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Abstract

Many precision irrigation approaches rely on calculating the
crop water stress index (CWSI) using measurements of the
sunlit-leaf canopy temperature (sunlit-leaf Tc). To this end,
they typically employ machine learning and/or statistical
techniques along with visible-spectrum and/or thermal im-
agery to identify the sunlit-leaf region and its temperature.
The precise segmentation of sunlit leaves is of utmost impor-
tance; considering non-sunlit leaves while calculating CWSI,
can lead to inaccurate and inefficient under-irrigation or over-
irrigation. Recent work demonstrated that convolutional neu-
ral networks (CNN) can support highly precise sunlit leaf
segmentation in pistachio trees. The same work introduced
a complete methodology for the estimation of CWSI in pis-
tachio trees and released a corresponding free-of-charge web
tool: CIWA. However, the generality of the approach to other
crops is not discussed. Here, we extend the CIWA methodol-
ogy to tomato plants. We discuss the challenges of extending
the CIWA approach to shorter plants and release the first an-
notated dataset for sunlit-leaf segmentation in tomato plants.
We consider three CNN architectures for this task: FRRN-
A, FC-DenseNet103 and ResNet101-DeepLabV3, and show
that FC-DenseNet103 is the most suitable for the task. Based
on these results, we introduce an extended CIWA release to
enable tomato CWSI measurements.

Introduction
The world population is set to increase by more than ∼25%
during the next three decades. The demand for agricultural
products is expected to increase significantly alongside to
meet the growing needs (Food and Agriculture Organization
2012; Fess, Kotcon, and Benedito 2011). The vast majority
of harvested agricultural production is depended on water
found in groundwater and surface water sources (Ozdogan
et al. 2010). Freshwater is a small fraction of all water, and
the latest harsh climate changes, make it a scarce resource
for many countries (Konikow 2013; Nations 2014; Rock-
ström et al. 2017). Therefore, managing freshwater supplies
has become increasingly important in recent years. Precision
irrigation has been heralded as a key means towards a sus-
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tainable future as it aims to obtain optimal usage of water
resources (Abioye et al. 2020).

Many precision irrigation approaches rely on calculating
the crop water stress index (CWSI). CWSI measures the
relative transpiration rate occurring from a crop based on
environmental parameters as well as the canopy tempera-
ture, Tc (Jackson et al. 1981). Due to this reason a Tc mea-
surement is a critical component of such methods. Impor-
tantly though, Tc is considerably affected by whether sunlit
or non-sunlit leaves are primarily considered. Incorporating
Tc measurements based only on sunlit leaves is crucial for
irrigation-related applications (Alchanatis et al. 2011; Gard-
ner, Nielsen, and Shock 1992). This is the case as sunlit
leaves get under-water stressed sooner and to a greater extent
compared to non-sunlit ones (Alchanatis et al. 2011; Gard-
ner, Nielsen, and Shock 1992). Tc measurements based on
non-sunlit leaves can considerably under-or-over-estimate
the CWSI. Precise sunlit-leaf segmentation is a critical chal-
lenge for sunlit-leaf Tc measurements for precision irriga-
tion. Notably, precise sunlit-leaf Tc measurements can also
support applications in various domains outside precision
irrigation ranging from plant-disease monitoring to micro-
climate and physiological process modeling (e.g., Cui et al.
2010; Dai, Dickinson, and Wang 2004; Wang et al. 2017).

Recently, the work of Pantelidakis et al. 2022 utilized vis-
ible spectrum and thermal imagery to successfully measure
the sunlit-leaf Tc of pistachio trees. The work proposed a
two-step methodology where the sunlit leaves are segmented
in visible spectrum images and the respective region on cor-
responding thermal images is used to calculate sunlit-leaf
Tc. Pantelidakis et al. 2022 showed that convolutional neu-
ral networks (CNNs) can be successfully used to identify
sunlit-leaf regions in pistachio tree visible-spectrum images
with high precision and accuracy. That work also introduced
a web-based tool to support CWSI calculations of pistachio
trees, namely CIWA. Nevertheless, how well the approach
and methodology extends to other crops is not discussed.

In this work, we extend the CIWA approach consider-
ing tomato plants. We release the first annotated dataset
for sunlit-leaf segmentation in tomato plants and make
it publicly available to the research community (www.
apanagopoulos.com/ciwa). We provide a thorough evalua-



tion of three CNN architectures, namely FRRN-A (Pohlen
et al. 2017), FC-DenseNet103 (Jégou et al. 2017) and
ResNet101-DeepLabV3 (Chen et al. 2017b), for this task.
We show that FC-DenseNet103 is the most suitable archi-
tecture and that it can achieve high accuracy and precision
(of 0.853 and 0.703, respectively). We also discuss the chal-
lenges of the methodology when moving from tall trees,
such as pistachios, to shorter ones, such as tomatoes. Finally,
in the context of this work we extend the online tool released
by Pantelidakis et al. 2022 to provide free-of-charge mea-
surements of the CWSI of tomato plants.

