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Abstract

State of the art magnetic resonance (MR) image super-resolution methods (ISR) using
convolutional neural networks (CNNs) leverage limited contextual information due to the
limited spatial coverage of CNNs. Vision transformers (ViT) learn better global context
that is helpful in generating superior quality HR images. We combine local information
of CNNs and global information from ViTs for image super resolution and output super
resolved images that have superior quality than those produced by state of the art methods.
We include extra constraints through multiple novel loss functions that preserve structure
and texture information from the low resolution to high resolution images.

Keywords: MRI, super resolution, disentanglement, CNN, ViT

1. Introduction

Image super-resolution (ISR) takes low resolution (LR) image inputs and reconstructs its
corresponding high resolution (HR) version thus enabling detailed examination of interesting
regions. This is particularly relevant for medical image analysis where physics of the imaging
systems limits the spatial resolution of radiological images (e.g. MRI, Xray) since obtaining
HR images requires longer scanning time, and leads to lower signal-to-noise ratio and smaller
spatial coverage (Plenge and et al, 2012). HR images provide more detailed information
about local structures and textures resulting in higher accuracy in disease diagnosis and
planning (Chen et al., 2018a). Since originally acquired LR images pose challenges for
accurate analysis it is important to have a reliable ISR method.

Recent works demonstrate the potential of convolutional neural networks (CNNs) in gen-
erating HR images by using SRCNN (Dong et al., 2014, 2016), residual learning in VDSR
(Very Deep Super Resolution) (Kim et al., 2016), and the information distillation network
(IDN) (Hui et al., 2018). (Zhang et al., 2018) leverage hierarchical features in residual deep
networks (RDN) while (Chen et al., 2018a) combine 3D dense networks and adversarial
learning for MRI super resolution. MR images have inherent characteristics such as repeat-
ing structural patterns making them less complex than natural images. Secondly, they have
a large proportion of background pixels. Since most approaches give the background and
foreground equal importance it does not lead to good feature learning. Also, CNN methods
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capture mostly local context information and do not explore the global aspects. Zhang et
al. in (Zhang et al., 2021) propose a squeeze and excitation network to capture the global
characteristics thus leading to improved super resolution output. However, squeeze and
excitation relies on CNN features to capture global context which is not optimal.

Vision transformers (ViT) (Dosovitskiy et al., 2020) are an exciting new development
that effectively capture long range contextual information from images. Given sufficient
training data ViTs have been shown to outperform state of the art CNN based methods
for classification and segmentation. In this work we propose to combine CNNs and ViT for
performing super resolution of MR images. CNNs learn local details while ViT captures
the global context much better than previously proposed methods. Inherent to the ViT is
a self attention module that focuses on the important parts of the image and thus improves
SR quality. Our method also uses feature disentanglement to improve super resolution.

2. Related Work

MR Image Super-resolution: ISR has been widely applied to MR images (Scherrer et al.,
2012; Manjón et al., 2010), and spectroscopy MRI (Iqbal et al., 2019; Jain et al., 2016).
Initial methods achieved multiple frame image super resolution via alignment of multiple
noisy LR images which proved to be very challenging (Zhao et al., 2019). Recent deep
learning based ISR approaches show superior performance for MR image super resolution
(Chen et al., 2018b; Pham et al., 2017; Zhao et al., 2019) but use large models that pose
challenges in real world settings. Zhang et al. in (Zhang et al., 2021) propose a squeeze and
excitation attention network as part of a lightweight model for ISR. (Feng et al., 2021a)
achieve multi contrast MRI super resolution using multi stage networks. (Hu et al., 2021) use
graph convolution networks for MRI super resolution, while in other related work recent
methods have proposed hybrid-fusion networks for Multi-modal synthesis of MRI (Zhou
et al., 2020), and (Dar et al., 2019) synthesize multi-contrast MRI using conditional GANs.

