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Abstract

The ROC curve is the major tool for assessing not only the performance but also the
fairness properties of a similarity scoring function in Face Recognition. In order to
draw reliable conclusions based on empirical ROC analysis, evaluating accurately
the uncertainty related to statistical versions of the ROC curves of interest is
necessary. For this purpose, we explain in this paper that, because the True/False
Acceptance Rates are of the form of U-statistics in the case of similarity scoring,
the naive bootstrap approach is not valid here and that a dedicated recentering
technique must be used instead. This is illustrated on real data of face images,
when applied to several ROC-based metrics such as popular fairness metrics.

1 Face Recognition - Performance & Fairness

The deployment of Face Recognition (FR) systems brings with it a pressing demand for method-
ological tools to assess their trustworthiness. The reliability of FR systems concerns their estimated
performance of course, but also their properties regarding fairness: ideally, the system should exhibit
approximately the same performance, independently of the sensitive group (determined by e.g. gender,
age group, race) to which it is applied. While, until now, the benchmark of FR systems is essentially
reduced to an ad-hoc evaluation of the performance metrics (i.e. ROC analysis) on a face image
dataset of reference, the purpose of this paper is to explain, and illustrate using real data how the
bootstrap methodology can be used to quantify the uncertainty/variability of the performance metrics,
as well as that of some popular fairness metrics. Hopefully, this paves the way for a more valuable
and trustworthy comparative analysis of the merits and drawbacks of FR systems.

In FR, the usual objective is to learn an encoder function f : Rh×w×c → Rd that embeds the images
in a way that brings same identities closer together. Each image is of size (h,w), while c corresponds
to the color channel dimension. It is worth noting that a pre-processing detection step (finding a
face within an image) is required to make all face images have the same size (h,w). For an image
x ∈ Rh×w×c, its latent representation f(x) ∈ Rd is called the face embedding of x.

Since the advent of deep learning, the encoder f is a deep Convolutional Neural Network (CNN)
whose parameters are learned on a huge FR dataset, made of face images and identity labels. In brief,
the training consists in taking all images xk

i , labelled with identity k, computing their embeddings
f(xk

i ) and adjusting the parameters of f so that those embeddings are as close as possible (for a given
similarity measure) and as far as possible from the embeddings of identity l ̸= k. The usual similarity
measure is the cosine similarity which is defined as s(xi, xj) := f(xi)

⊺f(xj)/(||f(xi)|| · ||f(xj)||)
for two images xi, xj , with || · || standing for the usual Euclidean norm. In some early works [Schroff
et al., 2015], the Euclidean metric ||f(xi)− f(xj)|| was also used. In the rest of this document, we
discard the notation f for the encoder, and only use the similarity s (which contains the encoder), as
we are not interested in the encoder training.
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1.1 Performance Evaluation in Face Recognition

There are generally two FR use cases: identification, which consists in finding the specific identity
of a probe face among several previously enrolled identities, and verification (which we focus on
throughout this paper), which aims at deciding whether two face images correspond to the same
identity or not. In practice, the evaluation of a trained FR model is achieved using an evaluation
dataset, where all possible pairs (xi, xj) of face images are considered. Then, an operating point
t ∈ [−1, 1] (threshold of acceptance) is chosen to classify the pair (xi, xj) as genuine (same identity)
if s(xi, xj) > t and impostor (distinct identities) otherwise. In the following, we describe the
statistical measures for evaluating a FR model, given an evaluation dataset.

Assuming that there are K distinct identities, the evaluation dataset can be modeled by a random
variable (X, y) ∈ Rh×w×c × {1, . . . ,K}. We denote by P the corresponding probability law. For
1 ≤ k ≤ K, we assume that the identities are equiprobable i.e. P(y = k) = 1

K . X is determined by
its conditional distributions Xk := (X|y = k) ∼ Ik and we consider that Xk, X l are independent if
k ̸= l.

Let (X1, y1) and (X2, y2) be two independent random variables with law P. We distinguish between
the False Negative Rate (FNR) and the True Negative Rate (TNR), respectively defined by:

F (t) = P(s(X1, X2) ≤ t | y1 = y2) and G(t) = P(s(X1, X2) ≤ t | y1 ̸= y2).