The rest of the paper is structured as follows. First, we dis-
cuss background material. Then, we discuss the challenges
when extending CIWA beyond tall trees. We continue by in-
troducing our dataset and, subsequently, we discuss our ap-
proach and our CNN selection methodology. Then, we dis-
cuss the results and the extension of the CIWA web-based
tool. Finally we conclude and discuss future work directions.

The CIWA Methodology
Accurate sunlit-leaf Tc measurements can support numer-
ous applications including CWSI measurements for preci-
sion irrigation (as well as plant-disease monitoring and mi-
croclimate and physiological process modeling (Dai, Dick-
inson, and Wang 2004; Cui et al. 2010; Wang et al. 2017)).
Segmenting sunlit leaves is a prominent challenge. Manu-
ally segmenting sunlit-leaves is a process that is labor in-
tensive, time consuming and prone to mistakes. Works that
segment sunlit leaves using statistical and machine learning
techniques are emerging, over the past years.

The work of Pantelidakis et al. 2022 proposed a com-
plete methodology for estimating the CWSI of pistachio
plants based on three steps. First, the sunlit leaves of pis-
tachio trees are segmented in visible spectrum images using
CNNs. Then the derived mask is utilized to extract the corre-
sponding region from corresponding infrared-spectrum im-
ages and calculate the sunlit-leaf Tc as the average temper-
ature. Finally this measurement along with environmental
variables are used to calculate the CWSI of pistachio plants.
That work also released a free-of-charge web-based tool that
implements the aforementioned methodology (https://www.
apanagopoulos.com/ciwa). Nevertheless, how well this ap-
proach extends to other crops is not detailed or documented.

CNNs for Semantic Segmentation
Semantic segmentation considers the task of identifying
what is present in an image and where by finding all pix-
els that belong to it. Deep neural networks which consist of
multiple layers are among the most advanced machine learn-
ing techniques for semantic segmentation (Han et al. 2020;
Wang et al. 2016; Deng et al. 2017; Alzubaidi et al. 2021)

The training of CNNs tends to be a tedious process that
demands many resources. To alleviate that, transfer learn-
ing may be used. Transfer learning is achieved by using a
set of pre-trained layers that are fixed during training and
are sometimes referred to as the back-bone (Majurski et al.
2019; Atkinson et al. 2020). The back-bone is trained on a
large dataset, such as ImageNet (Deng et al. 2009) and ex-

tracts features for image analysis. The remaining model is
then trained on a more specific, smaller, dataset such as the
sunlit-leaf segmentation dataset we use on this paper (Weiss,
Khoshgoftaar, and Wang 2016). By doing so, transfer learn-
ing can effectively reduce the training time (Weiss, Khosh-
goftaar, and Wang 2016; Kanavati and Tsuneki 2021).

Many CNN design techniques have been proposed for
the task of semantic segmentation over the past years
(Briot, Viswanath, and Yogamani 2018). FRRN-A, or Full-
Resolution Residual Network was proposed by (Pohlen
et al. 2017). It utilizes two computation streams which are
combined using Full-Resolution Residual Units to achieve
good localization and recognition performance. Without
pre-training or additional processing, FRRN-A has been
shown to achieve good semantic segmentation performance
on a number of demanding datasets, including the PTSL20
dataset (Pantelidakis et al. 2022), which considers sunlit-leaf
segmentation for pistachio trees. Due to these reasons this
architecture is considered in this work.

FC-DenseNet103 (Jégou et al. 2017) extends DenseNet
(Huang et al. 2017) by including an upsampling path to
support semantic segmentation. The architecture has shown
to achieve very good segmentation performance without
pre-training on a number of demanding datasets including
PTSL20 (Pantelidakis et al. 2022). For these reasons this ar-
chitecture is also considered in this work.

ResNet101-DeepLabV3 (Chen et al. 2017b) uses atrous
convolution (Papandreou, Kokkinos, and Savalle 2015; Ser-
manet et al. 2013) to extract dense features for seman-
tic segmentation. DeepLabV3 typically utilizes a pretrained
backbone, in our case ResNet101 (shown to perform better
than the less deep ResNet-50 (Chen et al. 2017a)), which
is trained on the ImageNet dataset (Deng et al. 2009). The
architecture has shown to achieve very good segmentation
performance on a number of demanding datasets including
PTSL20 (Pantelidakis et al. 2022). For these reasons we em-
ploy this architecture in this work.

