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Abstract

We provide theoretical guarantees for label consistency in generalized k-means
problems, with an emphasis on the overfitted case where the number of clusters
used by the algorithm is more than the ground truth. We provide conditions under
which the estimated labels are close to a refinement of the true cluster labels. We
consider both exact and approximate recovery of the labels. Our results hold for
any constant-factor approximation to the k-means problem. The results are also
model-free and only based on bounds on the maximum or average distance of the
data points to the true cluster centers. These centers themselves are loosely defined
and can be taken to be any set of points for which the aforementioned distances
can be controlled. We show the usefulness of the results with applications to some
manifold clustering problems.

1 Introduction

Consider the problem of clustering data points sampled according to some probability measure µ
from a normed space X with norm ‖ · ‖X . In the ideal setting, the generalized k-means clustering
minimizes the population cost function

Q(ξ;µ) :=
(∫

min
1≤`≤L

‖x− ξ`‖pXdµ(x)
)1/p

(1)

where ξ = (ξ1, . . . , ξL) ∈ XL is a set of L vectors in X , for some fixed integer L. In practical data
analysis, we are given a sample {x1, . . . , xn} drawn from µ and solve an empirical version of (1),
namely,

Q̂(ξ) = Q(ξ;Pn) :=
( 1

n

n∑
i=1

min
1≤`≤L

‖xi − ξ`‖pX
)1/p

. (2)

Here, Pn := 1
n

∑n
i=1 δxi

is the empirical measure associated with the sample and δx is the point
mass measure at x. The minimizer of Q̂(·) over XL is denoted as ξ̂ = (ξ̂1, . . . , ξ̂L) and each point xi
is assigned a cluster label ẑi := argmin` ‖xi − ξ̂`‖X .

Meanwhile, we assume that each data point xi also has a true cluster label zi ∈ [K] := {1, . . . ,K}
which is determined solely by an unknown data-generating process. These true labels are not
necessarily related to the optimal solutions of (1) or (2). To distinguish the two, we refer to the
clustering induced by (zi) as the true clustering, while a clustering that minimizes the generalized
k-means cost function (2), i.e., the clustering induced by (ẑi), is referred to as an optimal k-means
clustering. In this paper, we consider the label consistency problem, that is, how close the labels
(ẑi) estimated by k-means clustering are to the true labels (zi). Note that we allow the number of
k-means clusters L to be different from the true number of clusters K.
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In the above formulation, the case where p = 2, X = Rd and ‖ · ‖X is the Euclidean norm leads to
the classical and widely used k-means problem. Much of the theoretical analysis of k-means has been
performed in this case. Early work has focused on how close the optimization problems based on the
empirical and ideal cost functions (2) and (1) are to each other, where the closeness is measured in
terms of the recovered centers (i.e., ξ̂ and ξ) or the optimal value of the objective function.

Such consistency results are proved, for the global minimizers of (2), in the early work of [22,
29] and also in [30, 19] from the vector quantization perspective. These classical results do not
directly apply to the performance of the k-means in practice, mainly because solving (2) is NP-hard
and approximation methods are usually applied to deal with it. Also, considerations of the label
consistency problem are absent from this line of work since no true clustering, external to the k-means
problem, is assumed to exist.

More recently, there has been more interest in the consistency of practical k-means algorithms [14, 21]
as well as the label consistency problem. Lu and Zhou [21] obtain sharp bounds on the label consis-
tency of the Lloyd’s algorithm [20] under a sub-Gaussian mixture model. Semidefinite programming
(SDP) relaxation is another popular technique for deriving polynomial-time approximations to the
k-means problem [28]. Its label consistency has been studied when data is generated from the stochas-
tic ball model [4, 10], sub-Gaussian mixtures [25, 8, 9], the Stochastic Block Model (SBM) [9]
and general models [18]. Convex clustering is another relaxation method whose label consistency
has been discussed in [34, 27, 11, 31]. The literature on community detection in SBM, a network
clustering problem, is also mainly focused on label consistency and inspires our work here; see
[1, 33] for a review of those results. For label consistency in kernel spectral clustering, see [2].

In this paper, we study the label consistency of approximate solutions of the generalized k-means
problem (2) when L ≥ K. Our focus will be on the overfitted case where L > K. This is often
relevant in practice since the data-generating process may have a natural number of clusters K that is
unknown a priori. An example is the sub-Gaussian mixture with K components. More interesting
examples are given in Section 3. All the aforementioned works on label consistency exclusively
consider the correctly-fitted case L = K. We show that when the data-generating process admits a
set of centers that satisfy certain separation conditions, estimated labels with L ≥ K clusters, are
close to a refinement of the true labels. These bounds reduce to the label consistency criteria for
L = K, but have no counterpart in the literature for L > K.

