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ABSTRACT

It is well-known that the Hessian of deep loss landscape matters to optimization,
generalization, and even robustness of deep learning. Recent works empirically
discovered that the Hessian spectrum in deep learning has a two-component struc-
ture that consists of a small number of large eigenvalues and a large number of
nearly-zero eigenvalues. However, the mathematical structure behind the Hes-
sian spectra is still under-explored. To the best of our knowledge, we are the
first to demonstrate that the Hessian spectra of well-trained deep neural networks
exhibit simple power-law structures. Inspired by the statistical physics theories,
we provide a maximum-entropy theoretical interpretation for explaining why the
power-law structure exists. Our extensive experiments using the novel power-law
spectral method reveal that the power-law Hessian spectra critically relate to multi-
ple important behaviors of deep learning, including optimization, generalization,
overparameterization, and overfitting.

1 INTRODUCTION

It is well-known that the Hessian matters to optimization, generalization, and even robustness of deep
learning (Li et al., 2020; Ghorbani et al., 2019; Zhao et al., 2019; Jacot et al., 2019; Yao et al., 2018;
Dauphin et al., 2014; Byrd et al., 2011). Deep learning usually finds flat minima that generalize well
(Hochreiter & Schmidhuber, 1995; 1997). The Hessian is one of the most important measures of the
minima flatness and directly relates to generalization in deep learning (Hoffer et al., 2017; Neyshabur
et al., 2017; Dinh et al., 2017; Wu et al., 2017; Tsuzuku et al., 2020). Jiang et al. (2019) reported that
minima-flatness-based generalization bound is still the most reliable metric in extensive experiments.
Wu et al. (2017) reported that the low-complexity solutions that generalize well have a small norm of
Hessian matrix with respect to model parameters. Yao et al. (2018) reported that the spectrum of the
Hessian closely connects to large-batch training and adversarial robustness.

A number of works empirically studied the Hessian in deep neural networks. Some papers (Sagun
et al., 2016; 2017; Wu et al., 2017) empirically reported a two-component structure that, in the context
of deep learning, most eigenvalues of the Hessian are nearly zero, while a small number of eigenvalues
are large. Sankar et al. (2021) revealed that the layerwise Hessian spectrum is similar to the entire
Hessian spectrum. However, the theoretical mechanism behind the spectrum is under-explored.

Motivation. Why does the Hessian spectrum consist of a small number of large eigenvalues and
a large number of nearly zero eigenvalues? Does an elegant mathematical structure hide behind
the Hessian spectrum? Our work provides a novel approach to understanding and analyzing deep
learning from a spectral perspective.

Contributions. This paper has two main contributions.

1. First, to the best of our knowledge, we are the first to empirically discover and mathematically
model the power-law Hessian spectra in deep learning. We theoretically formulated a novel
maximum entropy interpretation for explaining the power-law Hessian spectra.

2. Second, we propose a framework of power-law spectral analysis for deep learning. We not
only reveal how the power-law spectra explain the theoretical origin of striking findings
but also empirically demonstrate multiple novel insights on optimization, generalization,
overparameterization, and overfitting.
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Figure 1: The power-law structure of the Hessian spectrum in deep learning. Model: LeNet. We
may clearly observe that the power-law spectra generally hold for well-trained deep networks on
various natural or artificial datasets, while do not hold for random neural networks. We also report
that a small number of outlier eigenvalues (∼10) slightly deviate from the fitted straight line.

2 THE POWER-LAW HESSIAN SPECTRUM

In this section, we demonstrate that the Hessian spectra of well-trained deep neural networks have a
simple power-law structure and how to theoretically derive the power-law structure. We also show
that the discovered power-law structure provides novel insights and helps understand important
properties of deep learning.

Notations. We denote the training dataset as {(x, y)} = {(xj , yj)}Nj=1 drawn from the data dis-
tribution S, the n model parameters as θ and the loss function over one data sample {(xj , yj)} as
l(θ, (xj , yj)). For simplicity, we further denote the training loss as L(θ) = 1

N

∑N
j=1 l(θ, (xj , yj)).

We write the descending ordered eigenvalues of the Hessian H as {λ1, λ2, . . . , λn} and denote the
spectral density function as p(λ).

2.1 THE POWER-LAW STRUCTURE AND EMPIRICAL EVIDENCE

Recent papers studied the Hessian but failed to reveal its elegant mathematical structure. To better
understand the distribution of the Hessian spectrum, we first visualize the Hessian spectrum of a
well-trained neural network and a randomly initialized neural network by using the Lanczos algorithm
(Meurant & Strakoš, 2006; Yao et al., 2020) to estimate the eigenvalues and spectral densities. In
Figure 1, we display the top 6000 eigenvalues and their corresponding rank order. Both axes are
log-scale. And we surprisingly discover an approximately straight line fits the Hessian spectrum
of the well-trained neural network surprisingly well, except that a small number of outliers (∼10)
slightly deviate from the fitted straight line. To the best of our knowledge, these fitted power-law
Hessian spectra were not empirically discovered or theoretically discussed by previous papers in deep
learning.

The well-fitted straight line means that the observed distribution of the Hessian eigenvalues of trained
neural networks approximately obeys a power-law distribution,

p(λ) = Z−1
c λ−β , (1)

where Zc is the normalization factor. The observed eigenvalues can be considered as n samples
from the power-law distribution p(λ). We may also use a corresponding finite-sample power law for
describing the observed law as

fk =
λk

Tr(H)
= Z−1

d k−
1

β−1 , (2)

where f is the trace-normalized eigenvalue, k is the rank order, the trace Tr(H) =
∑n

k=1 λk, and
Zd =

∑n
k=1 k

− 1
β−1 is the normalization factor for the finite-sample power law. Note that the

finite-sample power law is also called Zipf’s law. This can also be approximately written as

λk = λ1k
−s, (3)

if we let s = 1
β−1 denote the power exponent of Zipf’s law. The empirical power-law spectra suggest

that the estimated β̂ is close to 2 and the estimated ŝ is close to 1.
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2.2 A MAXIMUM-ENTROPY THEORETICAL INTERPRETATION

The maximum entropy principle (Guiasu & Shenitzer, 1985), also named the maximum entropy prior,
states that the probability distribution which best represents the current state of knowledge about a
system at equilibrium is the one with the highest entropy. This principle indicates that if we have no
prior knowledge for suspecting one state over any other, then all states can be considered equally
likely for a system at equilibrium.

We start our theoretical analysis with maximum entropy in deep learning. The logarithmic space
volume is often regarded as a kind of entropy in statistical physics (Visser, 2013). Note that flat
minima have larger space volume reflected by det(H−1). It means maximizing the minima space
volume for better generalization may be regarded as a kind of entropy maximization principle.
Following Visser (2013), we may explicitly write the volume entropy as

Svol = log det(H−1) =

∫
p(λ) log λdλ (4)

and the spectral entropy as

Sp = −
∫

p(λ) log p(λ)dλ, (5)

which is the entropy of the spectral density distribution.

Considering the principle of maximum entropy with the two kinds of entropy, we need to maximize
the total entropy with the spectral density normalization constraint

Stotal = −
∫

p(λ) log p(λ)dλ+ βvol

∫
p(λ) log λdλ− βnorm(

∫
p(λ)dλ− 1), (6)

where Stotal = Sp + βvolSvol and βnorm is a Lagrange multiplier. To find the optimal distribution
p⋆(λ) that maximizes the total entropy, we require the following

∂Stotal

∂p(λ)
= − log p(λ)− βvol log λ− βnorm = 0. (7)

Thus, the optimal distribution p⋆(λ) can be solved as

p⋆(λ) = e−βnormλβvol , (8)

which has an amazingly similar form to Equation (1) with βnorm = logZc and β = −βvol.

We may interpret the power-law structure of the Hessian spectrum from two simple maximum entropy
principles with the spectral density normalization constraint. It roughly means that simple rules can
almost explain the power-law Hessian spectrum in deep learning. The spectra have much simpler
structures than previous work expected.

