| . (7)

With this group-wise adaptive threshold, we use the unsupervised loss revised as

`unsup(x, y) = 1
{
max
a∈A

p̂(a|x) ≥ τ(y,â(x))
}
· CE (p̂(·|x), â(x)) . (8)

We show the effectiveness of this group-wise adaptive threshold in Section 5.2, and further applica-
bility to class-imbalance problem in Section 5.4.

4.3 WORST-GROUP LOSS MINIMIZATION WITH ESTIMATED PSEUDO-GROUPS

After training the model using the revised loss (Section 4.2), we generate final pseudo-labels for all
samples in the training set. In other words, we generate

D̃U =
{
(x, y, â(x))

∣∣∣ (x, y) ∈ DU} . (9)

We put pseudo-labels on all samples without applying any threshold, which allows us to utilize
the whole training set. In the robust training phase, we use the pseudo-labeled dataset D̃U and the
group-labeled dataset DL to perform worst-group loss minimization. We use Group DRO (Sagawa
et al., 2020) as our default algorithm, using D̃U for training and DL for validation. We note that
SSA can also use other robust training subroutines instead of group DRO; in Section 5.3, we show
that our framework performs well when combined with CNC (Zhang et al., 2021).

5 EXPERIMENTS

Here, we briefly describe the experiment setup that will be used throughout all experiments in this
section, except for Section 5.4 where we consider a slightly different scenario.

Datasets. We evaluate SSA on two image classification datasets (Waterbirds, CelebA) and two
natural language processing datasets (MultiNLI, CivilComments-WILDS) containing spurious cor-
relations. For all datasets, we use the validation split of the dataset as the group-labeled set. Below,
we briefly describe each dataset and the corresponding spurious correlations.

• Waterbirds (Sagawa et al., 2020): Waterbirds is an artificial dataset generated by combining bird
photographs in the Caltech-UCSD Birds dataset (Wah et al., 2011) with landscapes from Places
(Zhou et al., 2017). The goal is to classify the target attributesY = {waterbird, landbird} given the
spurious correlations with the background landscapeA = {water background, land background}.

• CelebA (Liu et al., 2015): CelebA dataset consists of the face pictures of celebrities, with various
annotations on facial/demographic features. We use the hair color as the target attribute Y =
{blond, non-blond}, given the spurious correlations with the gender A = {male, female}.

• MultiNLI (Williams et al., 2018): MultiNLI is a multi-genre natural language corpus where each
data instance consists of two sentences and a label indicating whether the second sentence is
entailed by, contradicts, or neutral to the first. We use this label as the target attribute (i.e., Y =
{entailed, neutral, contradictory}), and use the existence of the negating words as the spurious
attribute (i.e., A = {negation, no negation}).
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Table 1: Average and worst-group test accuracies evaluated on image classification datasets (Water-
birds, CelebA). For more rigorous comparison, we run SSA and Group DRO on 3 random seeds and
report the average and the standard deviation. Results of ERM, CVaR DRO, LfF and JTT are from
Liu et al. (2021). Results of EIIL on Waterbirds are from Creager et al. (2021). Best performances
(among methods using only validation set labels) are marked in bold.

Method Amount of
group label used

Waterbirds CelebA

Avg. Worst-group Avg. Worst-group

ERM val. set 97.3 72.6 95.6 47.2
CVaR DRO (Levy et al., 2020) val. set 96.0 75.9 82.5 64.4
LfF (Nam et al., 2020) val. set 91.2 78.0 85.1 77.2
EIIL (Creager et al., 2021) val. set 96.9 78.7 91.9 83.3
JTT (Liu et al., 2021) val. set 93.3 86.7 88.0 81.1

SSA (Ours) val. set 92.2±0.87 89.0±0.55 92.8±0.11 89.8±1.28

5% of val. set 92.6±0.15 87.1±0.70 92.8±0.34 86.7±1.11

Group DRO (Sagawa et al., 2020) train. & val. set 91.8±0.48 89.2±0.18 93.1±0.21 88.5±1.16

Table 2: Average and worst-group test accuracies evaluated on natural language datasets (MultiNLI,
CivilComments-WILDS). For more rigorous comparison, we run SSA and Group DRO on 3 random
seeds and report the average and the standard deviation. Results of ERM, CVaR DRO, LfF and JTT
are from Liu et al. (2021). Results of EIIL on CivilComments are from Creager et al. (2021). Best
performances (among methods using only validation set labels) are marked in bold.