Overfitting in k-means is considered in [32, 23] where it is shown to improve the approximation factor
(see Assumption 1(b)) of certain polynomial-time k-means algorithms. Analysis of the approximation
factor is concerned with how close one can get to the optimal value of the k-means objective function.
In contrast, we are concerned with the label recovering problem and not directly concerned with
how well the objective function is approximated. Our work is also aligned with the recent trend of
beyond worst case analysis of the NP-hard problems [6], where the performance of the algorithms
are considered assuming that there are some meaningful structures in the data (e.g., true clusters). We
refer to Remark 1 for a more detailed comparison with this literature.

Our results are algorithm-free in the sense that they apply to any algorithm that achieves a constant-
factor approximation to the optimal objective. They are also model-free in the sense that we do not
make any explicit assumption on the data-generating process. This is important in practice, since
many common data models, such as sub-Gaussian mixtures, are often too simplified to capture real
clustering problems. We provide examples of more complicated data models in Section 3 and show
how our general results can provide new insights for these models. Since k-means clustering often
appears as a building block in many sophisticated clustering algorithms, we believe our results will
be of broad interest in understanding the performance of clustering algorithms in overfitted settings.

Notation. Q(ξ;µ) is only dependent on the set of values among the coordinates of ξ. Although we
view ξ as a vector (for which the order of elements matter), with some abuse of notation, we view
Q(·;µ) as a set function (mapping 2X to R) that is only sensitive to the set of values represented by ξ.
This justifies using the the same symbol for the function irrespective of the number of coordinates
of ξ, i.e., the number of clusters. The reason to keep ξ as an (ordered) vector is to make the cluster
labels well-defined. For simplicity, let ‖ · ‖ = ‖ · ‖X . For the case where X ⊂ Rd, one often takes
‖ · ‖ to be the Euclidean norm, but our results are valid for any norm on Rd, and more broadly any
normed space X .
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2 Main Results

We first state assumptions about the k-means clustering algorithm.
Assumption 1. Consider an algorithm for the generalized k-means problem (2), referred to as
ALG(p) hereafter, and let ξ̂(L) ∈ XL and ξ̂(K) ∈ XK be its estimated centers when applied with L
and K clusters, respectively. Let L ≥ K. Assume that ALG(p) has the following properties, for all
input sequences (xi):

(a) Efficiency: The Voronoi cell of every estimated center ξ̂(L)
` contains at least one of (xi).

(b) κ-approximation: Q̂(ξ̂(K)) ≤ κ ·minξ∈XK Q̂(ξ), and similarly with K replaced by L.

Efficiency can be achieved by substituting centers whose Voronoi cells have an empty intersection
with {xi}, by those having the opposite property. For κ-approximation, the factor κ can depend on
the number of clusters K (or L). For example, the k-means++ algorithm has κ = O(logK), with
high probability over the initialization [3]. However, there are also constant-factor approximation
algorithms for k-means where κ = O(1) independent of K (or L) [24, 13, 15]. For example,
with local search, k-means++ can achieve a constant-factor approximation [16]. In addition, κ-
approximation is not required for all inputs. That is, we are not concerned with the worst-case
approximation factor. The κ in Assumption 1(b) is the approximation factor of the algorithm on the
specific data under consideration. It is enough for an algorithm to achieve good approximation only
on the data of interest.

For some of the results, Assumption 1(b) can be replaced with the following modified version:
(b′) κ-approximation only for K clusters plus a mononoticity assumption: Q̂(ξ̂(L)) ≤ Q̂(ξ̂(K)).
Mononoticity is also a reasonable requirement and obviously true for the exact k-means solutions.

Next, we extend the definition of the misclassification rate to the overfitted case.
Definition 1. The (generalized) misclassification rate between two label vectors z ∈ [K]n and
ẑ ∈ [L]n, with K ≤ L, is

Miss(z, ẑ) = min
ω

1

n

n∑
i=1

1{zi 6= ω(ẑi)},

where the minimization ranges over all surjective maps ω : [L]→ [K].

When L = K, a surjective map ω is necessarily a bijection and the above becomes the usual
definition of misclassification rate when the number of clusters is correctly identified. In this case,
Miss(z, ẑ) = 0 means that there is a one-to-one correspondence between the estimated and true
clusters. The generalized definition above allows us to extend this notion of exact recovery to the
case L > K. In particular, Miss(z, ẑ) = 0 when L > K, if and only if ẑ is a refinement of z. To see
this, note that Miss(z, ẑ) = 0 implies the existence of a map ω : [L]→ [K] such that ω(ẑi) = zi for
all i. This in turn is equivalent to: ẑi = ẑi′ =⇒ zi = zi′ , which is the refinement relation for the
associated clusters. In general, Miss(z, ẑ) is small if ẑ is close to a refinement of z.

We also use the (optimal) matching distances between elements of two vectors viewed as sets.
Definition 2. For ξ ∈ XL and ξ∗ ∈ XK , define the `∞ and `p optimal matching distances as

d∞(ξ, ξ∗) = min
σ

max
1≤k≤K

‖ξσ(k) − ξ∗k‖, dp(ξ, ξ
∗) = min

σ

( K∑
k=1

‖ξσ(k) − ξ∗k‖p
)1/p

,

where σ : [K]→ [L] ranges over all injective maps.