Interestingly, similar well-fitted power laws have been widely discussed in neuroscience (Stringer
et al., 2019) and biology (Reuveni et al., 2008; Tang & Kaneko, 2020). This is exactly our motivation
to further verify and study the power-law structure of the Hessian spectrum in the context of deep
learning. We verify the elegant power-law structure indeed exists in well-trained deep neural networks
just like bioactive proteins. In contrast, random neural networks have no such a power-law structure,
just like deactivated (denatured or unfolded) proteins. Random neural networks which have no
functional ability on the given task break the power-law spectra similarly to deactivated proteins.

Statistical physics theories of neural networks (Bahri et al., 2020; Torlai & Melko, 2016; Teh et al.,
2003) support that randomly initialized neural networks are far from equilibrium, while well-trained
neural networks are more close to equilibrium. The equilibrium condition may distinguish well-
trained neural networks and randomly initialized neural networks and explains why the power-law
structure breaks without training neural networks. However, we also note that there are still arguable
disputes on the equilibrium of DNNs, which is beyond the main scope of this paper.

2.3 GOODNESS-OF-FIT TEST

Following Alstott et al. (2014), we use Maximum Likelihood Estimation (MLE) (Myung, 2003) for
estimating the parameter β of the fitted power-law distributions and the Kolmogorov-Smirnov Test
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Table 1: The Kolmogorov-Smirnov statistics of the Hessian spectra of LeNets on various datasets.
The estimated power exponent β̂ and slope magnitude ŝ are also displayed.

Dataset Model Training dks dc Power-Law β̂ ± σ ŝ

MNIST LeNet Random 0.0796 0.0430 No
MNIST LeNet SGD 0.00900 0.0430 Yes 1.991± 0.031 1.009

Fashion-MNIST LeNet Random 0.0971 0.0430 No
Fashion-MNIST LeNet SGD 0.0132 0.0430 Yes 1.939± 0.030 1.065

CIFAR-10 LeNet Random 0.0663 0.0430 No
CIFAR-10 LeNet SGD 0.0279 0.0430 Yes 1.968± 0.031 1.033

CIFAR-100 LeNet Random 0.0944 0.0430 No
CIFAR-100 LeNet SGD 0.0315 0.0430 Yes 1.908± 0.029 1.101

Table 2: The Kolmogorov-Smirnov statistics of the Hessian eigengaps on various datasets. The
estimated power exponent β̂ and slope magnitude ŝ are also displayed.

Dataset Model Training dks dc Power-Law β̂ ± σ ŝ

MNIST LeNet SGD 0.0153 0.0430 Yes 1.550± 0.017 1.817
Fashion-MNIST LeNet SGD 0.0240 0.0430 Yes 1.520± 0.017 1.922

(KS Test) (Massey Jr, 1951; Goldstein et al., 2004) for statistically testing the goodness of the fit.
The KS test statistic is the KS distance dks between the hypothesized (fitted) distribution and the
empirical data, which measures the goodness of fitting.

According to the practice of KS Test (Massey Jr, 1951), we first state the power-law hypothesis
that the tested spectrum is power-law. If dks is higher than the critical value dc at the α = 0.05
significance level, the KS test statistically will support (not reject) the power-law hypothesis. The test
results associated with Figure 1 are presented in Table 1. We leave the details and more test results
(e.g., ResNet18) in Appendix A.

When we say that a spectrum is (approximately) power-law in this paper, we mean that the KS test
provides positive evidence to the power-law hypothesis instead of rejecting the power-law hypothesis.
Our KS test results reject the power-law hypothesis for random neural networks and do not reject the
power-law hypothesis for well-trained neural networks. Moreover, when the power-law hypothesis
holds, the KS distance is usually significantly smaller than the critical value dc. For simplicity, the
default α = 0.05 significance level is abbreviated in the following.

Following related work on the Hessian of neural networks (Thomas et al., 2020), our empirical
analysis and statistical tests mainly focused on the top (∼ 1000) large eigenvalues larger than some
minimal cutoff value λcutoff for three reasons. First, focusing on relatively large values is very
reasonable and common in various fields’ power-law studies, as real-world distributions typically
follow power laws only after/large than some cutoff values (Clauset et al., 2009) for ensuring the
convergence of the probability distribution. Second, researchers are usually more interested in
significantly large eigenvalues which contribute more to Hessian, minima sharpness, or generalization
bound (Thomas et al., 2020). Third, empirically estimating a large number of nearly zero eigenvalues
is very inaccurate and expensive.

2.4 ROBUST AND LOW-DIMENSIONAL LEARNING SPACE

Deep learning happens in a low-dimensional space. Gur-Ari et al. (2018) empirically observed
that deep learning (via SGD) mainly happens in a low-dimensional space during the whole training
process. Ghorbani et al. (2019) studied and reported that, throughout the optimization process, large
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Figure 2: The power-law Hessian eigengaps. Model: LeNet. Datasets: MNIST. Subfigure (a)
displayed the eigengaps by original rank indices sorted by eigenvalues. Subfigure (b) displayed the
eigengaps by rank indices re-sorted by eigengaps. We also present the results of Fashion-MNIST in
Figure 12 of Appendix E.

isolated eigenvalues rapidly appear in the spectrum, along with a surprising concentration of the
gradient in the corresponding eigenspace. Xie et al. (2021a) theoretically demonstrated that the
learning space is a low-dimensional subspace spanned by the eigenvectors corresponding to large
eigenvalues of the Hessian, because SGD diffusion mainly happens along these principal components.
Note that the low-dimensional learning space implicitly reduces deep models’ complexity. However,
existing work cannot explain why the low-dimensional learning space is robust during training. In
this paper, robust space means that the space’s dimensions are stable during training.

We try to mathematically answer this question by studying the Hessian eigengaps. We define the i-th
eigengap as δk = λk − λk+1. According to Equation (2), we have δk approximately meeting

δk = Tr(H)Z−1
d (k−

1
β−1 − (k + 1)−

1
β−1 ) = λk

[
1− (

k

k + 1
)s
]
. (9)

Interestingly, it demonstrates that eigengaps also approximately exhibit a power-law distribution
when k is large. Particularly, we will have an approximate power law

δk = Tr(H)Z−1
d (k + 1)−(s+1) (10)

under the approximation s ≈ 1. The power exponent s+1 is larger than the one in Equation (2) by 1.

Empirical analysis of the decaying Hessian eigengaps. The empirical study about the Hessian
eigengaps is missing in previous papers. Our experiments filled this gap. Our experiments show that
top eigengaps dominate others in deep learning similarly to eigenvalues. We further empirically veri-
fied the approximate power-law distribution of the eigengaps in Figure 2. Moreover, the observation
that the power exponent of eigengaps is larger than the power exponent of eigenvalues by ∼ 1 even
fully matches our theoretical result by comparing Equations (2) and (10).

Note that the existence of top large eigenvalues does not necessarily indicate their gaps are also
statistically large. Previous papers revealed that top eigenvalues dominate others but did not reveal
if top eigengaps dominate others in deep learning. Fortunately, we theoretically and empirically
demonstrate that, as rank order increases, both eigenvalues and eigengaps decay, following power-law
distributions. Eigengaps even decay faster than eigenvalues due to the larger magnitude of the power
exponent. We will show that this is the foundation of learning space robustness in deep learning.

Eigengaps Bound Learning Space Robustness. Based on the well-known Davis-Kahan sin(Θ)
Theorem (Davis & Kahan, 1970), we use the angle of the original eigenvector uk and the perturbed
eigenvector ũk, namely ⟨uk, ũk⟩, to measure the robustness of space’s dimensions. We directly
apply Theorem 1, a useful variant of Davis-Kahan Theorem (Yu et al., 2015), to the Hessian in deep
learning, which states that the eigenspace (spanned by eigenvector) robustness can be well bounded
by the corresponding eigengap.
Theorem 1 (Eigengaps Bound Eigenspace Robustness (Yu et al., 2015)). Suppose the true Hessian
is H , the perturbed Hessian is H̃ = H + ϵM , the i-th eigenvector of H is ui , and its corresponding
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Figure 3: The power-law spectra hold across opti-
mizers. Moreover, the slope magnitude ŝ is an in-
dicator of minima sharpness and a predictor of test
performance. Model:LeNet. Dataset: MNIST.
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Figure 4: The slope magnitude ŝ closely corre-
lates to the largest Hessian eigenvalue and the
Hessian trace. Model:LeNet. Dataset: MNIST.

perturbed eigenvector is ũi. Under the conditions of the Davis-Kahan Theorem, we have

sin⟨uk, ũk⟩ ≤
2ϵ∥M∥op

min(λk−1 − λk, λk − λk+1)
,

where ∥M∥op is the operator norm of M .