Method Amount of
group label used

MultiNLI CivilComments-WILDS

Avg. Worst-group Avg. Worst-group

ERM val. set 82.4 67.9 92.6 57.4
CVaR DRO (Levy et al., 2020) val. set 82.0 68.0 92.5 60.5
LfF (Nam et al., 2020) val. set 80.8 70.2 92.5 58.8
EIIL (Creager et al., 2021) val. set 79.4 70.9 90.5 67.0
JTT (Liu et al., 2021) val. set 78.6 72.6 91.1 69.3

SSA (Ours) val. set 79.9±0.87 76.6±0.66 88.2±1.95 69.9±2.02

5% of val. set 80.4±0.62 76.5±1.89 89.1±1.09 69.5±1.15

Group DRO (Sagawa et al., 2020) train. & val. set 81.4±1.40 76.6±0.41 87.7±1.35 69.1±1.53

• CivilComments-WILDS (Borkan et al., 2019; Koh et al., 2021): CivilComments-WILDS con-
sists of comments generated by online users, each of which are labeled with the toxicity in-
dicator Y = {toxic, non-toxic}. We use demographic attributes of the mentioned identity
A = {male, female, White, Black, LGBTQ, Muslim, Christian, other religion} as a spurious at-
tribute for evaluation purpose. We note that a comment can contain multiple such identities, so that
groups defined by Y × A can be overlapped. Therefore, we use A′ = {any identity, no identity}
as a spurious attribute for training, following Liu et al. (2021).

Models. For the all experiments on image classification datasets, we use ResNet-50 (He et al., 2016)
starting from ImageNet-pretrained weights. For experiments on language datasets, we use pretrained
BERT (Devlin et al., 2019). We use the same architecture for predicting the spurious attribute (in
the pseudo-labeling phase) and the target attribute (in the robust training phase).

5.1 MAIN RESULTS

We compare the average and worst-case performance of the proposed SSA against the standard
empirical risk minimization (ERM) and recent methods that tackles spurious correlation without
group annotation for the training, including CVaR DRO (Levy et al., 2020), LfF (Nam et al., 2020),
EIIL (Creager et al., 2021), JTT (Liu et al., 2021), and Group DRO (Sagawa et al., 2020) requiring
group annotation to minimize the worst-group loss.

In Table 1, 2, we report average accuracies and the worst-group accuracies on all datasets we con-
sider. Our method consistently outperforms all the other approaches that use spurious attribute
annotated dataset for validation while using the same amount of spurious attribute annotation. No-
tably, our method shows comparable performance to Group DRO which uses full amount of spurious
attribute annotation for the training set, even outperforms on CelebA dataset. We also run our algo-
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Table 3: Worst-group accuracy on Waterbirds and CelebA with varying group-labeled set size. Re-
sults of JTT are from Liu et al. (2021).

Method
Waterbirds CelebA

100% 20% 10% 5% 100% 20% 10% 5%

JTT (Liu et al., 2021) 86.7 84.0 86.9 76.0 81.1 81.1 81.1 82.2
SSA (Ours) 89.0 88.9 88.9 87.1 89.8 88.9 90.0 86.7

Table 4: Group-wise accuracy (recall) of spurious attribute predictor trained in the pseudo-labeling
phase, on the CelebA dataset. Worst-group accuracies are marked in bold.

Method Amount of
group label used

# (Blond, Male)
in DL

Non-blond Blond

Female Male Female Male

Vanilla
10% of val. set 18

90.2 90.3 97.0 70.4
Pseudo-labeling 94.2 95.5 98.8 76.4
+ Group-wise threshold 89.5 93.9 95.1 83.6
Vanilla

5% of val. set 8
88.0 89.7 96.3 68.7

Pseudo-labeling 92.2 94.2 98.4 67.8
+ Group-wise threshold 83.3 90.6 92.7 75.7

rithm using only 5% of the default validation set to show efficiency of our algorithm to improve the
worst-group accuracy. We further provide analysis on varying group-labeled set size below.