For K = L, d∞ is an upper bound on the Hausdorff distance between the two sets. Obviously, we
have d∞ ≤ dp for any p ≥ 1.

2.1 Distance to true centers

Let z = (zi)
n
i=1 ∈ [K]n be a given set of true labels for the data points (xi)

n
i=1. In addition, our

results are stated in terms of a set of vectors ξ∗ = (ξ∗k)Kk=1 which we refer to as the “true centers”.
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Throughout, ξ∗ will be only vaguely specified. The only requirement on ξ∗ is that together with the
observed data points (xi) and the true labels (zi), they satisfy the deviation bounds in each theorem,
e.g., max1≤i≤n ‖xi − ξ∗zi‖ ≤ η in Theorem 1, etc. Let πk =

∑n
i=1 1{zi = k}/n be the proportion

of observed data points in true cluster k and let πmin = mink πk.

We let ξ̂ be a solution of the k-means algorithm with L ≥ K centers and let ẑi ∈ argmin` ‖xi − ξ̂`‖
be the corresponding estimated labels. Our first result provides guarantees for exact label recovery,
in the extended sense of recovering a refinement of the true partition when L > K and the exact
partition when L = K.
Theorem 1 (Exact recovery). Consider a vector of (true) centers ξ∗ ∈ XK and labels (zi)

n
i=1 ∈ [K]n.

Pick η, δ > 0 such that max1≤i≤n ‖xi − ξ∗zi‖ ≤ η, and

min
(k,k′): k 6=k′

‖ξ∗k − ξ∗k′‖ ≥ δ. (3)

Consider an algorithm ALG(p) for problem (2), satisfying Assumption 1, and let (ẑi)
n
i=1 ∈ [L]n and

ξ̂ ∈ XL be the estimated labels and centers of ALG(p) applied with the L ≥ K. Then,

δ

η
> 2

(1 + κ)

π
1/p
min

+ 4 =⇒ Miss(z, ẑ) = 0, dp(ξ̂, ξ
∗) ≤ (1 + κ)η

π
1/p
min

. (4)

When L = K, the assertion Miss = 0 means that there is a permutation σ on [K] such that σ(ẑi) = zi
for all i, that is, we have the exact recovery of labels (zi) in the classical sense. When L > K,
Theorem 1 guarantees the exact recovery of a refinement of the true labels (zi).
Example 1 (Stochastic Ball Model). Assume that data are generated from the stochastic ball model
considered in [26], where xi = ξ∗zi + ri with ri sampled independently from a distribution supported
on the unit ball in Rd. Here, {ξ∗k}Kk=1 ⊂ Rd are a fixed set of centers. Clearly, we can take
η = 1 in Theorem 1. Then, any κ-approximate k-means algorithm achieves exact recovery when
δ > 2 + 2(1 + κ)/

√
πmin for L = K. In the overfitted case, when δ > 4 + 2(1 + κ)/

√
πmin, the

estimated label vector is an exact refinement of the true labels (zi).

In the above example, although it is intuitively clear that for a sufficiently large δ, the solution of the
k-means problem should achieve exact label recovery (in the extended sense), Theorem 1 allows us
to provide a provable guarantee for any constant-factor approximation, with an explicit bound on the
separation parameter δ.

We now turn to approximate recovery where the misclassification rate is small.
Theorem 2 (Approximate Recovery). Consider a vector of (true) centers ξ∗ ∈ XK and labels
(zi)

n
i=1 ∈ [K]n. Pick ε, δ > 0 such that ( 1

n

∑n
i=1 ‖xi − ξ∗zi‖

p)1/p ≤ ε, and (3) holds. Consider an
algorithm ALG(p) for problem (2), satisfying Assumption 1, and let (ẑi)

n
i=1 ∈ [L]n and ξ̂ ∈ XL be

the estimated labels and centers of ALG applied with the L ≥ K. Then, for any c > 2,

δ

ε
>

(1 + κ)c

π
1/p
min

=⇒ Miss(z, ẑ) < K(1 + κ)pcp
(ε
δ

)p
, dp(ξ̂, ξ

∗) ≤ (1 + κ)ε

π
1/p
min

. (5)

The key difference between Theorems 1 and 2 is the bounds assumed on the deviations Di :=
‖xi − ξ∗zi‖, i ∈ [n]. Theorem 1 assumes a bound on the maximum distance to true centers, maxiDi,
while Theorem 2 assumes a bound on an average distance, ( 1

n

∑
iD

p
i )1/p, leading to a more relaxed

condition.