As we have a small number of large eigengaps corresponding to the large eigenvalues, the correspond-
ing learning space robustness has a tight upper bound. For example, given the power-law eigengaps
in Equation (10), the upper bound of eigenvector robustness can be written as

sup sin⟨uk, ũk⟩ =
2ϵ∥M∥op(k + 1)s+1

λ1
, (11)

which is relatively tight for top dimensions (small k) but becomes very loose for tailed dimensions
(large k). A similar conclusion also holds given Equation (9). As s ≈ 1 suggests, the experimental
results in Figure 2 also well supports that the upper bound of k = 1000 is 104 times the upper
bound of k = 10. This indicates that non-top eigenspace can be highly unstable during training,
because δk can decay to nearly zero for a large k. To the best of our knowledge, we are the first to
demonstrate that the robustness of low-dimensional learning space directly depends on the eigengaps
of the Hessian H .

3 RELATED WORKS

A number of related works analyzed the spectral distribution of the Hessian in deep learning. Penning-
ton & Bahri (2017) introduced an analytical framework from random matrix theory and reported that
the shape of the spectrum depends strongly on the energy and the overparameterization parameter, ϕ,
which measures the ratio of parameters to data points. However, Pennington & Bahri (2017) mainly
evaluated single-hidden-layer networks, which limits the scope of the conclusion. A followup work
(Pennington & Worah, 2018) focused on a single-hidden-layer neural network with Gaussian data
and weights in the limit of infinite width. Obviously, its theoretical and empirical analysis is far from
practical deep models. Jacot et al. (2019) analyzed the limiting spectrum of the Hessian in neural
networks with infinite width. Fort & Scherlis (2019) analyzed the Hessian spectra of initialized neural
networks. Fort & Ganguli (2019) studied the role of Hessian in learning in the low-dimensional
subspace. Papyan (2019) studied the three-level hierarchical structure and outliers in Hessian spectra.
Liao & Mahoney (2021) studied the Hessian spectra of more realistic nonlinear models. While a
number of previous papers studied the Hessian spectrum, they failed to empirically discover the
simple but important power-law structure and missed the theoretical interpretation.

4 EMPIRICAL ANALYSIS AND DISCUSSION

In this section, we conduct extensive experimental results to explore novel behaviors of deep learning
via power-law spectral analysis.

Model: LeNet (LeCun et al., 1998), Fully Connected Networks (FCN), and ResNet18 (He et al., 2016).
Dataset: MNIST (LeCun, 1998), Fashion-MNIST (Xiao et al., 2017), CIFAR-10/100 (Krizhevsky &
Hinton, 2009), and non-image Avila (De Stefano et al., 2018).
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Figure 8: The spectrum in the presence of noisy labels. Left:
MNIST Trainset. Right: MNIST Testset.

1. Optimization and Generalization. Figure 3 discovered that the power-law spectrum consistently
holds for various popular optimizers, such as SGD, Vanilla SGD, Adam (Kingma & Ba, 2015),
AMSGrad (Reddi et al., 2019), AdaBound (Luo et al., 2019), Yogi (Zaheer et al., 2018), RAdam (Liu
et al., 2019), Adai (Xie et al., 2022), PNM (Xie et al., 2021b), Lookahead (Zhang et al., 2019), and
DiffGrad (Dubey et al., 2019), as long as the optimizers can train neural networks well.

We find that the slope magnitude ŝ of the fitted straight line may serve as a nice indicator of minima
sharpness and a predictor of test performance. It is common to measure minima sharpness by the
largest Hessian eigenvalue or the Hessian trace. A smaller ŝ highly correlates to a smaller largest
eigenvalue and a smaller trace in Figure 4. The similar observation holds on CIFAR-10 displayed in
Figures 4 and 15 of Appendix E. Interestingly, we also observe that ŝ ≈ 1 is common in the spectra
of DNNs as well as the spectra of natural proteins.

2. Overparameterization. Figure 5 shows that the power-law spectrum holds well in overparameter-
ized models, but disappears in underparameterized models. Overparameterization is necessary for the
power-law spectrum in deep learning, while proteins are also high-dimensional. It will be interesting
to study the phase transition of overparameterization and underparameterization in future.

3. Batch Size. We discover the three different phases for large-batch training via the curves in Figure
6 and the KS test results in Table 3. To our knowledge, we are the first to report the phases and sharp
phase transition for large-batch training.

First, in Phase I (B ≤ 640), moderately large-batch (B = 512) training indeed finds sharper minima
than small-batch (B = 128) training, while the power-law spectrum still holds well. Power laws may
guarantee that the top eigenvalues of large-batch trained networks are all larger than the corresponding
eigenvalues of small-batch trained networks. The main challenge of large-batch training in Phase I
is consistent with the common belief that large-batch training suffers from sharp minima and, thus,
leads to bad generalization (Hoffer et al., 2017; Keskar et al., 2017). The minima sharpness measured
by ŝ obviously increases with the batch size.

7



Under review as a conference paper at ICLR 2023

Table 3: The Kolmogorov-Smirnov statistics of the Hessian spectra for various batch sizes.

Dataset Model Training Batch Size dks dc Power-Law β̂ ± σ ŝ

MNIST LeNet SGD B = 128 0.00900 0.0430 Yes 1.991± 0.031 1.009
MNIST LeNet SGD B = 512 0.00787 0.0430 Yes 1.894± 0.028 1.119
MNIST LeNet SGD B = 640 0.0125 0.0430 Yes 1.838± 0.027 1.194
MNIST LeNet SGD B = 768 0.278 0.0430 No
MNIST LeNet SGD B = 1024 0.129 0.0430 No
MNIST LeNet SGD B = 16384 0.249 0.0430 No
MNIST LeNet SGD B = 32768 0.201 0.0430 No
MNIST LeNet SGD B = 50000 0.139 0.0430 No
MNIST LeNet SGD B = 60000 0.0936 0.0430 No

Second, in Phase II (768 ≤ B ≤ 50000), the spectrum of large-batch (B = 1024) trained networks
does not exhibit power laws but is visually similar to the spectrum of underparameterized models in
Figure 5. In Phase II, large-batch trained overparameterized models behave like underparameterized
models from a spectral perspective, and, thus, can lead to bad generalization. The phase transition
from Phase I to Phase II occurs in a narrow range of 640 < B < 768, which is visually observable in
Figure 6a and statistically observable in Table 3.

Third, in Phase III (B ∼ 60000), extremely large-batch training (B = 60000) cannot optimize
the training loss well or find the Hessian spectrum similarly to random initialized neural networks.
Phase III indicates that, sometimes, bad convergence rather than sharp minima can become the main
performance bottleneck in large-batch training (Xie et al., 2020), when the batch size is too large.

4. The size of training data. We evaluate the Hessian spectra over various training data sizes in
Figure 7. The model trained with very limited training data finds minima with many sharp directions
similarly to underparameterized models.

5. Overfitting and Noisy Labels. As DNNs overfit noisy labels easily, previous papers choose
learning with noisy labels (Han et al., 2020) as an important setting for evaluating overfitting and
generalization. Figure 8 shows that overfitting label noise makes the Hessian spectra less power-law
on both the corrupted training dataset and the clean test dataset. In contrast, in the absence of noisy
labels, the power-law spectra exist on both the training dataset and the test dataset.

6. Supplementary Results. In Appendix E, we further discussed various interesting empirical results,
including modern network architecture (ResNet18), Random Labels, and Avila (a non-image dataset).

7. A Spectral Parallel of Proteins and DNNs. In this part, we make a pioneering discussion on
a potential bridge between proteins and DNNs from a spectral perspective. This may connect two
lines of research and draw more attention from researchers with interdisciplinary backgrounds (e.g.,
protein science, biophysics, etc.).