Attention Mechanism: Attention mechanisms enables adaptive resource allocation
by focusing on important image regions (Hu et al., 2017) and are popular for many tasks like
image recognition (Ba et al., 2015) and image captioning (Xu et al., 2016), as well as ISR
(Hu et al., 2018; Zhang et al., 2018). They can be highly effective for MRI super resolution
due to repeating patterns of relatively simpler structures and less informative background.

Vision Transformers: Dosovitskiy et al. (Dosovitskiy et al., 2020) demonstrate state-
of-the-art performance on image classification datasets using large-scale pre-training and
fine-tuning, and (Carion et al., 2020; Zhu et al., 2021) use ViTs for object detection. Hi-
erarchical vision transformers with varying resolutions and spatial embeddings (Liu et al.,
2021; Wang et al., 2021a) have been used to reduce feature resolution, while (Esser et al.,
2020) demonstrate success in high resolution image synthesis.Recent work on transformer-
based models for 2D image segmentation include the SETR model that uses a pre-trained
transformer encoder with different CNN decoders (Zheng et al., 2021) for multi-organ seg-
mentation in (Chen et al., 2021a), and a transformer-based axial attention mechanism for
2D medical image segmentation (Valanarasu et al., 2021). Hatamizadeh et al. propose
UNETR (Hatamizadeh et al., 2021) for 3D medical image segmentation using transformers
as the main encoder of a segmentation network and directly connecting to the decoder via
skip connections. For 3D medical image segmentation, (Xie et al., 2021) use a backbone
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CNN for feature extraction, a transformer to process the encoded representation and a CNN
decoder for predicting segmentation outputs, while (Wang et al., 2021b) use transformers
in the bottleneck of a 3D encoder-decoder CNN for semantic brain tumor segmentation.
However, none of the methods use ViT for medical image super resolution.

Motivation And Contribution: Context information is especially relevant for med-
ical ISR since they provide additional cues to generate superior quality HR images. Our
contributions are: 1) We combine CNNs and ViTs for image super resolution. Local con-
textual cues from CNNs and global information from ViTs result in superior quality super
resolved images than those produced by state of the art methods. A pre-trained ViT is
finetuned using self supervised learning. 2) Using multiple loss functions we incorporate
extra constraints that preserve structural and semantic information in the generated super
resolved image. 3) By comparing with results from (Hu et al., 2021) we also demonstrate our
method’s better ability to learn global features compared to graph based super resolution
methods.

3. Method

3.1. Overview

Given a low resolution (LR) image x ∈ RN×N our objective is to train a model that outputs
a high resolution (HR) image y ∈ RM×M , where M > N . Figure 1 shows the workflow
of our proposed method. The LR image x goes through a generator network consisting of
a series of convolution blocks and an upsampler that increases the image dimensions from
N ×N to M ×M . The discriminator module ensures y satisfies the following constraints.

1. The HR and LR image should have similar semantic characteristics since a higher
resolution version should not alter image semantics. For this purpose we disentangle
the image into structure and and texture features, and ensure their respective semantic
information is consistent across both images.

2. The HR image should preserve global and local context of the original LR image. To
achieve it we use features extracted using a pre-trained ViT to effectively capture the
relations in LR image and ensure this relationship is preserved in the HR image.

3.2. Vision Transformers

Vision transformers play an important role in our super resolution framework by serving as
a robust and accurate feature extractor that integrates long range context and structural
information. We use the ViT from UNETR (Hatamizadeh et al., 2021) pre-trained for MR
image segmentation and fine tune it for our task. We briefly describe the architecture below
(for full details please refer to Appendix B) and also explain our modifications. UNETR
uses the contracting-expanding pattern consisting of a stack of transformers as the encoder
which is connected to the decoder using skip connections. A 1D sequence from the 3D input
volume x ∈ RH×W×D×C with image dimension (H,W,D) and C input channels is created by
dividing x into N = (H×W×D)/P 3 flattened non-overlapping patches of size P×P×P and
denote this set as xv. A linear layer projects the patches onto a K dimensional embedding
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(a) (b)

Figure 1: (a) Workflow of our proposed method. LR images goes through a generator to get
HR image, and multiple loss functions ensure that semantic information of the LR
image is preserved in the HR image. (b) Architecture of feature disentanglement
network using swapped autoencoders.

space.To preserve spatial information a 1D learnable positional embedding Epos ∈ RN×K is

added to the projected patch embedding E ∈ RP 3.C×K as z0 =
[
x1
vE;x2

vE; · · ·xN
v E

]
+Epos.