With these notations, the ROC curve is defined as the graph of the mapping

ROC : α 7→ ROC(α) = F ◦G−1(1− α) with α ∈ [0, 1].

Note that by ROC(α), one usually means 1− F ◦G−1(1− α) in machine learning and statistical
literature but the FR community favors the DET curve (1−ROC(α)), which we will call ROC curve
in the following.

In practice, those metrics are not computable since we only have a finite dataset. We denote by nk the
number of face images of identity k, for 1 ≤ k ≤ K, within the evaluation dataset. The images of
identity k are modeled by random variables (Xk

i )1≤i≤nk
, independent copies of Xk. The empirical

approximations FN and GN of F and G are:

FN (t) =
1

K

K∑
k=1

1(
nk

2

) ∑
1≤i<j≤nk

1s(Xk
i ,X

k
j )≤t

and
GN (t) =

1(
K
2

) ∑
1≤k<l≤K

1

nknl

∑
1≤i≤nk
1≤j≤nl

1s(Xk
i ,X

l
j)≤t.

The empirical ROC curve is naturally:

ROCN : α 7→ ROCN (α) = FN ◦G−1
N (1− α) with α ∈ [0, 1]. (1)

1.2 Fairness Metrics in Face Recognition

To be consistent with the FR community, we change our previous notations (only for addressing
fairness metrics) and define the False Rejection Rate (FRR) and the False Acceptance Rate (FAR)
respectively as FRR(t) := FN (t) and FAR(t) := 1 − GN (t). Both are error rates that should be
minimized, one more than the other depending on the use case. With those notations, the empirical
ROC curve is ROCN (α) = FRR(tα) with FAR(tα) = α.

In order to inspect fairness issues in FR, one should look at differentials in performance amongst
several subgroups of the population. Those subgroups are distinguishable by a sensitive attribute (e.g.
gender, race, age, ...). For a given discrete sensitive attribute that can take A > 1 different values, we
enrich our previous model and consider a random variable (X, y, a) where a ∈ A = {0, 1, . . . , A−1}.
With a slight abuse of notations, we still denote by P the corresponding probability law and, for every
fixed value a, we can further define

F a(t) := P(s(X1, X2) ≤ t | y1 = y2, a1 = a2 = a)
Ga(t) := P(s(X1, X2) ≤ t | y1 ̸= y2, a1 = a2 = a).
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The empirical approximations of F a(t) and (1−Ga(t)) are denoted respectively by FRRa(t) and
FARa(t). In the following, we list several popular FR fairness metrics. All of them are used by the
U.S. National Institute of Standards and Technology (NIST) in their FRVT report [Grother, 2022].
Those fairness metrics attempt to quantify the differentials in (FARa(t))a∈A and (FRRa(t))a∈A.
Since each metric fairness has two versions (one for the differentials in terms of FAR, the other in
terms of FRR), we only present its FAR version. All metrics depend here on the threshold tα which
satisfies FARtotal(tα) = α ∈ [0, 1], meaning that the threshold is set so that it achieves a FAR equal
to α for the global population, and not for some specific subgroup.

Max-min ratio. This metric has also been introduced by Conti et al. [2022], but for another choice
of threshold tα. Its advantage is to be very interpretable but it is sensitive to low values in the
denominator.

FARmax
min (α) =

maxa∈A FARa(tα)

mina∈A FARa(tα)
.

Max-geomean ratio. This metric replaces the previous minimum by the geometric mean FAR†(tα)
of the values (FARa(tα))a∈A, in order to be less sensitive to low values in the denominator.

FARmax
geomean(α) =

maxa∈A FARa(tα)

FAR†(tα)
.

Log-geomean sum. It is a sum of normalized logarithms.

FARlog
geomean(α) =

∑
a∈A

∣∣∣∣log10 FARa(tα)

FAR†(tα)

∣∣∣∣ .
Gini coefficient. The Gini coefficient is a measure of inequality in a population. It ranges from a
minimum value of zero, when all individuals are equal, to a theoretical maximum of one in an infinite
population in which every individual except one has a size of zero.