As the basic building blocks of biological intelligence, proteins work as the main executors of various
vital functions, including catalysis (enzyme), transportation (carrier proteins), defense (antibodies),
and so on. The polypeptide chain made up of amino acid residues can fold into its native (energy-
minimum) three-dimensional structure from a random coil, which is comparable to the training of
DNNs. It is worth noting that, in a long timescale, the native structure (network parameter) r⃗0 has
been gradually shaped by evolution. Due to random mutations, the native structure (energy-minimum
point) and corresponding elastic network have varied. Thus, protein evolution can be recognized as
an optimization process of the network parameters (Tang & Kaneko, 2021). With the second-order
Taylor approximation near a minimum, for a given native structure r⃗0, the potential energy can be
calculated as:

E(r⃗0) = E(r⃗⋆) +
1

2
(r⃗0 − r⃗⋆)⊤H(r⃗⋆)(r⃗0 − r⃗⋆), (12)

in which r⃗⋆ denote the reference structure, a selected ancestral structure in the evolution, and H(r⃗⋆)
is its corresponding Hessian. In this way, the evolution of a protein becomes comparable to the
training of artificial neural networks.
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(a) (b)

Figure 9: (a) The cartoon illustration of human deoxyhemoglobin tetramer (PDB code: 4HHB). (b)
The vibrational spectrum of the protein’s elastic network. The estimated power exponent ŝ = 0.992

(β̂ = 2.008± 0.032) is very close to the estimated power exponent in deep learning.

Table 4: The estimated ŝ for various sized proteins.

SLOPE/SIZE 300 ≤ 3NAA ≤ 1000 1000 ≤ 3NAA ≤ 3000 3000 ≤ 3NAA ≤ 6000

ŝ 1.050± 0.175 1.041± 0.119 1.002± 0.084

We use the elastic network model (ENM) of the proteins (Atilgan et al., 2001; Bahar et al., 2010)
to calculate the vibrational spectra of 9166 kinds of protein molecules from the Protein Data Bank
(PDB) (Berman et al., 2000). To our knowledge, this is the first large-scale spectral study via ENM
for proteins. We take a human protein assembly (shown in Figure 9a) as an example to obtain the
vibration spectra. The result is shown in Figure 9b.

Surprisingly, we observed ŝ ≈ 1 for the protein in Figure 9 and in the spectra of total 9166 kinds
of protein molecules. Each of the protein molecule has 100 ≤ NAA ≤ 2000 amino acid residues.
All of the protein spectra are statistically supported by the power-law KS tests with the estimated
mean(ŝ) = 1.045 (mean(β̂) = 1.975). The approximation ŝ ≈ 1 also holds better for larger models
(namely, proteins) in terms of the mean and the standard error, shown in Table 4. This may indicate
some universal underlying mechanisms for DNNs and proteins.

A parallel maximum-entropy theory has been proposed very recently for understanding the native
structure and evolution of proteins in the statistical physics community (Tang et al., 2020). Given
the essential importance of protein science, our contribution to the similar power-law behaviors and
theoretical interpretation may suggest a novel bridge between protein evolution and training of DNNs.
In Appendix C and D, we leave more formal discussion on the spectral similarity of protein and deep
learning and present more technical details.

5 CONCLUSION

In this paper, we report the power-law spectrum in deep learning. Inspired by statistical physics
(Visser, 2013) and protein theory (Tang et al., 2020), we successfully formulate a novel maximum-
entropy interpretation and explain why the learning space may be low dimensional and robust. The
power-law spectra provide us with a powerful tool to understand and analyze deep learning. We
empirically demonstrate multiple novel behaviors of deep learning, particularly deep loss landscape,
beyond previous studies. Particularly, those DNNs that do not exhibit power-law decaying Hessian
eigenvalues after training usually have a large number of similarly large Hessian eigenvalues and
cannot generalize well. Moreover, our theoretical interpretation and large-scale empirical study on
proteins suggest a likely spectral bridge to deep learning. We believe our work will inspire more
theories and empirical advancements in deep learning via power-law spectral analysis in the future.
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Table 5: The Table of Kolmogorov-Smirnov Test Critical Values (Significance Level), which was first
reported in Massey Jr (1951). If the KS distance dks is lower than a critical value, such as 1.36√

K
, we

would reject the null hypothesis and accept the power-law hypothesis at the α = 0.05 significance
level. Note that K is the number of tested eigenvalues.

Sample size α = 0.2 α = 0.15 α = 0.1 α = 0.05 α = 0.01

K > 35 1.07√
k

1.14√
k

1.22√
k

1.36√
k

1.63√
k

K = 50 0.151 0.161 0.173 0.192 0.231
K = 1000 0.0338 0.0360 0.0386 0.0430 0.0515

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods
for nonconvex optimization. In Advances in neural information processing systems, pp. 9793–9803,
2018.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
forward, 1 step back. Advances in Neural Information Processing Systems, 32:9597–9608, 2019.

Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan Ramamurthy, and Xue Lin. Bridging
mode connectivity in loss landscapes and adversarial robustness. In International Conference on
Learning Representations, 2019.

A KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST

In this section, we introduce how to conduct the Kolmogorov-Smirnov Goodness-of-Fit Test for the
self-containedness purpose.

As we mentioned above, our work used Maximum Likelihood Estimation (MLE) (Myung, 2003;
Clauset et al., 2009) for estimating the parameter β of the fitted power-law distributions and the
Kolmogorov-Smirnov Test (KS Test) (Massey Jr, 1951; Goldstein et al., 2004) for statistically testing
the goodness of the fit. The KS test statistic is the KS distance dks between the hypothesized (fitted)
distribution and the empirical data, which measures the goodness of fit. Mathematically, the KS
distance is defined as

dks = sup
λ

|F ⋆(λ)− F̂ (λ)|, (13)

where F ⋆(λ) is the hypothesized cumulative distribution function and F̂ (λ) is the empirical cumula-
tive distribution function based on the sampled data (Goldstein et al., 2004). The estimated power
exponent via MLE (Clauset et al., 2009) can be written as

β̂ = 1 +K

[
K∑
i=1

ln

(
λi

λcutoff

)]−1

, (14)

where K is the number of tested samples and we set λcutoff = λk. We note that the Powerlaw library
(Alstott et al., 2014) provides a convenient tool to compute the KS distance, dks, and estimate the
power exponent.

According to the practice of KS Test (Massey Jr, 1951), we first state the power-law hypothesis
that the tested spectrum is power-law. If dks is higher than the critical value dc at the α = 0.05
significance level, the KS test statistically will support the power-law hypothesis (we cannot reject
the power-law hypothesis). We display the critical values in Table 5.

We conducted the KS tests for all of our studied spectra. We display the KS test statistics and the
estimated power exponents β̂ with standard errors σ as well as the corresponding ŝ in Tables 6, 7, 8, 9,
10,and 11. In the tables, we take the base hyperparameter setting in Appendix B as the default setting.
For better visualization, we color accepting the power-law hypothesis in blue and color rejecting the
power-law hypothesis (and the cause) in red.
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Table 6: The Kolmogorov-Smirnov statistics of LeNet on MNIST and Fashion MNIST. The estimated
power exponent β̂ and slope magnitude ŝ are also displayed.