Extending CIWA to Short Plants: the
Challenges

In this work we extend the CIWA methodology of Pantel-
idakis et al. 2022 for tomato plants. We note here that de-
spite the many similarities, identifying sunlit leaves in pis-
tachio trees has also some key differences when compared
to the same task for shorter plants such as tomato plants.
The main difference among them is that pictures of tomato
plants are typically taken from above. Hence, sunlit leaves
consider a great proportion of the image. On the other hand,
pictures of tall trees, including the pistachio trees in the orig-
inal CIWA work, are taken from below and, as such, sunlit
leaves consider only a small portion of the image. Neverthe-
less, when picture taken from below, sunlit leaves are typi-
cally captured with the sky as the background with typically
well defined boundaries. This makes it somewhat easier to
distinguish compared to the same task when pictures are
taken from above. When a picture is taken from above, sun-
lit leaves are seen mainly with the ground and other leaves
as the background. Distinguishing sunlit-leaves can be much



more challenging in this case due to the similar color distri-
butions. Hence, the performance of the CNN architectures
considered can differ. Furthermore, the high temperature of
the ground, compared to the low one of the sky, can lead to a
significant overestimation of the canopy temperature in case
of miss-classification. This renders precise segmentation an
even more prominent requirement.

A New Dataset for Tomato-plant Sunlit-leaf
Segmentation
A distinct contribution of this work is the release of the
first annotated dataset for sunlit-leaf semantic segmentation
in tomato plants: TMSL21. The TMSL21 dataset is made
publicly available to the community at www.apanagopoulos/
ciwa. TMSL21 considers tomato plants and includes visible-
spectrum images and corresponding sunlit leaf labels. The
dataset comes complete with a corresponding infrared spec-
trum image that includes calibrated FLIR AX8 thermal cam-
era metadata to further support precision irrigation and re-
lated research. In more detail, the dataset considers 808 data
entries. Each data entry includes the following:
• A 504X286 visible-spectrum image. A sample image is

illustrated in Figure 2a
• A 504X286 corresponding label for segmenting tomato

sunlit leaves. The pixels in this mask fall in one of two
categories: sunlit leaves or non-sunlit leaves. A sample
image is illustrated in Figure 2b

• A 80X60 FLIR AX8 file image that includes an embed-
ded visible-spectrum image, an embedded infrared im-
age, and FLIR AX8 metadata. We note that the metadata
provided are PTSL20-specific and calibrated. In particu-
lar, atmospheric temperature and humidity data are col-
lected via local weather stations. The emissivity of the
crop and the reflected temperature of surrounding objects
is empirically estimated while the distance from the ob-
ject is manually calculated. The remaining metadata re-
tain their default values. For a full list of the metadata
please refer to FLIR AX8 documentation (Flir 2022).

The dataset was collected over the summer of 2021 in the
region of San Joaquin Valley, California, USA using a FLIR
AX8 thermal camera and local weather stations. All pictures
are taken from the ground level, which makes our method-
ology applicable without the need of drones or other means
to acquire aerial images. TMSL21 is annotated manually by
experts and trained personnel. Notably, unsupervised clus-
tering has been used as a way to support the labor intensive
manual annotation process as in Pantelidakis et al. 2022

Selecting a CNN Model
We consider and evaluate three CNN architectures on the
TMSL21 dataset, namely FRRN-A (Pohlen et al. 2017),
FC-DenseNet103 (Jégou et al. 2017) and ResNet101-
DeepLabV3 (Chen et al. 2017b). We do this to identify the
most suitable model for incorporation into the CIWA on-
line tool. We selected these CNN architectures as those have
achieved good performance in pistachio trees (Pantelidakis
et al. 2022). All architectures are considered with the same
design characteristics as in Pantelidakis et al. 2022

The TMSL21 dataset was randomly split into training
(557 images), validation (183 images), and test (68 images)
set. The validation set was used to execute early stopping
and avoid over-fitting (Prechelt 1998). All approaches have
been trained using a softmax cross entropy loss function be-
tween per-label activations (logits) and labels. All architec-
tures have been trained using RMSProp with a learning and
decay rate of 0.0001 and 0.995 respectively.