Theorem 2 provides an upper bound on the misclassification rate when a certain separation condition
is satisfied. To simplify, consider the case K = κ = p = 2 and take c = 2.1. Then, Theorem 2
implies the following: For every β > 0, there exists a constant c1(β, πmin) > 0 such that if

δ/ε ≥ c1(β, πmin), (6)

then any 2-factor k-means algorithm will have Miss ≤ β to the target labels. The next proposition
shows that condition (6) is sharp up to constants.
Proposition 1. There exists a family of datasets {(xi, zi)}ni=1, with K = 2 balanced true clusters
(i.e., πmin = 1/2) and parameterized by true center separation δ and ε = ( 1

n

∑n
i=1 ‖xi − ξ∗zi‖

2)1/2
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with the following property: Given any constant β ∈ (0, 1/2), there exists a constant c2(β) > 0, such
that if δ/ε < c2(β), then any 2-factor k-means approximation algorithm with L = 2 clusters has
misclassification rate satisfying 1

2 − β ≤ Miss ≤ 1
2 . Moreover, any 2-factor k-means approximation

algorithm with L = 4 clusters will recover a perfect refinement of the original clusters in the above
setting.

The proof of Proposition 1 can be found in the Supplementary Material. This proposition shows that
if the separation condition (6) is reversed, one can force the performance of any k-means algorithm
to be arbitrarily close to that of random guessing. The true centers in Proposition 1 are the natural
centers implied by the k-means cost function for the true labels, that is, ξ∗k = 1

n

∑
i xi1{zi = k} for

k = 1, 2. One can take c1(β, πmin) = 6.3 max(1/πmin, 2/β)1/2 and c2(β) = sin(tan−1(
√
β/45))

for the constants in (6) and Proposition 1.
Remark 1. The separation condition (6) is related to the distribution stability introduced in [5].
Roughly speaking distribution stability plus the following property implies our condition:

(D1) For every pair of distinct clusters Ck and C` with centers ξ∗k and ξ∗` , there is a point x ∈ C`
such that ‖x− ξ∗k‖ ≤ ‖ξ∗` − ξ∗k‖.

That is, every cluster C` has points which are closer than ξ∗` to the centers of other clusters. This
property is quite mild and one expects it to hold with high probability if the distribution of the
points have positive density w.r.t. to the (full-dimensional) Lebesgue measure in a ball around the
center. The above seems to suggest that distribution stability is slightly weaker than our condition (6).
However, in the presence of (D1), we can also significantly relax distribution stability to arrive at
our condition, the details of which are provided in the Supplementary Material. In this sense, these
two notions are closely related but not directly comparable, i.e., neither is weaker than the other in
general.
Example 2 (Sub-Gaussian mixtures). Let us assume that the data is generated from a K-component
sub-Gaussian mixture model xi = ξ∗zi + d−1/2wi where wi = (wi1, . . . , wid) ∈ Rd is a zero mean
sub-Gaussian noise vector with sub-Gaussian parameter σi, and zi ∈ [K] is the latent label of the ith
observation. This is an extension of the sub-Gaussian mixture model considered in [7]. Determining
whether (ξ∗k)Kk=1 is actually the solution of the population problem (1) is, itself, challenging and the
answer may depend on the exact distribution of {wi}. Nevertheless, our results allow us to treat
(ξ∗k) as the true centers. Below we sketch how Theorem 2 applies in this case. The details of the
arguments, including the exact definition of a sub-Gaussian vector are provided in the Supplementary
Material. Let σmax = maxi σi and set α2

i := E‖d−1/2wi‖22 and ᾱ2
n := 1

n

∑n
i=1 α

2
i . Assume that

there is a numerical constant C > 0 such that ᾱ2
n ≤ Cσ2

max. Then, one can show that

P
( 1

n

n∑
i=1

‖xi − ξ∗zi‖
2 > 2ᾱ2

n

)
≤ e−c1nᾱ

4
n/σ

4
max =: pn

for some numerical constant c1 > 0. Taking ε2 = 2ᾱ2
n and p = 2 in Theorem 2, we have that with

probability at least 1− pn,

δ2

2ᾱ2
n

>
(1 + κ)2c2

πmin
=⇒ Miss(z, ẑ) ≤ 2K(1 + κ)2c2

( ᾱn
δ

)2

,

where δ is as in (3) and c > 2. In a general problem, ᾱn, σmax and δ all can vary with n. In
order to have label consistency for an ALG(2) algorithm, it is enough to have ᾱn/δ = o(1) and
nᾱ4

n/σ
4
max → ∞. The consistency here is based on the extended Definition 1 and includes the

overfitted case in which a refinement of the true labels is consistently recovered. We note that the
model in this example includes a very general Gaussian mixture model as a special case, namely the
case wi ∼ N(0,Σi) where the covariance matrices Σi ∈ Rd×d are allowed to vary with each data
point. In this case, one can take σmax = max1≤i≤n ‖Σi‖op where ‖ · ‖op denotes the operator norm,
and ᾱ2

n := 1
n

∑n
i=1 tr(Σi)/d.