Dataset Model Training Sample size Setting dks dc Power-Law β̂ ± σ ŝ

MNIST LeNet Random 1000 - 0.0796 0.0430 No
MNIST LeNet SGD 1000 - 0.00900 0.0430 Yes 1.991± 0.031 1.009
MNIST LeNet Vanilla SGD 1000 - 0.0103 0.0430 Yes 1.914± 0.029 1.094
MNIST LeNet Adam 1000 - 0.00962 0.0430 Yes 1.873± 0.028 1.145
MNIST LeNet AMSGrad 1000 - 0.00987 0.0430 Yes 1.845± 0.027 1.184
MNIST LeNet AdaBound 1000 - 0.00889 0.0430 Yes 1.904± 0.029 1.106
MNIST LeNet Yogi 1000 - 0.00966 0.0430 Yes 1.834± 0.026 1.198
MNIST LeNet RAdam 1000 - 0.0164 0.0430 Yes 1.889± 0.028 1.125
MNIST LeNet Adai 1000 - 0.0101 0.0430 Yes 1.892± 0.028 1.122
MNIST LeNet PNM 1000 - 0.0127 0.0430 Yes 1.846± 0.027 1.181
MNIST LeNet Lookahead 1000 - 0.0101 0.0430 Yes 1.982± 0.031 1.018
MNIST LeNet DiffGrad 1000 - 0.0105 0.0430 Yes 1.834± 0.026 1.198

MNIST LeNet SGD 1000 B = 128 0.00900 0.0430 Yes 1.991± 0.031 1.009
MNIST LeNet SGD 1000 B = 512 0.00787 0.0430 Yes 1.894± 0.028 1.119
MNIST LeNet SGD 1000 B = 640 0.0125 0.0430 Yes 1.838± 0.027 1.194
MNIST LeNet SGD 1000 B = 768 0.278 0.0430 No
MNIST LeNet SGD 1000 B = 1024 0.129 0.0430 No
MNIST LeNet SGD 1000 B = 8192 0.240 0.0430 No
MNIST LeNet SGD 1000 B = 16384 0.249 0.0430 No
MNIST LeNet SGD 1000 B = 32768 0.201 0.0430 No
MNIST LeNet SGD 1000 B = 50000 0.139 0.0430 No
MNIST LeNet SGD 1000 B = 60000 0.0936 0.0430 No

MNIST LeNet SGD 1000 N = 600 0.205 0.0430 No
MNIST LeNet SGD 1000 N = 800 0.0399 0.0430 Yes 1.995± 0.031 1.004
MNIST LeNet SGD 1000 N = 1000 0.0198 0.0430 Yes 2.128± 0.036 0.886
MNIST LeNet SGD 1000 N = 3000 0.0159 0.0430 Yes 2.091± 0.034 0.917
MNIST LeNet SGD 1000 N = 6000 0.0151 0.0430 Yes 2.001± 0.032 0.999

MNIST LeNet SGD 1000 40% Label Noise 0.180 0.0430 No
MNIST LeNet SGD 1000 80% Label Noise 0.157 0.0430 No
MNIST LeNet SGD 1000 Random Labels 0.0482 0.0430 No

Fashion-MNIST LeNet Random 1000 - 0.0971 0.0430 No
Fashion-MNIST LeNet SGD 1000 - 0.0132 0.0430 Yes 1.939± 0.030 1.065

MNIST LeNet SGD 1000 Eigengap 0.0153 0.0430 Yes 1.550± 0.017 1.817
Fashion-MNIST LeNet SGD 1000 Eigengap 0.0240 0.0430 Yes 1.520± 0.017 1.922

Table 7: The Kolmogorov-Smirnov statistics of LeNet on CIFAR-10 and CIFAR-100. The estimated
power exponent β̂ and slope magnitude ŝ are also displayed.

Dataset Model Training Sample size Setting dks dc Power-Law β̂ ± σ ŝ

CIFAR-10 LeNet Random 1000 - 0.0663 0.0430 No
CIFAR-10 LeNet SGD 1000 - 0.0279 0.0430 Yes 1.968± 0.031 1.033
CIFAR-10 LeNet Vanilla SGD 1000 - 0.0276 0.0430 Yes 1.935± 0.030 1.069
CIFAR-10 LeNet Adam 1000 - 0.0269 0.0430 Yes 1.806± 0.025 1.241
CIFAR-10 LeNet AMSGrad 1000 - 0.0232 0.0430 Yes 1.786± 0.025 1.271
CIFAR-10 LeNet AdaBound 1000 - 0.0297 0.0430 Yes 1.901± 0.028 1.110
CIFAR-10 LeNet Yogi 1000 - 0.0184 0.0430 Yes 1.806± 0.025 1.241
CIFAR-10 LeNet RAdam 1000 - 0.0163 0.0430 Yes 1.733± 0.023 1.363
CIFAR-10 LeNet Adai 1000 - 0.0310 0.0430 Yes 1.918± 0.029 1.090
CIFAR-10 LeNet PNM 1000 - 0.0347 0.0430 Yes 1.911± 0.029 1.098
CIFAR-10 LeNet Lookahead 1000 - 0.0358 0.0430 Yes 1.964± 0.030 1.037
CIFAR-10 LeNet DiffGrad 1000 - 0.0303 0.0430 Yes 1.803± 0.024 1.236

CIFAR-100 LeNet Random 1000 - 0.0944 0.0430 No
CIFAR-100 LeNet SGD 1000 - 0.0315 0.0430 Yes 1.908± 0.029 1.101
CIFAR-100 LeNet Vanilla SGD 1000 - 0.0379 0.0430 Yes 1.903± 0.029 1.108

CIFAR-100 LeNet SGD 1000 Evaluated on CIFAR-10 0.0306 0.0430 Yes 1.913± 0.029 1.095

B EXPERIMENTAL SETTINGS

Computational environment. The experiments are conducted on a computing cluster with NVIDIA®

V100 GPUs and Intel® Xeon® CPUs.
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Table 8: The Kolmogorov-Smirnov statistics of FCN. The estimated power exponent β̂ and slope
magnitude ŝ are also displayed.

Dataset Model Training Sample size Setting dks dc Power-Law β̂ ± σ ŝ

Avila 2Layer-FCN SGD 50 - 0.0683 0.176 Yes 1.604± 0.085 1.656

MNIST 1Layer-FCN Random 1000 - 0.185 0.0430 No
MNIST 1Layer-FCN SGD 1000 - 0.241 0.0430 No
MNIST 2Layer-FCN Random 1000 - 0.129 0.0430 No
MNIST 2Layer-FCN SGD 1000 - 0.0112 0.0430 Yes 2.209± 0.038 0.827
MNIST 4Layer-FCN Random 1000 - 0.0628 0.0430 No
MNIST 4Layer-FCN SGD 1000 - 0.0141 0.0430 Yes 2.201± 0.038 0.833

MNIST 2Layer-FCN SGD 1000 Width=10 0.149 0.0430 No
MNIST 2Layer-FCN SGD 1000 Width=20 0.185 0.0430 No
MNIST 2Layer-FCN SGD 1000 Width=30 0.0656 0.0430 No
MNIST 2Layer-FCN SGD 1000 Width=50 0.0187 0.0430 Yes 2.138± 0.028 0.879
MNIST 2Layer-FCN SGD 1000 Width=70 0.0376 0.0430 Yes 2.271± 0.030 0.787
MNIST 2Layer-FCN SGD 1000 Width=100 0.0112 0.0430 Yes 2.209± 0.038 0.827

Table 9: The Kolmogorov-Smirnov statistics of ResNet18. The estimated power exponent β̂ and
slope magnitude ŝ are also displayed.

Dataset Model Training Sample size Setting dks dc Power-Law β̂ ± σ ŝ

CIFAR-10 ResNet18 Random 50 - 0.334 0.176 No
CIFAR-10 ResNet18 SGD 50 - 0.0803 0.176 Yes 2.146± 0.162 0.873
CIFAR-10 ResNet18 Vanilla SGD 50 - 0.0891 0.176 Yes 2.193± 0.169 0.838
CIFAR-10 ResNet18 Adam 50 - 0.0478 0.176 Yes 2.062± 0.149 0.950
CIFAR-10 ResNet18 AMSGrad 50 - 0.0542 0.176 Yes 2.041± 0.147 0.961
CIFAR-10 ResNet18 AdaBound 50 - 0.0588 0.176 Yes 2.029± 0.146 0.971
CIFAR-10 ResNet18 Yogi 50 - 0.116 0.176 Yes 1.915± 0.129 1.092
CIFAR-10 ResNet18 RAdam 50 - 0.168 0.176 Yes 1.794± 0.1112 1.259
CIFAR-10 ResNet18 Adai 50 - 0.103 0.176 Yes 2.183± 0.167 0.845
CIFAR-10 ResNet18 PNM 50 - 0.138 0.176 Yes 2.132± 0.160 0.884
CIFAR-10 ResNet18 Lookahead 50 - 0.110 0.176 Yes 2.098± 0.155 0.911
CIFAR-10 ResNet18 DiffGrad 50 - 0.068 0.176 Yes 2.055± 0.149 0.948