Effect of group-labeled set size. Although we focus on improving the worst-group performance
with given amount of spurious annotation, reducing the amount of supervision is an important topic
to discuss especially with high annotation cost. In the main results in Table 1, 2, we use the default
validation sets provided by each dataset asDL. To further test whether SSA can achieve high worst-
group accuracy with reduced amount of supervision, we run our algorithm with small fraction of the
default validation sets as group-labeled sets. Following Liu et al. (2021), we run our method using
100%, 20%, 10%, 5% of the default validation set. In Table 3, we report the worst-group accuracy of
JTT and our algorithm on Waterbirds and CelebA, with various group-labeled set size. Surprisingly,
we find that our method maintains high worst-group accuracy even with the 10% of the original
validation set. Most notably, the number of attribute annotated samples used for training spurious
attribute predictor is 58 in total, 6 for the worst-group in Waterbirds when we only use 10% of the
default validation set.

5.2 DETAILED ANALYSIS ON THE PSEUDO-LABELING PHASE OF SSA

We now take a closer look at the pseudo-labeling phase of the proposed SSA. In particular, we focus
on validating the effectiveness of the group-wise adaptive threshold we introduced in Section 4.2.
The purpose of the adaptive threshold was to prevent the pseudo-labels from being biased towards
the majority group during the pseudo-labeling phase; the prediction confidence of the majority group
samples may exceed the threshold faster than samples of minority group, increasing the contribution
of majority-group samples on the loss even further. In the first set of experiments (Table 4), we
perform ablation studies on the pseudo-labeling and the adaptive threshold to see their effects on the
spurious attribute prediction performance of the SSA. In the second set of experiments (Table 5),
we validate if the pseudo-labels are biased towards the majority group and check that our adaptive
threshold strategy successfully addresses the phenomenon.

Accuracy of the spurious attribute predictor. In Table 4, we report the group-wise spurious at-
tribute prediction accuracies of SSA on CelebA dataset (using 5% or 10% of the validation split as
the group-labeled set) in pseudo-labeling phase for following ablations: (1) Vanilla: Does not use
any pseudo-labels and train the model using only the validation set samples. (2) Pseudo-labeling:
Uses pseudo-labeling with a fixed threshold, and (3) +Group-wise threshold: Identical to SSA, us-
ing group-wise adaptive thresholds for pseudo-labeling. We find that using the group-wise threshold
increases the spurious attribute prediction accuracy for the worst-group—(y, a) = (Blond,Male),
providing 7% boost in both cases. Interestingly, we observe that pseudo-labeling with fixed thresh-
olds can even slightly degrade the performance, when the validation set is too small (5%).
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Table 5: Samples statistics during the training of spurious attribute predictor on CelebA with 5% of
the default validation set.

Description
Non-blond Blond Fraction of

(Blond, Male)Female Male Female Male

Number of group-labeled samples (|D◦L|) 213 206 71 4 0.81%
Number of group-unlabeled samples (|D◦U |) 47750 44617 15240 906 0.83%

Pseudo-labeling
Number of samples exceeding fixed threshold 45897 43201 15344 712 0.68%
Number of samples used for training 45897 43201 15344 712 0.68%

+ Group-wise threshold
Number of samples exceeding fixed threshold 32926 34622 12733 712 0.88%
Number of samples used for training 501 528 681 716 29.5%

Table 6: Average and the worst-group accuracy of the proposed SSA algorithm, when combined
with two different choices of supervised worst-case loss minimization algorithms. The numbers in
brackets are the gap closed by SSA between ERM and supervised robust training methods.