FARGini(α) =
|A|
|A| − 1

∑
a∈A

∑
b∈A |FARa(tα)− FARb(tα)|
2 |A|2 FAR†(tα)

.

Conti et al. [2022] argue that the choice of a threshold tα achieving a global FARtotal = α is not
entirely relevant since it depends on the relative proportions of each sensitive attribute value a within
the evaluation dataset together with the relative proportion of intra-group impostors. They propose
instead a threshold tα such that each group a satisfies FARa(tα) ≤ α. Since we are dealing with a
unique evaluation dataset, we do not use such a threshold choice, to be consistent with the last three
fairness metrics. Other fairness metrics exist in the literature such as the maximum difference in the
values (FARa(tα))a∈A used by Alasadi et al. [2019], Dhar et al. [2021]. They have the disadvantage
of not being normalized and are thus not interpretable, especially when comparing their values at
different levels α.

2 Assessing the Uncertainty of Face Recognition Metrics through Bootstrap

As previously explained, the ROC curves (and their related scalar summaries) of a similarity scoring
function s(x, x′) (determined in practice by an encoder function to which cosine similarity is next
applied) provide the main tool to assess performance and fairness in face recognition. We now
investigate how to bootstrap these functional criteria, in order to evaluate the uncertainty/variability
inherent in their estimation based on (supposedly i.i.d.) sampling observations drawn from the
statistical populations under study. Indeed, this evaluation is crucial to judge whether the similarity
scoring function candidate meets the performance/fairness requirements in a trustworthy manner, as
will be next discussed on real examples in the next section.

Bootstrapping the ROC curve of a similarity scoring function. Extending the limit results in
Hiesh and Turnbull [1996], the consistency of the empirical ROC curve (1) of a similarity scoring
function s(x, x′) can be classically established, as well as its asymptotic Gaussianity (under additional
hypotheses, involving the absolute continuity of distributions F and G in particular), in a standard

3



multi-sample asymptotic framework, i.e. stipulating that, for all k ∈ {1, . . . , K}, nk/N → λk > 0
as N → +∞). Indeed, under appropriate mild technical assumptions, one may prove that the
sequence of stochastic processes{√

N(ROCN (α)− ROC(α))
}
α∈(0,1)

converges in distribution to a Gaussian law as N →∞. However, this limit law can hardly be used
to build (asymptotic) confidence bands for the true ROC curve (or confidence intervals for scalar
summary ROC-based metrics) in practice, due to its great complexity (the limit law, depending on
the unknown densities of F and G is built from Brownian bridges and its approximate numerical
simulation is a considerable challenge). Resampling techniques must be used instead, in order to
mimic the random fluctuations of ROCN (α)− ROC(α). Application of the (smoothed) bootstrap
methodology to ROC analysis has been investigated at length in the bipartite ranking context, i.e. for
binary classification data [Bertail et al., 2008]. In the classification framework, bootstrap versions of
the empirical ROC curve are simply obtained by means of uniform sampling with replacement in the
two statistical populations (positive and negative). In this case, the empirical true/false positive rates
are of the form of i.i.d. averages, which greatly differs from the present situation, where FN (t) is
an average of independent mono-sample U -statistics of degree 2, while GN (t) is a multi-sample U -
statistic of degree (1, 1). As will be shown below and illustrated in Appendix B, the pairwise nature of
the statistical quantity FN (t) computed is of great consequence, insofar as a ’naive’ implementation
of the bootstrap completely fails to reproduce ROCN ’s variability when applied to the latter. Indeed,
it systematically leads to a serious underestimation of FN (t), and consequently to an underestimation
of ROCN uniformly on (0, 1). For simplicity’s sake, we describe the reason behind this phenomenon
by considering the problem of bootstrapping the statistic FN (t) and explain next how to remedy this
problem.

Bootstrap of FN (t). For all 1 ≤ k ≤ K, consider (Xk
1∗, . . . , X

k
nk∗) a bootstrap sample related to

identity k, drawn by simple sampling with replacement from original data {(Xk
1 , . . . , X

k
nk
)}. Recall

that the original statistic is of the form:

FN (t) =
1

K

K∑
k=1

F k
N (t) with F k

N (t) =
1(
nk

2

) ∑
1≤i<j≤nk

1s(Xk
i ,X

k
j )≤t.