2.2 Distance to fake centers

We now extend Theorem 2, to allow for “fake” centers {ξ̃`}L`=1 and the corresponding labels {z̃i}.
These can be constructed to reduce the required distance to the data points (xi).
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Theorem 3 (Approximate Recovery, II). For a fixed L ≥ K, consider a vector of constructed centers
ξ̃ ∈ XL, constructed labels z̃ = (z̃i)

n
i=1 ∈ [L]n and true labels z = (zi)

n
i=1 ∈ [K]n. Assume that z̃

is a refinement of z, i.e. there is ω̃ : [L] → [K] such that ω̃(z̃i) = zi for all i ∈ [n]. Pick ε, δ > 0
such that ( 1

n

n∑
i=1

‖xi − ξ̃z̃i‖p
)1/p

≤ ε, min
`1 6=`2, ω̃(`1) 6= ω̃(`2)

‖ξ̃`1 − ξ̃`2‖ ≥ δ (7)

Consider an algorithm ALG(p) for problem (2), satisfying Assumption 1, and let (ẑi)
n
i=1 ∈ [L]n be

the estimated label vector of ALG(p) applied with L clusters. Then, for any c > 2,
δ

ε
>

(1 + κ)c

π
1/p
min

=⇒ Miss(z, ẑ) < K(1 + κ)pcp
(ε
δ

)p
. (8)

The advantage of Theorem 3 is that when the desired number of clusters L increases, the bound
on the misclassification rate can go down: In some applications, by carefully constructing the fake
centers ξ̃, we can make ε smaller as L increases, while roughly maintaining the minimum separation
among fake centers associated with the true clusters. If successful, this implies that a refinement of
the true clustering can be achieved even when it is hard to recover the true clustering itself. In the
following section, we show how this strategy can be applied to some manifold clustering problems.

3 The case for overfitting

We now illustrate applications of Theorem 3 in settings where it is hard to recover true clusters, based
on the ideal K, but it is possible to obtain accurate refinements by overfitting. The idea is to consider
clusters that look like submanifolds of Rd.

3.1 Mixture of curves

We say that a random variable x has a (ρ, σ) sub-Gaussian curve distribution if x = γ(t) where
t ∈ R has a sub-Gaussian distribution with parameter σ and γ : R→ Rd is a locally ρ-Lipschitz map.
i.e., ‖γ(t)− γ(s)‖ ≤ ρ|t− s| for all t, s ∈ R such that |t− s| ≤ 1

ρ .

Proposition 2. Assume that (xi)
n
i=1 are independent draws from a K-component mixture of (ρ, σ)

sub-Gaussian curve distributions. That is, xi = γzi(ti) where zi ∈ [K], ti ∼ Qzi independently
across i, each Qk is a sub-Gaussian distribution on R with parameter σ, and each γk is locally
ρ-Lipschitz. Let Ck be the support of the distribution of γk(t) where t ∼ Qk. Assume that

min
x∈Ck, y∈Ck′

‖x− y‖ ≥ δ > 0, for all k 6= k′.

Then, there exist a constant C = C(K, δ, ρ, σ, κ) such that any ALG(2) satisfying Assumption 1
applied with Ln ≤ C

√
n log n clusters recovers a perfect refinement of z with probability≥ 1−n−1.

The significance of this result is that one recovers a perfect refinement with the number of partitions
Ln = o(n). It is trivial to obtain a perfect refinement with Ln = n, but not so with Ln/n→ 0. This
is especially the case since one can achieve quite complex cluster configurations with the model in
Proposition 2, for some of which applying k-means with K clusters will have a misclassification rate
bounded away from zero. Section 3.3 provides some such examples where the true cluster centers
coincide, causing any k-means algorithm applied with the true K to incur a substantial error. See
also Supplementary Material for a discussion of whether Ln = O(

√
n log n) can be improved.

Various extensions of Proposition 2 are possible. We have the following extension to the noisy setting.
Corollary 1. Assume that the data is given by yi = xi + 1√

d
wi for i ∈ [n] where (xi) are as given

in Proposition 2 and wi are sub-Gaussian noise vectors as in Example 2. Then, under the same
assumptions as in Proposition 2, ALG(2) applied with Ln ≤ C

√
n log n achieves a misclassification

rate . K(ᾱn/δ)
2 + 1

n with probability ≥ 1− pn − n−1 where ᾱn and pn are defined in Example 2.

Corollary 1 shows that one can achieve consistent clustering (in the generalized sense) withLn = o(n)
clusters assuming that the noise-to-signal ratio ᾱn/δ → 0 and nᾱ4

n/σ
4
max →∞; the same conditions

needed in the sub-Gaussian mixture example. Again, this result is significant since even in the
noiseless case (ᾱn = 0), consistent recovery is not possible with L = K for some mixtures of curve
models.
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(a) Noisy (L = 4, δ = 3) (b) Noisy (c) Noiseless

Figure 1: Line-circle model: (a) Scatter plot for the noisy version. The colors show the L = 4
estimated clusters by k-means. (b) and (c) show the (generalized) misclassification rate versus δ, the
radius of the circle, in the noisy and noiseless versions of the model.