For all approaches, the performance is measured in terms
of accuracy (AC), precision (PR), recall (RC), F1 score, and
mean intersection-over-union (IoU). Precision is arguably
the most important metric when it comes to sunlit-leaf seg-
mentation for precision irrigation. The inclusion of non-
sunlit leaves can significantly underestimate Tc and CWSI.
Sunlit leaves are the ones that demonstrate stress more
timely and to a greater extent, ultimately meaning that un-
derestimation can lead to inefficient irrigation.

Results and Discussion
All evaluation metrics results are reported in Table 1. Fig-
ure 1 illustrates the confusion matrices while Figure 2 il-
lustrates example segmentations, for all approaches. All
models demonstrate good performance. FC-DenseNet103
and FRRN-A seem to perform better than ResNet101-
DeepLabV3. This is evident by the results in all metrics
considered and, especially, the recall metric which leads to
a poor F1 score for ResNet101-DeepLabV3. As illustrated
in Figure 1c, ResNet101-DeepLabV3 has the lowest num-
ber of sunlit leaves that are accurately classified as sun-
lit ones, compared to the rest methods. However, although
∼12.89% of all pixels are miss-classified as non-sunlit-leaf
ones, only ∼4.85% are miss-classified as sunlit-leaf ones.
As such, even though the ResNet101-DeepLabV3 preci-
sion is lower than the other CNN models, the gap is not
that great. Nevertheless, ResNet101-DeepLabV3 is a poorer
choice overall. As can be seen in Figure 2e, ResNet101-
DeepLabV3 demonstrates worse fine-grain boundary adher-
ence compared to the rest of the models.

When comparing FRRN-A to FC-DenseNet103, the lat-
ter seems to achieve better performance in all metrics except
for precision. As discussed, precision is the most important
metric for this task. However, the difference in precision be-
tween FRRN-A and FC-DenseNet103 is minimal and FC-
DenseNet103 is superior to FRRN-A in all other metrics.
Therefore, we select FC-DenseNet103 for our inclusion in
our methodology. As can be seen in Figures 2c and 2d, both
FRRN-A and FC-DenseNet103 demonstrate good fine-grain
boundary adherence and segmentation performance.

These results are in some alignment with the work of Pan-

AC PR RC F1 IoU
FRRN-A 0.844 0.706 0.450 0.550 0.604
FC-DenseNet103 0.853 0.703 0.492 0.578 0.622
ResNet101- 0.823 0.613 0.373 0.464 0.555
-DeepLabV3

Table 1: Performance metrics.
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(c) ResNet101-DeepLabV3

Figure 1: Confusion matrices with the number and percentages of pixels that are appropriately classified per class

(a) Visible-spectrum image (b) Label (ground truth)

(c) FRRN-A (d) FC-DenseNet103 (e) ResNet101-DeepLabV3

Figure 2: Sample visible spectrum image and label (ground truth) along with corresponding predictions

telidakis et al. 2022 in pistachio trees. Pantelidakis et al.
2022 demonstrated the effectiveness of all architectures con-
sidered here, however it showed FRRN-A to be the winner.
We believe that these differences are quite small to be of out-
most significance but could demonstrate the variability in the
performance of various architectures in slightly but signif-
icantly (non-trivially) different tasks. FC-DenseNet103 al-
lows for more fine-grain boundary adherence compared to
FRRN-A. This seems to be providing an advantage when
pictures are taken from above and the adjacent regions seem
to be more similar. Nevertheless the same property could be
becoming a disadvantage when the sunlit leaves have clearer
boundaries to the background due to the color distribution.

Extending CIWA
The trained FC-DenseNet103 model was used to extend the
CIWA web-based tool (Pantelidakis et al. 2022) to tomato
plants. In addition, a CWSI calculation for tomato plants was
used (Idso et al. 1981). We defer the details to an extended
version of this paper. The extended tool can be accessed on-
line, free-of-charge at www.apanagopoulos.com/ciwa. We
envisage the tool to be used by the scientific community for

related research and by the wider public to support sustain-
able agriculture practices.

Conclusion
In this work we extended the CIWA methodology for tomato
plants. We released the first annotated dataset for sunlit-leaf
segmentation in visible-spectrum images of tomato plants.
We also evaluated the most promising CNN architectures
considered in CIWA (i.e., FRRN-A, FC-DenseNet103, and
ResNet101-DeepLabV3) to show that FC-DenseNet103 is a
slightly better choice for the task of sunlit-leaf segmentation
in tomato plants. We also released an extension of the online
CIWA tool for measuring the CWSI of tomato plants. Possi-
ble future work directions include experimenting with more
CNN architectures for the task of sunlit-leaf segmentation as
well as with additional crops.
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