Robust training method Group label
Waterbirds CelebA

Avg. Worst-group Avg. Worst-group

ERM 97.3 72.6 95.6 47.2

Group DRO (Sagawa et al., 2020) Ground truth 91.8±0.48 89.2±0.18 93.1±0.21 88.5±1.16

SSA (Ours) 92.2±0.87 89.0±0.55 92.8±0.11 89.8±1.28

Gap closed by SSA (98.8%) (100%)

CNC (Zhang et al., 2021) Ground truth 92.5±0.49 90.0±0.56 92.5±0.62 87.4±0.85

SSA (Ours) 92.6±0.40 89.2±0.24 91.7±1.32 87.6±0.32

Gap closed by SSA (95.4%) (100%)

Population comparison. In Table 5, we compare the populations of pseudo-labeled samples that
contribute to the training, for pseudo-labeling using a fixed threshold (‘Pseudo-labeling’) and the
adaptive threshold (‘+Group-wise threshold’); for each method, we trained the spurious attribute
predictor until the worst-group spurious attribute prediction accuracy reaches the highest point. We
used CelebA dataset with only 5% of the validation split. From the experimental results, we find
that naı̈ve pseudo-labeling with a fixed threshold indeed leads the pseudo-labels to be biased towards
the majority group using only 0.68% of the minority group (male blond) for training while the true
fraction of the group is over 0.8%. On the other hand, using the adaptive threshold successfully
addresses this problem, lifting the fraction of blond male samples to 0.88%, which is close to the
population level. More impressively, we observe that pseudo-labeling phase adaptive threshold uses
relatively uniform number of samples from each group to training the spurious attribute predictor.

5.3 SSA COMBINED WITH SUPERVISED CONTRASTIVE LEARNING

We now examine whether the proposed SSA still remains to be beneficial when combined with other
robust training procedures. As an example, we choose a recent robust training procedure (Zhang
et al., 2021) proposed as an alternative to Group DRO. More specifically, CNC (Zhang et al., 2021)
considers a following procedure base on the supervised contrastive loss (Khosla et al., 2020): As in
JTT (Liu et al., 2021), we first train a standard ERM model. Then, we use the contrastive loss to
maximize the representational similarity between samples have the same target label but different
ERM prediction, while minimizing the representational similarity of samples with different target
attribute but same ERM prediction. This procedure can be smoothly combined the SSA framework,
by replacing the ERM predictions with the pseudo-labels generated in the first phase of SSA.

In Table 6, we compare the performance of SSA using Group DRO or CNC with the performance
of the robust training methods using the full spurious attribute annotations on the training set. Both
models learned with SSA achieved comparable performance to the fully supervised counterparts.
This result suggests that the benefit of SSA may not be constrained on a specific robust training
method, and may be combined with more general classes of robust training algorithms. Also, we
find that none of the robust training method consistently outperform the other; CNC with group label
slightly outperforms Group DRO on Waterbirds, and Group DRO does better on CelebA.
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Table 7: Comparison of classification performance (bACC/GM) on CIFAR-10 under 4 different sets
of (mmaj, nmaj, γlab), where mmaj denotes number of labeled samples in to the largest class, nmaj
denotes the number of unlabeled samples in the largest class, and γlab denotes the largest-to-smallest
class ratio in the labeled set (we let γunlab = 1). The best results are indicated in bold.

(mmaj, nmaj, γlab)

Algorithm (500, 4500, 100) (500, 4500, 50) (100, 4900, 50) (100, 4900, 20)

Vanilla 42.1±0.66 / 25.5±1.16 50.3±0.14 / 41.6±0.40 28.0±0.97 / 13.0±1.90 34.4±1.78 / 26.4±2.86

FixMatch (Sohn et al., 2020) 65.6±0.35 / 26.8±0.82 68.3±0.15 / 30.4±0.28 56.4±0.23 / 14.9±1.21 69.1±1.96 / 42.1±2.37

DARP (Kim et al., 2020) 75.6±0.26 / 73.1±0.19 78.2±0.14 / 76.5±0.26 72.3±0.28 / 67.8±0.45 77.5±0.47 / 75.2±0.71

CReST (Wei et al., 2021) 77.4±0.36 / 61.6±2.11 79.7±1.00 / 77.2±1.01 67.4±0.70 / 34.7±3.23 69.8±0.35 / 53.6±0.42

Adaptive thresholds (Ours) 86.1±0.44 / 85.7±0.47 87.4±0.03 / 87.1±0.02 83.8±0.19 / 82.7±0.43 86.5±0.16 / 86.1±0.16

Oracle 93.6±0.18 / 93.5±0.18 93.6±0.18 / 93.5±0.18 93.6±0.15 / 93.6±0.15 93.9±0.02 / 93.8±0.03