CIFAR-10 ResNet18 SGD 50 B = 512 0.0561 0.176 Yes 2.146± 0.151 0.936
CIFAR-10 ResNet18 SGD 50 B = 1024 0.0647 0.176 Yes 2.076± 0.152 0.929
CIFAR-10 ResNet18 SGD 50 B = 1152 0.0598 0.176 Yes 2.060± 0.150 0.944
CIFAR-10 ResNet18 SGD 50 B = 1280 0.331 0.176 No
CIFAR-10 ResNet18 SGD 50 B = 2048 0.334 0.176 No
CIFAR-10 ResNet18 SGD 50 B = 4096 0.334 0.176 No
CIFAR-10 ResNet18 SGD 50 B = 16384 0.343 0.176 No

CIFAR-100 ResNet18 Random 50 - 0.373 0.176 No
CIFAR-100 ResNet18 SGD 50 - 0.108 0.176 Yes 2.299± 0.184 0.770

B.1 MODELS, DATASETS, AND OPTIMIZERS

Models: LeNet (LeCun et al., 1998), Fully Connected Networks (FCN), and ResNet18 (He et al.,
2016). Particularly, we used one-layer FCN, two-layer FCN, four-layer FCN, which have 100 neurons
for each hidden layer and use ReLu activations.

Datasets: MNIST (LeCun, 1998), Fashion-MNIST (Xiao et al., 2017), CIFAR-10/100 (Krizhevsky
& Hinton, 2009), and non-image Avila (De Stefano et al., 2018).

Optimizers: SGD, Vanilla SGD, Adam (Kingma & Ba, 2015), AMSGrad (Reddi et al., 2019),
AdaBound (Luo et al., 2019), Yogi (Zaheer et al., 2018), RAdam (Liu et al., 2019), Adai (Xie et al.,
2022), PNM (Xie et al., 2021b), Lookahead (Zhang et al., 2019), and DiffGrad (Dubey et al., 2019).

B.2 IMAGE CLASSIFICATION ON MNIST AND FASHION-MNIST

Data Preprocessing For MNIST and Fashion-MNIST: We perform the common per-pixel zero-
mean unit-variance normalization.
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Table 10: The Kolmogorov-Smirnov statistics of LNN. The estimated power exponent β̂ and slope
magnitude ŝ are also displayed.

Dataset Model Training Sample size Setting dks dc Power-Law β̂ ± σ ŝ

MNIST 4Layer-LNN SGD 1000 - 0.122 0.0430 No
MNIST 4Layer-LNN SGD 1000 w/ BatchNorm 0.0411 0.0430 Yes 2.190± 0.037 0.840
MNIST 4Layer-LNN SGD 1000 w/ ReLu 0.0127 0.0430 Yes 2.054± 0.033 0.949

Table 11: The Kolmogorov-Smirnov Test Statistics of Protein.

Protein Sample size dks dc Power-Law β̂ ± σ ŝ

4HHB 1000 0.0145 0.0430 Yes 2.008± 0.032 0.992

Hyperparameter Settings: We select the optimal learning rate for each experiment from
{0.0001, 0.001, 0.01, 0.1, 1, 10} for SGD and use the default learning rate for adaptive gradient
methods. In the experiments on MNIST and Fashion-MNIST: η = 0.1 for SGD, Vanilla SGD, Adai,
PNM, and Lookahead; η = 0.1 for Vanilla SGD;η = 0.001 for Adam, AMSGrad, AdaBound, Yogi,
RAdam, and DiffGrad.

We train neural networks for 50 epochs on MNIST and 200 epochs on Fashion-MNIST. For the
learning rate schedule, the learning rate is divided by 10 at the epoch of 40% and 80%. The batch
size is set to 128 for MNIST and Fashion-MNIST, unless we specify it otherwise.

The strength of weight decay defaults to λ = 0.0005 as the baseline for all optimizers unless we
specify it otherwise.

We set the momentum hyperparameter β1 = 0.9 for SGD and adaptive gradient methods which
involve in Momentum. As for other optimizer hyperparameters, we apply the default settings directly.

B.3 IMAGE CLASSIFICATION ON CIFAR-10 AND CIFAR-100

Data Preprocessing For CIFAR-10 and CIFAR-100: We perform the common per-pixel zero-mean
unit-variance normalization, horizontal random flip, and 32× 32 random crops after padding with 4
pixels on each side.

Hyperparameter Settings: We select the optimal learning rate for each experiment from
{0.0001, 0.001, 0.01, 0.1, 1, 10} for SGD and use the default learning rate for adaptive gradient
methods. In the experiments on CIFAF-10 and CIFAR-100: η = 1 for Vanilla SGD, Adai, and PNM;
η = 0.1 for SGD (with Momentum) and Lookahead; η = 0.001 for Adam, AMSGrad, AdaBound,
Yogi, RAdam, and DiffGrad. For the learning rate schedule, the learning rate is divided by 10 at the
epoch of {80, 160} for CIFAR-10 and {100, 150} for CIFAR-100, respectively. The batch size is set
to 128 for both CIFAR-10 and CIFAR-100, unless we specify it otherwise.

The strength of weight decay is default to λ = 0.0005 as the baseline for all optimizers unless we
specify it otherwise. Recent work Xie et al. (2020) found that popular optimizers with λ = 0.0005
often yields test results than λ = 0.0001 on CIFAR-10 and CIFAR-100.

We set the momentum hyperparameter β1 = 0.9 for SGD with Momentum. As for other optimizer
hyperparameters, we apply the default hyperparameter settings directly.

B.4 LEARNING WITH NOISY LABELS

We trained LeNet via SGD (with Momentum) on corrupted MNIST with various (asymmetric) label
noise. We followed the setting of Han et al. (2018) for generating noisy labels for MNIST. The
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symmetric label noise is generated by flipping every label to other labels with uniform flip rates
{40%, 80%}. In this paper, when we talk about label noise, we mean symmetric label noise.

We also randomly shuffle the labels of MNIST to produce MNIST with random labels, which has
little knowledge behind the pairs of instances and labels.

C A BRIDGE TO PROTEIN SCIENCE

In this section, we discuss recent advancements in protein science and how it inspired our discussions
on deep learning.

As the basic building blocks of biological intelligence, proteins work as the main executors of various
vital functions, including catalysis (enzyme), transportation (carrier proteins), defense (antibodies),
and so on. The polypeptide chain made up of amino acid residues can fold into its native (energy-
minimum) three-dimensional structure from a random coil. For most proteins, their “correct” native
structures are essential to their functions. These structures (denote as r⃗0) are not static. In contrast,
they can perform their intrinsic dynamics due to the perturbations from the milieu. When external
thermal noise act as force ξ⃗, the protein’s deformation ∆r⃗ = r⃗− r⃗0 can be estimated as: ∆r⃗ = H−1ξ⃗,
where H is the elasticity matrix, i.e., the Hessian of the potential energy landscape. Such a framework
is known as the elastic network model of the proteins (Atilgan et al., 2001; Bahar et al., 2010). When
take the external thermal noises ξ⃗ as the input variable, the deformation ∆r⃗ can be recognized as the
output of a trained network, and the native structure r⃗0 encoding the elastic network corresponds to
the parameters of the network.

Proteins as accurate and robust learners. It is worth noting that, in a long timescale, the native
structure (network parameter) r⃗0 has been gradually shaped by evolution. Due to random mutations,
the native structure (energy-minimum point) and corresponding elastic network have varied. Thus,
protein evolution can be recognized as an optimization process of the network parameters (Tang &
Kaneko, 2021). With the second-order Taylor approximation near a minimum, for a given native
structure r⃗0, the potential energy can be calculated as:

E(r⃗0) = E(r⃗⋆) +
1

2
(r⃗0 − r⃗⋆)⊤H(r⃗⋆)(r⃗0 − r⃗⋆), (15)

in which r⃗⋆ denote the reference structure, a selected ancestral structure in the evolution, and H(r⃗⋆)
is its corresponding Hessian. In this way, the evolution of a protein becomes comparable to the
training of artificial neural networks. The potential energy E corresponds to the loss function L,
while native structure r⃗0 corresponds to the model parameters θ.