3.2 Mixture of higher-order submanifolds

A version of Proposition 2 can be stated for a higher-dimensional version of the mixture-of-curves
model, if we consider generalized k-means problems with p > 2. We say that a random variable
x has a (ρ, σ, r) sub-Gaussian manifold distribution if x = γ(t) where t ∈ Rr has a sub-Gaussian
distribution with parameter σ and γ : Rr → Rd is a locally ρ-Lipschitz map. i.e., ‖γ(t)− γ(s)‖ ≤
ρ‖t− s‖ for all t, s ∈ Rr such that ‖t− s‖ ≤ 1

ρ .

Proposition 3. Assume that (xi)
n
i=1 are independent draws from a K-component mixture of sub-

Gaussian manifold distributions, with parameters (ρ, σ, rk) for k ∈ [K], and let r = maxr∈[K] rk.
Let Ck be the support of the distribution of the kth component. Assume that

min
x∈Ck, y∈Ck′

‖x− y‖ ≥ δ > 0, for all k 6= k′.

Then, there exist a constant C = C(K, δ, ρ, σ, r, κ) such that any ALG(p) satisfying Assumption 1,
applied with Ln ≤ C(n1/p

√
log n)r clusters recovers a perfect refinement of z with probability

≥ 1− n−1. In particular, for p > r, we have perfect refinement recovery with Ln = o(n) clusters,
with high probability.

It is also possible to extend the results to more general distributions on submanifolds via a notion of
stochastic covering numbers. For random vector x with distribution µC on a submanifold C ⊂ Rd,
let NµC (ε) be the smallest integer for which, there is a high probability ε-cover of x, that is, a
finite subset N ⊂ C such that P(miny∈N ‖x − y‖ ≤ ε) ≥ 1 − n−2. We state a generalization of
Proposition 3 to this setting in the Supplementary Material.

3.3 Numerical experiments

We first consider the (noiseless) line-circle model in R3, an example of mixture-of-curves. This model
has two clusters: (1) The uniform distribution on the circumference of a circle in the xz-plane, centred
at the origin, and (2) the standard Gaussian distribution on the y axis. The minimum separation δ
between the two clusters is the radius of the circle. We also consider the noisy version of this model
where we add N(0, σ2I3). We sample data points with equal probability from the two clusters. It is
nearly impossible for the k-means to correctly label these two clusters when L = 2, since the centers
of the two clusters coincide. Figure 1 shows the scatter plot of the data simulated from the noisy
line-circle model, with noise level σ = 0.1, n = 3000 and δ = 3. Here, the noise level is set low
for better illustration. Different colors are used to label data points based on the output of k-means
clustering with L = 4, and this demonstrates that each estimated cluster is a subset of a true cluster.

The result aligns with Theorem 3. Although, the true centers coincide (with the origin) when L = 2,
by increasing L, we can create fake centers on the line and the circle to have separation close to
δ and thus get a small missclassification rate. The other two panels in Figure 1 show the average
missclassification rate over 32 repetitions versus δ, for both the noiseless and noisy (σ = 1) line-circle
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Figure 2: Line-Gaussian model: The (generalized) misclassification rate versus δ, the distance of the
Gaussian center to the line, in the (a) noisy and (b) noiseless versions of the model.
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Figure 3: Circle-torus model: (a) Scatter plot for the noiseless version. Colors are used to separate
two true clusters. (b) and (c) show the (generalized) misclassification rate versus δ, the radius of the
circle, in the noisy and noiseless versions of the model.

model. Both show that the misclassification rate is negatively associated with δ and L when L > 2.
Similar results are shown for the circle-torus model in Figure 3. Details of this model are discussed
in the Supplementary Material.

Figure 2 shows the results for a line-Gaussian mixture model: xi = ξ∗zi + Σ
1/2
zi wi ∈ R2 where

ξ∗1 = (0, δ) and ξ∗2 = (0, 0), wi ∼ N(0, I2), Σ1 = I2 and Σ2 = diag(σ2, 0). Here, we have
set σ = 5 and sampled n = 3000 data points with equal probability from the two clusters. We
also consider its noisy version by setting all the zero elements in Σ2 to 0.7, which makes the
model a general Gaussian mixture. Figure 2 shows the average missclassification rate over 32
repetitions for different L. The results are consistent with Theorem 3 showing that as δ increases, the
misclassification rate decreases.

4 Proofs

Let us first recall a fact from functional analysis. Consider the space of functions f : [n]→ X and let
us equip [n] with the uniform probability measure νn. Then, from the theory of Lebesgue-Bochner
spaces, ‖f‖p := (

∫
‖f(ω)‖pX dνn(ω))1/p defines a proper norm on this function space, turning it

into a Banach space Lp(νn;X ). In particular, the triangle inequality holds for this norm. Note that
‖f‖p = ( 1

n

∑n
i=1 ‖f(i)‖pX )1/p. We will frequently invoke the triangle inequality in Lp(νn,X ).