5.4 APPLICATION TO GENERAL SEMI-SUPERVISED LEARNING UNDER CLASS IMBALANCE

In Section 4.2, we proposed to use adaptive thresholding to mitigate confirmation bias when pseudo-
labeling group-imbalanced datasets. Interestingly, it turns out that the benefit of this idea also ex-
tends (without any modification) to a more general scenario of semi-supervised learning (SSL) on
datasets with class imbalances. In fact, two settings are quite similar, except that SSA aims to put
pseudo-labels on spurious attributes while SSL methods estimate target attributes. To demonstrate
this point, we evaluate adaptive thresholds under the SSL setup, and compare it with the perfor-
mances of baseline pseudo-labeling-based SSL algorithms. FixMatch (Sohn et al., 2020) is a recent
SSL method proposed without considerations on the class imbalance issue. DARP (Kim et al., 2020)
and CReST (Wei et al., 2021) build on FixMatch to handle class imbalance, but are primarily de-
signed under the assumptions that there exists sufficiently many labeled data at hand (to estimate the
class imbalance ratio), and that class distributions of labeled and unlabeled datasets are identical,
respectively.3 In contrast, our method of adaptive thresholds does not rely on such assumptions to
solve the same task.

We consider a slightly more challenging experimental setup than in Kim et al. (2020): We construct
an artificial labeled dataset from the CIFAR-10 (Krizhevsky et al., 2009) by controlling the number
of samples in the majority class mmaj (i.e., the largest class) and the ratio between the largest and
smallest class sizes γlab ≥ 1.4 In a similar manner, we construct an unlabeled dataset using some
parameters nmaj and γunlab. We select these parameters so that the number of labeled samples is
small, and the imbalance ratios of labeled and unlabeled sets have bigger discrepancies (We provide
further details in Appendix A.6). In Table 7, we observe that empirical gains from both DARP and
CReST are limited comparing to supervised learning with full ground-truth labels (oracle), due to
the violation of their inherent assumptions in the experimental setups of our choice, i.e., limited
labeled data and different class distribution between labeled and unlabeled datasets. However, our
method successfully reduces such gap by effectively constructing the pseudo-labels for minority
classes. Overall, these results implies that the proposed method has a potential to provide a more
robust semi-supervised learning solution (despite its simplicity) in more realistic scenarios, which
we think is an interesting direction to explore further in the future.

6 CONCLUSION

In this work, we present Spread Spurious Attribute (SSA), an algorithm for improving worst-group
accuracy in the presence of spurious correlation. SSA framework uses a small amount of spurious
attribute annotated samples to estimate group identities of the training set samples. With the gener-
ated attribute annotated training set, we successfully train a robust model using existing worst-case
loss minimization algorithms. SSA is highly effective given a limited amount of the spurious at-
tribute annotated samples, but still does not completely remove the need for supervision on spurious
attributes which is an important future direction.

3In fact, in the previous spurious attribute setups, adopting DARP/CReST methods did not provide much
gain over naı̈ve pseudo-labeling; we suspect the reason to be the violation of these assumptions.

4Larger γlab thus indicates a more severe imbalance.
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Algorithm 1 Spread Spurious Attribute
1: Input: group-labeled set DL, group-unlabeled set DU , number of training splits K, number of

iterations T , confidence threshold τgmin , learning rate η
2: Split unlabeled dataset D(1)

U , · · · ,D(K)
U ← DU {Phase 1: pseudo-labeling}

3: Split labeled dataset D◦L,D•U ← DL
4: for k = 1, · · · ,K do
5: Initialize the pseudo-attribute predictor fk(x; θk)
6: D◦U ← ∪Kj=1

j 6=k

D(j)
U ,D•U ← D

(k)
U

7: for t = 1, · · · , T do
8: Draw a group-labeled mini-batch BL = {(x̃(b), ỹ(b), ã(b))}Bb=1 from D◦L
9: Draw a group-unlabeled mini-batch BU = {(x(b), y(b))}Bb=1 from D◦U

10: Update τg for g 6= gmin as minimum τg satisfying Eq. (7)