(1) Accuracy. Proteins can respond with high susceptibility when perturbed by the environment, and
some can undergo significant structural changes (Tang et al., 2017). The noise-induced motions
are highly anisotropic, with amino acid residues moving collectively in specific directions. These
movements are usually related to the protein functions (Bahar et al., 2010). It is analogous to the
model’s generalization ability which describes how a model (protein) can deal with new data (different
external noises) and make accurate predictions (specific functional dynamics).

(2) Robustness. In protein evolution, it is the functions of proteins that act as constraints, so essential
functions must withstand most mutations (Guo et al., 2004; Tang & Kaneko, 2021). It is observed that,
when the environment is stable, organisms tend to evolve in a convergent direction (Sato & Kaneko,
2020; Sakata & Kaneko, 2020). Upon recognizing the protein as a learner, it is remarkable that the
gradients (direction of evolution) on the loss landscape remain relatively stable. During evolution,
most mutations do not affect the direction of the principal-component vectors (or the low-dimensional
subspaces spanned by these vectors) related to the functions of the protein. This idea aligns with the
discussions on the eigengaps in previous sections.

Power law and criticality. We take a protein assembly (shown in Figure 9a) as an example to
conduct normal mode analysis and obtain the vibration spectrum. This calculation is based on the
elastic network model (See Appendix D). The result is shown in Figure 9b. We evaluate 9166 kinds
of proteins in Section 4. While recent studies (Reuveni et al., 2008; Tang & Kaneko, 2020; Tang et al.,
2020) implicitly or explicitly suggested that the vibration spectrum of proteins exhibits a power-law
distribution, we are the first to conduct large-scale statistical tests on the power-law spectra for
protein. The power-law behaviors suggest the parallels between protein evolution and deep learning.
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Interestingly, similar power laws were observed in various kinds of other natural systems, including
brains, bird flocks, insect swarms, and so on (Munoz, 2018). In statistical physics, power laws act as
the hallmark of “critical point” between ordered (robustness) and disordered (plasticity) states.

A Large-Scale Study on 9166 kinds of Proteins. Surprisingly, we observed ŝ ≈ 1 for the protein
in Figure 9 and in the spectra of total 9166 kinds of protein molecules from the Protein Data Bank
(PDB) (Berman et al., 2000). Each of the protein molecule has 100 ≤ NAA ≤ 2000 amino acid
residues. All of the protein spectra successfully passed the power-law KS tests with mean(ŝ) = 1.045

(mean(β̂) = 1.975). The approximation ŝ ≈ 1 holds even better for large proteins in terms of the
mean and the standard error, shown in Table 4. We conjecture there may exist some universal
underlying mechanisms for deep learning and protein.

D THE SPECTRAL ANALYSIS OF PROTEINS

The elastic network models are widely applied to predict and characterize the slow global dynamics
of a wide range of proteins and bio-machineries (Bahar et al., 2010; Tang & Kaneko, 2020). By
describing the proteins as mass-and-spring networks, the elastic network models can capture the
functional motions of proteins with minimal computational resources by focusing on the movement
of proteins nearby the native structure. The movements of the proteins are described as the linear
vibrations around the energy minimum of the energy landscape. It is worth noting that the model is
not applicable for the dynamics far from the energy minimum, such as protein folding and unfolding
problems.

D.1 ANISOTROPIC NETWORK MODEL (ANM)

In this work, we employ a typical form of the ENM, the Anisotropic Network Model (ANM), to
calculate the vibrational spectrum of proteins (Atilgan et al., 2001; Bahar et al., 2010). Previous
research has shown that not only can ANM accurately reproduce the movements of residues as
determined by experiments, but the model also fits well with the data on protein structure evolution
(Tang & Kaneko, 2021).

To introduce the model settings of ANM, let us first consider the sub-system consisting of two
nodes (amino acid residues) i and j connected with a harmonic spring. The coordinates of the
two nodes are r⃗i = [xi, yi, zi] and r⃗j = [xj , yj , zj ], respectively; and their native-state coordinates
are r⃗0i = [x0

i , y
0
i , z

0
i ] and r⃗0j = [x0

j , y
0
j , z

0
j ]. When the equilibrium distance between them is given

by s0ij = |r⃗0i − r⃗0j | =
√
(x0

i − x0
j )

2 + (y0i − y0j )
2 + (z0i − z0j )

2, and the instantaneous distance is

given by sij = |r⃗i − r⃗j | =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2, then the potential of such a

sub-system can be given as:

Vij =
κ

2

(
sij − s0ij

)2
, (16)

where κ denotes the spring constant. Then, around the energy minimum, the second-order derivative
of the Vij with respect to r⃗i can be given as:

∂2Vij

∂x2
i

=
∂2Vij

∂x2
j

=
κ

s2ij
(xj − xi)

2, (17)

∂2Vij

∂xi∂yj
=

κ

s2ij
(xj − xi)(yj − yi). (18)

Therefore, the corresponding Hessian matrix entries Hij can be given as:

Hij = − κ

s2ij

[
xj − xi

yj − yi
zj − zi

]
[xj − xi, yj − yi, zj − zi]. (19)

In this way, the 3NAA × 3NAA Hessian H can be recognized as the direct sum of the 3× 3 Hessian
matrix Hij and NAA ×NAA elasticity matrix Γ. That is, the 3NAA × 3NAA Hessian matrix H can
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be recognized as an NAA ×NAA matrix with entries of 3× 3 matrices

Hij = −κ · Γij

s2ij

[
xj − xi

yj − yi
zj − zi

]
[xj − xi, yj − yi, zj − zi]. (20)

Here, matrix Γ is defined according to the residue-residue contact topology of the native structure. In
ANM, only spatial-neighboring residues are considered to be connected. For a pair of amino acid
residues (i and j), if their mutual distance rij ≤ rC, then Γij = −1; if rij > rC, then Γij = 0; and
for the diagonal elements, Γii = −

∑
j ̸=i Γij = −ki, where ki denote the degree of node i. Note

that in a graph theory perspective, matrix Γ is also known as the graph Laplacian (or the Kirchhoff
matrix) of the residue-residue contact network. In ANM with homogenous contact strength (κ = 1),
the only control parameter is the cutoff distance rC. In the calculation, we take rC = 9.0 Å.

For a protein consisting of NAA amino acid residues, the total degrees of freedom is 3NAA. Among
them, there are 6 degrees of freedom related to the rigid body motion, say, three-dimensional
translational motions and three-dimensional rotation. Therefore, to fully describe the structural
fluctuations of a protein, one need in total n = 3NAA − 6 parameters.

D.2 FROM ANM TO SGD: THERMAL NOISE VS. STRUCTURED NOISE

Although the energy landscape around a protein’s native state is similar to the loss landscape of a
deep neural network, the corresponding noises are entirely different. Protein dynamics are driven by
thermal noises, and deep learning is driven by structured noises. Due to these two types of noise, the
Hessian matrix and the covariance matrix have different relationships.

For a protein molecule driven by the thermal noises, according to the Boltzmann distribution, the
probability of a structure ∆r⃗ is given as:

p(∆r⃗) ∼ e−
1
2

∑NAA
i,j=1 ∆r⃗i·Hij ·∆r⃗j , (21)

in which ∆r⃗i = r⃗i−r⃗0i and ∆r⃗j = r⃗j−r⃗0j are three-dimensional vectors describing the displacements
of residues i and j. It is worth noting that p(∆r⃗) is a multivariate Gaussian distribution with covariance
matrix C ∼ H−1, where Cij = ⟨∆r⃗i ·∆r⃗j⟩.
However, as discussed in the main text, for SGD, the covariance matrix is proportional to the Hessian
matrix: Csgd(θ) ∼ H(θ). Due to this difference, it is the spectrum of the inverse (or pseudoinverse)
of Hessian H−1 that should be applied to compare with the Hessian matrices in deep learning.

D.3 SIMILARITIES IN HESSIAN SPECTRA

By diagonalizing the Hessian matrix H , we can obtain all the nonzero eigenvalues and the correspond-
ing eigenvectors describing the motions of the protein, i. e., H = V Λ̃V ⊤, in which the eigenvalues
Λ̃ = diag[λ̃1, λ̃2, · · · λ̃n] (λ̃1 ≤ λ̃2,≤ · · · ≤ λ̃n) and eigenvectors V = [v1, v2, · · · vn]⊤.