Using the previous bootstrap sample, we can compute a bootstrap version of F k
N (t):

F k
N∗(t) =

1(
nk

2

) ∑
1≤i<j≤nk

1s(Xk
i∗,X

k
j∗)≤t.

F k
N (t) is a (non degenerate) U -statistic of order 2 (an average over all pairs) with symmetric kernel

1s(x,x′)≤t, and thus involves no ’diagonal’ terms of type 1s(Xk
i ,X

k
i )≤t. Indeed, evaluating the

similarity of an image and itself brings no information (it is naturally equal to 1 when considering
cosine similarity). By contrast, it is shown in Janssen [1997] that the bootstrap version F k

N∗(t) of
F k
N (t) is in expectation equal to its V -statistic version, i.e. the version obtained by incorporating the

diagonal terms in the average. In details, denoting E∗[·|Xk
1 , . . . , X

k
nk
] the conditional expectation

with respect to (Xk
1 , . . . , X

k
nk
) (i.e. it denotes the expectation related to the randomness induced by

the resampling), we have that:

E∗[F k
N∗(t)|Xk

1 , . . . , X
k
nk
] =

1

n2
k

∑
1≤i,j≤nk

1s(Xk
i ,X

k
j )≤t.

Grouping all K identities, we can compute a bootstrap version of FN (t):

FN∗(t) =
1

K

K∑
k=1

1(
nk

2

) ∑
1≤i<j≤nk

1s(Xk
i∗,X

k
j∗)≤t

whose expectation is:

FN∗(t) := E∗[FN∗(t)|X1
1 , . . . , X

K
nK

] =
1

K

K∑
k=1

1

n2
k

∑
1≤i,j≤nk

1s(Xk
i ,X

k
j )≤t.
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This means that bootstrapping FN (t) would result in many values FN∗(t) that are not cen-
tered around FN (t), but centered around FN∗(t). From Janssen [1997] (Theorem 3), we find
that P[

√
N(FN∗(t) − FN∗(t)) ≤ x|X1

1 , . . . , X
K
nK

] is a uniformly consistent estimator for
P[
√
N(FN (t) − F (t)) ≤ x]. As a consequence, we can build confidence intervals for FN (t)

in the following way: from the bootstrap samples, build confidence interval for (FN∗(t)− FN∗(t))
and shift it by FN (t).

Bootstrap of G−1
N (α). By contrast, a naive bootstrap method, involving no recentering, can be

applied to:

GN (t) =
1(
K
2

) ∑
1≤k<l≤K

Gk,l
N (t) with Gk,l

N (t) =
1

nknl

∑
1≤i≤nk
1≤j≤nl

1s(Xk
i ,X

l
j)≤t.

Since each sample of the 2-sample U-statistic Gk,l
N (t) is of order (1, 1), we have:

E∗[Gk,l
N∗(t)|X

k
1 , . . . , X

l
nl
] = Gk,l

N (t) and GN∗(t) = GN (t).

The previous confidence interval method still works here: build a confidence interval for
(GN∗(t) − GN∗(t)) = (GN∗(t) − GN (t)) and shift it by GN (t). However, in this case, the
bootstrap values GN∗(t) are centered around GN (t). This method for confidence interval construc-
tion extends naturally to the bootstrap of the empirical quantile function G−1

N . In theory, a smoothed
version of the bootstrap, consisting in sampling from smoothed (by means of a e.g. Gaussian kernel)
versions of the empirical distributions should be used for bootstrapping quantiles. However, given the
very large size of the pooled dataset here, smoothing can be ignored in practice.

Bootstrap of ROCN (α). Finally, we regroup the bootstrap of FN (t) and of G−1
N (α) to present

the bootstrap of the empirical ROC curve ROCN (α) = FN ◦G−1
N (1− α). Using many bootstrap

samples, a confidence interval is found for (ROCN∗(α)− ROCN∗(α)) = (FN∗ ◦G−1
N∗(1− α)−

FN∗ ◦G−1
N (1− α)), then shifted by ROCN (α). A pseudo-code for building the confidence interval

for ROCN (α) at level αCI ∈ [0, 1] is summarized in Algorithm 1. We highlight the significance of
the recentering step and why a naive bootstrap does not work in Appendix B.