Let µ∗ :=
∑
k πkδξ∗k = 1

n

∑n
i=1 δξ∗zi

be the empirical measure associated with {ξ∗zi}. Recalling
definition (1) of the population cost function, we have, for any ξ ∈ XL,

Q(ξ;µ∗)p =

K∑
k=1

πk min
1≤`≤L

‖ξ∗k − ξ`‖p =
1

n

n∑
i=1

min
1≤`≤L

‖ξ∗zi − ξ`‖
p. (9)
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We start with three lemmas that are proved in the Supplementary Material:

Lemma 1. Let ALG(p) be a k-means algorithm satisfying Assumption 1(b’) and let ξ̂ be its output
for L clusters. Furthermore, assume ( 1

n

∑n
i=1 ‖xi − ξ∗zi‖

p)1/p ≤ ε. Then Q(ξ̂;µ∗) ≤ (1 + κ)ε.

Lemma 2 (Curvature). For every ξ ⊂ XL and ξ∗ ∈ XK , with L ≥ K,

Q(ξ;µ∗) ≥ π1/p
min

(
dp(ξ, ξ

∗) ∧ δ
2

)
.

Lemma 3. Assume that max1≤i≤n ‖xi−ξ∗zi‖ ≤ η and d∞(ξ̂, ξ∗) ≤ γ. When L = K, if δ > 2γ+2η,
there exists a bijective function ω : [K] → [K] satisfying ω(ẑi) = zi, ∀i ∈ [n]. When L > K, if
δ > 2γ + 4η, there exists a surjective function ω : [L]→ [K] satisfying ω(ẑi) = zi, ∀i ∈ [n].

Proof of Theorem 1. As ( 1
n

∑n
i=1 ‖xi−ξ∗zi‖

p)1/p ≤ max1≤i≤n ‖xi−ξ∗zi‖ ≤ η, combining Lemma 1
and 2, we have (

dp(ξ̂, ξ
∗) ∧ δ

2

)
≤ Q(ξ̂, µ∗)

π
1/p
min

≤ (1 + κ)η

π
1/p
min

.

By the condition on δ in (4), we have δ/2 > (1 + κ)η/π
1/p
min. Then, d∞(ξ̂, ξ∗) ≤ dp(ξ̂, ξ

∗) ≤ γ :=

(1 + κ)η/π
1/p
min, which also makes the assumption in Lemma 3 that δ > 2γ + 4η valid. Finally, the

result follows from Lemma 3.

Proof of Theorem 2. The argument is similar to one that has appeared in recent literature [17, 12, 33].
From the proof of Lemma 1 (in the Supplementary Material), we have

Q(ξ̂;µ∗) ≤
( 1

n

n∑
i=1

‖ξ∗zi − ξ̂ẑi‖
p
)1/p

≤ (1 + κ)ε.

By Lemma 2 (
dp(ξ̂, ξ

∗) ∧ δ
2

)
≤ Q(ξ̂, µ∗)

π
1/p
min

≤ (1 + κ)ε

π
1/p
min

.

By the separation assumption in (5), δ/2 > (1 + κ)ε/π
1/p
min. Hence dp(ξ̂, ξ∗) ≤ (1 + κ)ε/π

1/p
min. Let

Ck = {i : zi = k}, |Ck| = nk, and set Tk := {i ∈ Ck : ‖ξ∗zi − ξ̂ẑi‖ ≤ δ/c}. Letting Sk = Ck \ Tk,
we obtain

|Sk|δp/cp <
∑
i∈Sk

‖ξ∗zi − ξ̂ẑi‖
p ≤

n∑
i=1

‖ξ∗zi − ξ̂ẑi‖
p ≤ n(1 + κ)pεp.

Therefore,
|Sk|
nk

<
n(1 + κ)pcpεp

nkδp
≤ 1.

The last inequality is by assumption δ > (1 + κ)cε/π
1/p
min. Hence, Tk is not empty. Furthermore, we

argue that if i ∈ Tk and j ∈ T` for k 6= `, i.e. zi 6= zj , then ẑi 6= ẑj . Assume otherwise, that is,
ẑi = ẑj . Then

‖ξ∗k − ξ∗` ‖ ≤ ‖ξ∗k − ξ̂ẑi‖+ ‖ξ∗` − ξ̂ẑj‖ ≤ 2δ/c < δ

causing a contradiction.

Let Lk := {ẑi : i ∈ Tk} and L =
⋃K
k=1 Lk. Define a function ω : L → [K] by setting ω(`) = k

for all ` ∈ Lk and k ∈ [K]. By the property of {Tk} shown above, Lk, k ∈ [K] are disjoint
and nonempty sets. This implies that ω is well-defined and surjective. Extend ω to a surjective
ω : [L]→ [K] by arbitrarily defining it for [L] \ L. Note that ẑi ∈ Lk implies zi = k. It follows that
ω(ẑi) = zi for all ẑi ∈ L, and

1

n

n∑
i=1

1{zi 6= ω(ẑi)} ≤
n− |L|
n

=

K∑
k=1

|Sk|
n

<
K(1 + κ)pcpεp

δp
.

The result follows.
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Proof of Theorem 3. By assumption, κ-approximation holds for both K and L clusters. Then,

Q̂(ξ̂) ≤ κ Q̂(L)
min, where Q̂

(L)
min := min

ξ∈XL
Q̂(ξ).