Then, for the inverse Hessian H−1, its nonzero eigenvalues σi = 1/λ̃i, and σ1 ≥ σ2 ≥ · · · ≥ σn.
In Fig. 9b, as an example, the rank-size distribution of σi vs i is plotted. Here, we normalize
all the eigenvalues as σ̂i = σi/σ1. The estimated power exponent (slope magnitude) ŝ = 0.992

(corresponding to β̂ = 2.008± 0.032). This result clearly demonstrates the similarity between the
vibrational spectrum of proteins and the Hessian spectrum in deep learning.

D.4 PROTEIN DATASET

In this work, we evaluated the vibrational spectra of 9166 kinds of protein molecules from the
Protein Data Bank (PDB) (Berman et al., 2000). The studied proteins have high-resolution and clean
structures, are large enough, and have enough diversity. More precisely, the structures of these proteins
were all determined via high-resolution X-ray diffraction (≤ 2.0Å) without DNA, RNA, or hybrid
structures involved. Their chain lengths (number of amino acid residues) are 100 ≤ NAA ≤ 2000.
Their spectra have no zero eigenvalues except for the six modes corresponding to the translational
and rotational motions. Every two proteins share less than 30% sequence similarity. We choose the
λcutoff as the top 1

10 largest eigenvalue in each vibrational spectrum for corresponding proteins.
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Figure 10: The KS statistics of the spectra of 9166 kinds of protein molecules.

Table 12: The validity of the approximation s ≈ 1 positively correlates with the sizes (chain lengths)
of proteins.

Estimated Parameter 300 ≤ 3NAA ≤ 1000 1000 ≤ 3NAA ≤ 3000 3000 ≤ 3NAA ≤ 6000 300 ≤ 3NAA ≤ 6000

β̂ 1.976± 0.143 1.973± 0.103 2.004± 0.080 1.975± 0.128

ŝ 1.050± 0.175 1.041± 0.119 1.002± 0.084 1.045± 0.155

dks/dc 0.304 0.292 0.317 0.300

We present the KS statistics of the protein spectra in Figure 10. Note that, if dks

dc
< 1, we would

reject the null hypothesis and accept the power-law hypothesis. All of the protein spectra successfully
passed the power-law KS tests with mean(ŝ) = 1.045 (mean(β̂) = 1.975± 0.128). We also notice
that ŝ ≈ 1 holds even better for larger proteins, which is supported by Table 12.

E SUPPLEMENTARY EMPIRICAL RESULTS

We compared the spectrum computed via Power Iteration Algorithm and Lanczos Algorithm in Figure
11. It shows the spectrum via Power Iteration Algorithm is highly consistent with the spectrum via
Lanczos Algorithm. It also demonstrates that the power-law spectrum is caused by the properties of
deep learning rather than the stochasticity of Lanczos Algorithm.

We presented the power-law eigengaps on Fashion-MNIST in Figure 12. It shows that the power-law
eigengaps on Fashion-MNIST are highly consistent with the power-law eigengaps on MNIST.

We presented the power-law spectrum of the covariance matrix of stochastic gradient noise of FCN
on MNIST in Figure 19. As the inverses of the power-law variables are power-law, the covariance
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Figure 11: The spectrum via Power Iteration Algorithm is highly consistent with the spectrum via
Lanczos Algorithm. It also shows that the power-law spectrum is caused by the properties of deep
learning rather than the stochasticity of Lanczos Algorithm.
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Figure 12: The power-law Hessian eigengaps in deep learning. Model: LeNet. Datset: Fashion-
MNIST. Subfigure (a) displayed the eigengaps by original rank indices sorted by eigenvalues. Subfig-
ure (b) displayed the eigengaps by rank indices re-sorted by eigengaps.
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Figure 13: The spectrum of FCN on Avila Dataset. It shows that the power-law spectrum of neural
networks may also exist in non-image datasets.
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Figure 14: The power-law spectra of ResNet18 on CIFAR-10. It shows that the power-law spectrum
of neural networks may also exist in modern neural network architectures (ResNet) as well as simple
CNNs/FCNs.
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Figure 15: The power-law spectra hold across optimizers. Moreover, the slope magnitude ŝ is an
indicator of minima sharpness and a predictor of test performance. Model:LeNet. Dataset: CIFAR-10.

spectrum shows heavy-tail properties. It demonstrates that the heavy-tail property belongs to deep
neural networks rather than SGD itself.

We presented the power-law spectrum of two-layer FCN on Avila Dataset in Figure 13. It shows
that the power-law spectrum of neural networks may also generally exist in non-convolution neural
networks trained on a non-image dataset. Particularly, we note that the Avila Dataset has only ten
attributes, including intercolumnar distance, upper margin, lower margin, exploitation, row number,
modular ratio, interlinear spacing, weight, peak number, and modular ratio/ interlinear spacing. These
attributes are essentially different from the pixels in image datasets.

We presented the power-law spectra of ResNet18 on CIFAR-10 in Figure 14. It shows that the
power-law spectra hold for ResNet, a representative of the modern neural network architectures,
as well as simple CNNs/FCNs. Due to the GPU memory limit, we may only display the top 50
eigenvalues for ResNet18. However, the KS test still supports accepting the power-law hypothesis.

The spectra of LeNet on CIFAR-10 trained via various optimizers are showed in Figure 15. Figures 4
and 16 shows that the slope magnitude ŝ closely correlates with the largest Hessian eigenvalue and
the Hessian trace.

Figure 17 shows that the small width of neural networks may also break the power-law spectrum like
small depth. This also supports that overparameterization or large model capacity is necessary for the
power-law spectrum.

We report the spectra of large-batch trained ResNet18 on CIFAR-10 in Figure 18. It indicates that the
phase transition behaviors of the spectra with respect to batch size generally exist. However, it seems
that Phase II and Phase III merge into one phase for ResNet18 on CIFAR-10.
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Figure 16: The slope magnitude ŝ closely correlates with the largest Hessian eigenvalue and the
Hessian trace. Model:LeNet. Dataset: CIFAR-10.
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Figure 17: The spectra are not power-law for neural networks with a small width(∼ 10), but gradually
become more power-law (more straight in the log-log plot) as the width increases. This may also
suggest that the power-law spectrum depends on model capacity. Model: Two-layer FCN. Dataset:
MNIST.
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Figure 18: Batch size matters to the spectrum. Model:ResNet-18. Dataset: CIFAR-10. The sharp
phase transition occurs in 1152 < B < 1280.

24



Under review as a conference paper at ICLR 2023

100 101 102

Eigenvalue Rank
10 4

10 2

100

102

Ei
ge

nv
al

ue

 B=100
 B=200
 B=300

Figure 19: The power-law spectrum of gradient noise covariance exists in deep learning for various
batch sizes. Model: Fully Connected Network(FCN). Dataset: MNIST.
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Figure 20: (a) The spectrum of LeNet on (training and test) MNIST with randomly shuffled labels.
(b) The spectrum of LeNet on Gaussian data with randomly shuffled labels is highly similar to that
MNIST with randomly shuffled labels.

The heavy-tail property of SGD has been a hot and arguable topic recently (Simsekli et al., 2019;
Panigrahi et al., 2019; Gurbuzbalaban et al., 2021; Hodgkinson & Mahoney, 2021; Xie et al., 2021a; Li
et al., 2021). Note that the power-law distribution is one of the most common heavy-tail distributions
in the real world. We argue that the arguable heavy-tail property of SGD may depend on the power-
law Hessian spectrum rather than SGD itself, as gradient noise covariance critically depends on the
Hessian. We present the power-law spectra of gradient noise covariance in Figure 19.

We presented the spectrum of learning with clean labels and random labels in Figure 20. The number
of top outliers obviously increases, because random labels make the dataset more complex. However,
even if the pairs of instances and labels have little knowledge, we still observe the power-law spectrum
after the dozens of top outliers. This may suggest that, even if the labels are random, neural networks
can still learn useful knowledge from the instances only.
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