11: Update θk ← η∇θk
(∑

(x,y,a)∈BL
`sup(x, y, a) +

∑
(x,y)∈BU

`unsup(x, y)
)

12: end for
13: D̃(k)

U ←
{
(x, y, fk(x; θk))

∣∣∣ (x, y) ∈ D(k)
U

}
14: end for
15: D̃U ← ∪Kk=1D̃

(k)
U

16: Initialize the robust model f(x; θ) {Phase 2: robust training}
17: Run Group DRO with group-label estimated training set θ ← GDRO(f(x; θ), D̃U )

A EXPERIMENTAL DETAILS

A.1 SPREAD SPURIOUS ATTRIBUTE PSEUDOCODE

Algorithm 1 provides pseudocode for Spread Spread Attribute combined with Group DRO.

A.2 DISCUSSIONS ON SPLITTING THE GROUP-LABELED AND GROUP-UNLABELED SETS

Recall that in the pseudo-labeling phase of SSA (Section 4.1, we partition both the group-labeled
set and the group-unlabeled set into two subsets:

DL = D◦L ∪ D•L, DU = D◦U ∪ D•U . (10)

SSA then trains a spurious attribute predictor based on D◦L,D◦U , with hyperparameters tuned using
D•L. The trained model is then used to make predictions on the samples in D•U .

Here, it is easy to see that, if we want to make a best prediction on a particular data point x? ∈ DU ,
then the optimal split would be the one that uses the largest number of group-unlabeled samples for
training the model, i.e.,

D◦U = DU \ {x?}, D•U = {x?}. (11)

However, such partitioning requires training |DU | different models to label all samples in the
group-unlabeled set, which is computationally infeasible. Thus, we propose partitioning the group-
unlabeled dataset into K equally-sized subsets D(1)

U , . . . ,D(K)
U , and run the algorithm K times,

using

D◦U = ∪Kj=1
j 6=i

D(j)
U , D•U = D(i)

U , (12)

for the i-th training iteration. For all experiments appearing in this paper, we used K = 3 for a
simple evaluation; the empirical performance of SSA may improve if we use a larger value of K.
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Table 8: Group-wise accuracy of spurious attribute predictor in pseudo-labeling phase on CelebA.
Results of the worst-performing group are marked in bold.

Method Amount of
group label used

Non-blond Blond

Female Male Female Male

SSA (Ours) 10% of val. set 89.5 93.9 95.1 83.6
- Without group-unlabeled set split 86.9 91.5 94.9 76.3
SSA (Ours) 5% of val. set 83.3 90.6 92.7 75.7
- Without group-unlabeled set split 83.4 89.5 93.9 71.7

Table 9: Group-wise accuracy of spurious attribute predictor in pseudo-labeling phase on Water-
birds.

Results of the worst-performing group are marked in bold.

Method Amount of
group label used

Landbird Waterbird

Land Water Land Water

SSA (Ours) 10% of val. set 92.1 96.2 94.6 93.2
- Without group-unlabeled set split 91.3 96.2 92.9 94.3

SSA (Ours) 5% of val. set 85.1 94.6 91.1 91.6
- Without group-unlabeled set split 85.2 94.6 91.1 92.5

For the group-labeled set, we do not require such trick. We simply partitioned the group-labeled
into two equally size subsets, and used one for training and another for validation. We kept the split
fixed throughout the whole pseudo-labeling phase.

Discussion. The splitting procedure aims to mitigate the potential negative effect of “self-
confirmation” that may take place in the pseudo-labeling procedure. During the training of pseudo-
labeler, SSA utilizes the pseudo-attributes of the training samples whenever the prediction confi-
dence exceeds a certain threshold. In other words, when a sample gains a high-enough confidence,
pseudo-labeling may continually strengthen its own predictions, and can be very problematic in
group-DRO-like scenarios where we expect a severe group imbalance. Data splitting helps mitigate
this effect by separating the samples that we train on and the samples we make final predictions on
(as a side note, we also propose group-adaptive thresholds to mitigate the same effect). Empirically,
we indeed observe that data splitting helps improve the downstream worst-group performance. Ta-
bles 8 and 9 give a comparison of SSA with/without splitting on CelebA and Waterbirds dataset,
respectively.