Then multiple transformer blocks (Dosovitskiy et al., 2020) are used that have multi-head
self-attention (MSA) and multilayer perceptron (MLP) sublayers according to

z′i = MSA(Norm(zi−1)) + zi−1, i = 1 · · ·L
zi = MLP (Norm(z′i)) + z′i, i = 1 · · ·L

(1)

where Norm() denotes layer normalization (Ba et al., 2016), MLP has two linear layers
with GELU activation functions, i denotes intermediate block and L denotes transformer
layers. SA maps a query (q) and the corresponding key (k) and value (v) representations
in a sequence z ∈ RN×K . Attention weights (A) measure similarity between elements in z

and their key-value pairs according to A = Softmax
(

qkT
√
Kh

)
, where Kh = K/n is a scaling

factor. Thus, SA(z) = Av, where v denotes input sequence values, and MSA output is:

MSA = [SA1(z);SA2(z); · · · ;SAn(z)]Wmsa, (2)

where Wmsa ∈ Rn.Kh×K represents the multi-headed trainable parameter weights.
Self Supervised Learning: A pre-trained transformer network such as UNETR has

the advantage of being trained on medical images. We take the UNETR network and
finetune it in a self supervised manner using images from the different datasets that we use
for super resolution. Self supervised finetuning of ViT has attracted a fair bit of attention
of late with different approaches using contrastive learning (Chen et al., 2021b) and masked
auto-encoding (Chen et al., 2020; Dosovitskiy et al., 2020). We investigate both approaches
and identify (Dosovitskiy et al., 2020) as more stable for our task. We remove the pre-
trained prediction head and attach a zero-initialized D × K feedforward layer, where K
is the number of downstream classes, and D is the dimension of the flattened patches.
We define a pre-text task to identify the primary organ in the images, which is akin to a
classification problem involving K classes.
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3.3. Feature Disentanglement

In order to separate the images into structure and texture components we train an autoen-
coder (AE) shown in Figure 1 (b). In a classic AE the encoder E and generator G form a
mapping between image x and latent code z using an image reconstruction loss

Lrec(E,G) = Ex∼X [∥x−G(E(x))∥1] (3)

To ensure that the generated image is realistic we have discriminator D that calculates
the adversarial loss for generator G and encoder E as:

Ladv(E,G,D) = Ex∼X [− log(D(G(E(x))))] (4)

As shown in Figure 1 (b) we divide the latent code into two components - a texture
component zt and a structural component zs. Then amongst similar images X1, X2 from
the same dataset in a minibatch we swap the two components and enforce the constraint
that the resulting images be realistic, using the ‘swapped-GAN’ loss (Park et al., 2020)

Lswap(E,G,D) = Ex1,x2∼X,x1 ̸=x2

[
− log(D(G(z1s , z

2
t )))

]
(5)

Here z1s , z
2
t are the first and second components of E(x1) and E(x2). The intuition is

to combine the structure component of one image with the texture component of another
image. The two images are not identical although they belong to the same dataset. As
shown in Figure 1 (b) the shapes of zs and zt are asymmetric. zs is designed to be a
tensor with spatial dimensions so it can learn the structural properties associated with
spatial configurations, and zt is vector that encodes the texture information. At each
training iteration we randomly sample two images x1 and x2, and enforce Lrec,Ladv for x1,
while applying Lswap to the combination of x1 and x2. The final loss function for feature
disentanglement is given in Eqn. 6, and more details are given in Appendix A.

LDisent = LRec + 0.7LAdv + 0.7Lswap (6)

We first train this disentanglement autoencoder that can extract the two separate features
for a given input image (high or low resolution). The structure and texture features of the
HR and LR images are used to train the super resolution network.