Since Q̂(L)
min ≤ ( 1

n

∑n
i=1 ‖xi − ξ̃z̃i‖p)1/p ≤ ε, by the triangle inequality in Lp(νn,X ),( 1

n

n∑
i=1

‖ξ̃z̃i − ξ̂ẑi‖p
)1/p

≤
( 1

n

n∑
i=1

‖xi − ξ̃z̃i‖p
)1/p

+
( 1

n

n∑
i=1

‖xi − ξ̂ẑi‖p
)1/p

≤ (1 + κ)ε.

Let Tk := {i ∈ Ck : ‖ξ̃z̃i − ξ̂ẑi‖ ≤ δ/c} and Sk = Ck \ Tk. Then,

|Sk|δp/cp <
∑
i∈Sk

‖ξ̃z̃i − ξ̂ẑi‖p ≤
n∑
i=1

‖ξ̃z̃i − ξ̂ẑi‖p ≤ n(1 + κ)pεp.

Therefore,
|Sk|
nk

<
n(1 + κ)pcpεp

nkδp
≤ 1

The last inequality is by assumption δ ≥ (1 + κ)cε/π
1/p
min. Hence Tk is not empty. Next we argue

that if i ∈ Tk, j ∈ T` for k 6= `, i.e. zi 6= zj , then ẑi 6= ẑj . Assume otherwise, that is ẑi = ẑj . Since
z̃ is a refinement of z, zi 6= zj implies z̃i 6= z̃j and ω̃(z̃i) 6= ω̃(z̃j). By the triangle inequality,

‖ξ̃z̃i − ξ̃z̃j‖ ≤ ‖ξ̃z̃i − ξ̂ẑi‖+ ‖ξ̃z̃j − ξ̂ẑj‖ ≤ 2δ/c < δ

causing a contradiction. The rest of the proof follows that of Theorem 2.

Proof of Proposition 2. Let mk be the mean of Qk. Then, P(|ti − mzi | > t) ≤ 2e−t
2/2σ2

. Let
M =

√
6σ2 log n. By union bound, with probability ≥ 1− 2n−2 we have |ti −mzi | ≤M for all

i ∈ [n]. We can cover the set [−M,M ] ⊂ R, with L′ = M/ε 1-D balls of radius ε. (Without loss of
generality, we assume that L′ is an integer for simplicity.) Let T = {τ1, . . . , τL′} one such cover and
note that mk + T is an ε-cover of mk + [−M,M ]. Let πk : R→ (mk + T ) be the projection from
R onto mk + T . Then, ‖γzi(ti)− γzi(πzi(ti))‖ ≤ ρ|ti − πzi(ti)| ≤ ρε, assuming that ε ≤ 1/ρ.

Let z′i := argmin`′∈[L′] |ti − (mzi + τ`′)| so that πzi(ti) = mzi + τz′i . Then let Ln = KL′ and fix
a bijection φ : [Ln] → [K] × [L′] and define the labels z̃i = φ−1(zi, z

′
i). Also consider the map

ω0 : [K]× [L′]→ [K] given by ω0(k, `′) = k and set ω̃ := ω0 ◦ φ which is a surjective map from
[Ln] to [K] satisfying ω̃(z̃i) = zi. For ` ∈ [Ln] with φ(`) = (k, `′), define ξ̃` = γk(mk + τ`′). Then,
we have ξ̃z̃i = γzi(mzi + τz′i) = γzi(πzi(ti)), hence the above argument gives ‖γ(ti)− ξ̃z̃i‖ ≤ ρε.
It is also clear that the the separation condition (7) is satisfied since by construction if ω̃(`1) 6= ω̃(`2)

with φ(`1) = (k1, `
′
1) and φ(`2) = (k2, `

′
2), then k1 6= k2 hence ξ̃`1 and ξ̃`2 lie on different

manifolds (on Ck1 and Ck2). It follows that conclusion (8) of Theorem 3 holds for p = 2 and, say,
c = 3 but with ε replaced with ρε. Take ε = (c1

√
n)−1 for constant c1 to be determined. Let

c2 = 3ρ(1 + κ)/δ. As long as nπmin > (c2/c1)2, the separation condition in (8) is satisfied and we
have Miss(z, ẑ) ≤ K(c2/c1)2/n. Hence, as long as c1 >

√
Kc2, we will have Miss(z, ẑ) < 1/n

which implies Miss(z, ẑ) = 0. We also need to satisfy ε < 1/ρ that is c1 ≥ ρ/
√
n. Taking

c1 =
√
Kc2 + ρ satisfies all the required constraints on c1. The required number of clusters is

Ln = KL′ = KM/ε ≤ 3Kσc1
√
n log n,

which proves the result with C = 3Kσc1. Note that since c2/c1 < 1 and nπmin ≥ 1, the condition
nπmin > (c2/c1)2 is automatically satisfied. The proof is complete.
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