A.3 TRAINING DETAILS

Models. As we briefly discussed in the main text, we use pretrained ResNet-50 and BERT for image
and natural language dataset experiments, respectively. For ResNet-50, we use the torchvision
implementation. For BERT, we use the huggingface implementation.

Hyperparameter Tuning - Overall. We separately tune the hyperparameters for the pseudo-
labeling phase and the robust training phase. For the pseudo-labeling phase, the tuning criterion
is the worst-group spurious label classification accuracy on D•L. For the robust training phase, the
tuning criterion is the worst-group prediction accuracy of the trained target attribute classifier on the
whole validation set DL. We fix the threshold τgmin for the group with smallest population as 0.95
following (Sohn et al., 2020) in pseudo-labeling phase.

Hyperparameter Tuning - Image. For Waterbirds and CelebA, we tuned the learning rate over {1e-
3, 1e-4, 1e-5} and `2 regularization over {1e-1, 1e-4}. We used SGD optimizer with momentum 0.9
and batch size 64. In pseudo-labeling phase, we train the spurious attribute predictor 1k iterations
for Waterbirds and 45k iterations for CelebA.

Hyperparameter Tuning - Natural Language. For MultiNLI and CivilComments-WILDS, we did
not tune any hyperparameter and follow the details of Liu et al. (2021). For MultiNLI, we trained
SSA and its baselines for 5 epochs with default tokenization and dropout, using the batch size 32 and
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Table 10: Runtime of pseudo-labeling phase and robust training phase on the datasets we considered.

Dataset Waterbirds CelebA MultiNLI CivilComments

Pseudo-labeling phase 3 hrs / split 2 hrs / split 4 hrs / split 7 hrs / split
Robust training phase (Group DRO) 2.3 hrs 12 hrs 6.2 hrs 12.5 hrs

the initial learning rate of 2e-5. We did not use any `2 regularization. For CivilComments-WILDS,
we capped the number of tokens per example at 300 and used batch size 8, `2 regularization of
1e-2 and initial learning rate of 1e-5. We used AdamW optimizer with gradient clipping for both
MultiNLI and CivilComments-WILDS. In pseudo-labeling phase, we train the spurious attribute
predictor 30k iterations for both MultiNLI and CivilComments.

Hyperparameter Tuning - Robust Training. For the robust model, we use hyperparameters to
maximize worst-group accuracy on Dval. Following Liu et al. (2021), we use learning rate of 1e-
4 and `2 regurlarization 1e-1 for Waterbirds, learning rate of 1e-5 and `2 regularization 1e-1 for
CelebA. We use SGD optimizer with momentum 0.9 and batch size 64 for both Waterbirds and
CelebA. For MultiNLI and CivilComments, we use the same configuration as pseudo-labeling phase,
except using batch size 16 for CivilComments. In robust training phase, we train the robust model
300 epochs for Waterbirds and CelebA, 10 epochs for MultiNLI, and 5 epochs for CivilComments.
We choose the best model based on the model selection criteria described above.

Baseline Implementation. For EIIL, we directly take results on Waterbirds and CivilComments
from Creager et al. (2021), while the results on CelebA and MultiNLI are new. For environment
inference on CelebA, we follow the same procedure as for Waterbirds. We use one epoch trained
ERM as a reference classifier. We optimize the EI objective with a learning rate of 0.01 for 20k steps
using the Adam optimizer. For environment inference on MultiNLI, we follow the same procedure
as for CivilComments-WILDS. We train an ERM model for 5 epochs and choose the reference
classifier using the best epoch based on the validation worst-group accuracy. We use the error split
heuristic instead of optimizing EI objective as Creager et al. (2021) did. We then train the robust
model with the same procedure as we did.