Bootstrapping fairness metrics We apply the same bootstrap algorithm for all fairness metrics
since they are functions of FN and GN . In details, consider a fairness measure that depends on
FRRa(t), the max-min ratio FRRmax

min for instance. In the expression of FRRmax
min , FRRa(t) would

be computed as FN (t) for the classic fairness measure (equivalent of ROCN above), as FN∗(t) for
the bootstrap fairness (equivalent of ROCN∗) and as FN∗(t) for the V-statistic fairness (equivalent
of ROCN∗), using pairs of attribute a in all three cases. Using those values for each a ∈ A, we take
the maximum and divide it by the minimum to get three versions of the fairness metric FRRmax

min :
the classic fairness (where each FRRa(t) is computed as FN (t)), the bootstrap fairness (where each
FRRa(t) is computed as FN∗(t)) and the V-statistic fairness (where each FRRa(t) is computed as
FN∗(t)). Finally, the same bootstrap algorithm than for ROCN is used: compute bootstrap samples
of the difference between the bootstrap fairness and the V-statistic fairness, then shift it by the classic
fairness measure. Confidence bounds can be obtained in the same way than for ROCN .

3 Numerical Experiments - Discussion

We use as encoder the trained1 model ArcFace [Deng et al., 2019a] whose CNN architecture is a
ResNet100 [Han et al., 2017]. It has been trained on the MS1M-RetinaFace dataset, introduced by
[Deng et al., 2019b] in the ICCV 2019 Lightweight Face Recognition Challenge. We choose the
dataset RFW [Wang et al., 2019] as evaluation dataset. It is composed of 40k face images from 11k
distinct identities. This dataset is also provided with ground-truth race labels (the four available
labels are: African, Asian, Caucasian, Indian) and is widely used for fairness evaluation since it is
equally distributed among the race subgroups, in terms of images and identities. The official RFW

1https://github.com/deepinsight/insightface/tree/master/recognition/arcface_torch.
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Figure 1: Confidence bands at 95% confidence
level for the ROC of each race label. B = 100
bootstrap samples are used. The classic intra-
group ROC curves are depicted as solid lines.
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Figure 2: Normalized standard deviation of
B = 100 intra-group bootstrap ROC curves,
for each race label. The renormalization factor
is the classic intra-group ROC curve.

protocol only considers a few matching pairs among all the possible pairs given the whole RFW
dataset. The number of images is typically not enough to get good estimates of our fairness metrics
at low FAR. To overcome this, we consider all possible same-race matching pairs among the whole
RFW dataset. All images are pre-processed by the Retina-Face detector Deng et al. [2019c] and are
of size 112× 112 pixels.

Our first experiment is the computation of the confidence bands at 95% confidence level
(αCI = 0.05) for each intra-group ROC i.e. the ROC corresponding to each race label. This
is the output of our Algorithm 1 using B = 100 bootstrap samples and the result is displayed in
Figure 1. It can be observed that Caucasians have a better performance than other races and that
the uncertainty makes all races potentially indistinguishable in terms of performance at high FAR
levels. Notice that the uncertainty increases when any of the error rates FAR,FRR is low, which
happens when a few matching pairs are incorrectly classified, making the error rates really sensitive
to those pairs. To quantify better the uncertainty in the estimation of ROCN (α), we compute the
standard deviation of the B = 100 bootstrap ROC curves ROCN∗(α), for each race label. For a
fair comparison, we normalize this standard deviation by ROCN (α) (classic evaluation). The result
is provided as a function of α in Figure 2. This normalized standard deviation is a natural proxy
measure for the uncertainty in the estimation of the ROC of each race label. It is worth noting that
the higher uncertainty is achieved by Asians and Indians at low FAR levels and by Caucasians at
high FAR levels. Note that Caucasians have the best performance at low FAR levels and, at the same
time, the lowest uncertainty about it among all race labels.
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FRR log
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FARmax
min

FRRmax
min

Figure 3: Normalized standard deviation of
B = 100 bootstrap fairness curves (as func-
tions of FARtotal), for each fairness metric.
The renormalization factor is the classic fair-
ness measure.