A.4 RUNTIME ANALYSIS

In Table 10, we provide the time required for the pseudo-labeling phase and the robust training phase
on a single Nvidia Titan XP for each dataset. Compared with the vanilla Group DRO, SSA requires
an additional pseudo-labeling phase. When we select K = 3, the overhead is as small as x0.5 on
the CelebA dataset, and does not exceed x4 in the worst case (Waterbird). We make two additional
remarks. First, other baseline methods for addressing the lack of full group annotation (e.g., JTT,
LfF) also require additional computation and runtime. For instance, JTT requires a preliminary
training run to estimate the spurious label. Second, the number of iterations we used for pseudo-
labeling has not been optimized for achieving the best runtime-performance tradeoff, and thus can
be further improved with a more careful search.
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A.5 DETAILS ON SUPERVISED CONTRASTIVE LEARNING

Given an anchor (xi, yi), original supervised contrastive loss uses same class samples (y = yi)
as positive samples and different class samples (y 6= yi) as negative samples to maximize simi-
larity of representation between samples belong to same class. Correct-N-Contrast (CNC; Zhang
et al. (2021)) first trains ERM model as JTT and use ERM prediction as a surrogate to ground
truth spurious attribute. With obtained ERM prediction, CNC uses supervised contrastive loss to
maximize similarity of representation between samples having same target and different ERM pre-
diction, while minimizing similarity of representation between samples having different target and
same ERM prediction. Similar to the second stage of CNC, given an anchor (xi, yi, ai), we use sam-
ples having same target and different spurious attribute as positive samples (y+ = yi, a

+ 6= ai) and
samples having different target and same spurious attribute as negative samples (y− 6= yi, a

− = ai).
To be specific, we sample M samples from each group. Given an anchor (xi, yi, ai), we use sam-
ples from group (yi, a

+) for a+ 6= ai as a set of positive samples B+ and samples from group
(y−, ai) for y− 6= yi as a set of negative samples B−. In addition to standard cross entropy loss, we
minimizes following supervised contrastive loss for each anchor xi:

1

|B+|
∑

z+∈B+

− log
exp(zi · z+/τ)∑

z∈B+∪B− exp(zi · z/τ)
, (13)

where z = g(x) is a representation of x and g : X → Rd is an encoder maps x to a representation,
f = h ◦ g, τ > 0 is a scalar temperature hyperparameter.

We use M = 16 for both Waterbirds and CelebA. Except batch size, we follow Zhang et al. (2021)
for other hyperparameters. For Waterbirds, we use temperature 0.1, contrastive weight 0.75, SGD
optimizer with momentum 0.9, learning rate 1e-4, weight decay 1e-3 and use gradient accumulation
to update model parameter every 32 batches. For CelebA, we use temperature 0.05, contrastive
weight 0.75, SGD optimizer with momentum 0.9, learning rate 1e-5, weight decay 1e-1 and use
gradient accumulation to update model parameter every 32 batches.

A.6 DETAILS ON CLASS-IMBALANCED SEMI-SUPERVISED LEARNING

We consider a classification problem with K classes. In other words, our goal is to train a predictor
X → Y with Y = {1, . . . ,K}. We assume that we have access to two types of datasets: labeled,
and unlabeled. We let

DL := {(x̃1, ỹ1), . . . , (x̃m, ỹm)}, DU := {x1, . . . , xn}. (14)

The number of samples in some class k ∈ Y will be denoted by mk and nk, respectively, i.e.,∑K
k=1mk = n and

∑K
k=1mk = m. Without loss of generality, we assume that the number of

labeled data in each class is ordered in a descending order, i.e.,

mmaj =: m1 ≥ m2 ≥ · · · ≥ mK . (15)

We define the imbalance ratio of this labeled dataset as the ratio between the sample sizes of the
largest class and the smallest class, i.e., γlab = m1/mK ≥ 1. This quantity is used as a key
parameter that controls the degree of class imbalance in the labeled dataset; higher the γlab, more
severe the imbalance. To determine the number of samples in other classes, we use an exponential
decay function, i.e., mk = m1 · γ(−k−1)/(K−1)lab . We assume that the same ordering holds for the
unlabeled samples, i.e., n1 ≥ · · · ≥ nK , and let define the imbalance ratio as γunlab = n1/nK . For
simplicity, we let γunlab = 1, i.e., all classes have the same number of unlabeled samples.

To evaluate the classification performance of models trained under the imbalanced dataset, we re-
port two popular metrics: balanced accuracy (bACC) and geometric mean scores (GM), which are
defined by the arithmetic and geometric mean over class-wise sensitivity, respectively. Mean and
standard deviation are reported across three random trials, respectively.
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