Then, we investigate the uncertainty related to cer-
tain possible fairness measures. The race label is
used here as the sensitive attribute a. We compute
the previous normalized standard deviation for the
considered fairness metrics, in the same way than for
Figure 2. For each metric, we take B = 100 boot-
strap samples, giving 100 fairness values at each
FARtotal = α level. For each α, the standard devia-
tion of those values is found, and then normalized by
the classic fairness measure at this level α, for a fair
comparison. As illustrated in Figure 3, the Gini co-
efficient and the log-geomean sum fairness metrics
show high (similar) uncertainty. The max-geomean
ratio metric displays the lowest uncertainty, both in
terms of FAR and FRR, which makes it particularly
suitable for fairness evaluation. In addition, the max-
geomean (and the max-min) ratio metrics have the
significant advantage to be interpretable.
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While the gold standard by which fairness will be evaluated in the future is not fixed yet, we believe
that it should definitely incorporate uncertainty measures, since it could lead to wrong conclusions
otherwise. The bootstrap approach is simple, fast and yet it has not been explored by the FR
community.
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A Pseudo-code for the bootstrap of ROCN(α)

Algorithm 1 Bootstrap of ROCN (α)

Input: K ≥ 0, images (X1
1 , . . . , X

K
nK

), encoder f
Require: α ∈ [0, 1], B ≥ 0, αCI ∈ [0, 1]
Output: CI−,CI+, bounds for the confidence interval of ROCN (α) at level αCI

ROCN∗ ← FN∗ ◦G−1
N (1− α)

gap← ∅
for b← 1, B do

X(b) ← ∅
for k ← 1,K do

Xk
(b) ← sample with replacement nk images among (Xk

1 , . . . , X
k
nk
)

X(b) ← X(b) ∪Xk
(b)

end for
ROCN,(b) ← FN∗ ◦G−1

N∗(1− α) for bootstrap sample X(b)

gap(b) ← ROCN,(b) − ROCN∗
gap← gap ∪ gap(b)

end for
CI− ←

αCI

2
-th quantile of gap

CI+ ← (1− αCI

2
)-th quantile of gap

ROCN ← FN ◦G−1
N (1− α)

CI− ← ROCN + CI−
CI+ ← ROCN + CI+

B Visualization of the recentering step

In this section, we underline the significance of the recentering step of Algorithm 1. For the sake of
simplicity, we achieve the bootstrap of the ROC curve for the global population, and not for some
specific subgroups.

Let suppose that a naive bootstrap is done, that is we get some bootstrap image samples and,
for each of them, we compute the bootstrap version ROCN∗ of ROCN . If a naive bootstrap is
achieved, the bootstrap versions ROCN∗ (for many bootstrap samples) would be supposed to be
centered around ROCN . By taking quantiles of ROCN∗(α) for a given FAR level equal to α, we
would get the confidence interval at this FAR level α. However, as illustrated in Figure 4 and
Figure 5, this is not the case. The theoretical reasons have been detailed in Section 2. Briefly,
since (ROCN∗(α) − ROCN∗(α)) is a good estimator of (ROCN (α) − ROC(α)), we can obtain
confidence intervals for the latter with confidence intervals for the former.
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Figure 4: Bootstrap versions ROCN∗ of the
ROC curve for the global population of the
RFW dataset. B = 100 bootstrap samples
are considered. The classic version ROCN is
depicted as a dark-blue solid line while its V-
statistic version ROCN∗ is depicted as a red
solid line.
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Figure 5: Confidence bands at 95% confidence
level for the bootstrap versions ROCN∗ of the
ROC curve for the global population of the
RFW dataset. B = 100 bootstrap samples
are considered. The classic version ROCN is
depicted as a dark-blue solid line while its V-
statistic version ROCN∗ is depicted as a red
solid line.
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