Since the HR and LR images are different versions of the same image swapping the
structure code zLRs (or texture zLRt ) of the LR image with that of the HR image zHR

s (or
zHR
t ) should still generate an image that is close to the original. Patches of size n× n are
extracted around the center of the LR image and corresponding patches of size mn×mn are
extracted from the center of the HR image, m being the upscaling factor. This ensures that
the two patches show the same region of interest. Swapping zLRt with zHR

t and combining
with zLRs should produce an image very similar to the LR image. Similarly, zLRt and zHR

s

combine to give a fairly similar representation of the higher resolution image.

Training The Super Resolution Network: We use two pre-trained networks - the
ViT and the feature disentanglement network. Given the LR image x and the intermediate
generated HR image y, we obtain their respective disentangled latent feature representations
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as zxs , z
x
t and zys , z

y
t . Thereafter we calculate the semantic similarity between them using

the cosine similarity loss as

Lstr = 1− ⟨zxs , zys ⟩
Ltex = 1− ⟨zxt , z

y
t ⟩.

(7)

where ⟨.⟩ denotes cosine similarity. Additionally we also obtain the ViT based feature
vectors of the HR (fHR

V iT ) and LR (fLR
V iT ) images from the ViT described previously and

calculate their corresponding cosine similarity loss as

LV iT = 1− ⟨fLR
V iT , f

HR
V iT ⟩ (8)

Once the above loss terms are obtained we train the whole super resolution network in an
end to end manner using the following loss function. Thus the final loss function is

LSR(X,Y ) = Ladv + λ1LV iT (X,Y ) + λ2Lstr(X,Y ) + λ3Ltex(X,Y ). (9)

4. Experiments And Results

Dataset Description: We use two datasets for our experiments: 1) fastMRI (Zbontar
et al., 2019) - following (Xuan et al., 2020), we filter out 227 and 24 pairs of proton density
(PD) and fat suppressed proton density weighted images (FS-PDWI) volumes for training
and validation. 2) The IXI dataset: Three types of MR images are included in the datasets
(i.e., PD, T1, and T2)1. Each of them has 500, 70, and 6 MR volumes for training, testing,
and validation respectively. Subvolumes of size 240 × 240 × 96 are used and due to using
2D images we get 500× 96 = 48, 000 training samples.

IXI - PD Images IXI - T1 Images

2× 4× 2× 4×
PSNR/SSIM/NMSE PSNR/SSIM/NMSE PSNR/SSIM/NMSE PSNR/SSIM/NMSE

Bicubic 30.4/0.9531/.042 29.13/0.8799/0.048 33.80/0.9525/0.030 28.28/0.8312/0.051
(Feng et al., 2021b) 31.7/ 0.892/ 0.035 29.5/ 0.870/ 0.033 30.7/ 0.883 /0.032 28.5/ 0.861/ 0.037
(Dong et al., 2016) 38.96 / 0.9836/0.022 31.10 / 0.9181/0.030 37.12 / 0.9761/ 0.26 29.90 / 0.8796/ 0.034
(Zhang et al., 2018) 40.31 / 0.9870 / 0.021 32.73 / 0.9387/ 0.029 37.95 / 0.9795/ 0.028 31.05 / 0.9042/ 0.031
(Zhao et al., 2019) 41.28 / 0.9895 / 0.02 33.40 / 0.9486/ 0.027 38.27 / 0.9810/ 0.025 31.23 / 0.9093/ 0.032
(Zhang et al., 2021) 41.66 /0.9902/0.019 33.97/0.9542/0.024 38.74/0.9824/0.021 32.03/0.9219/0.026
(Hu et al., 2021) 42.9/0.9936/0.018 35.3/0.962/0.023 39.9/0.989/0.021 33.6/0.927/0.024

Proposed 44.3/0.9972/0.016 37.1/0.972/0.021 41.4/0.993/0.019 35.4/0.9386/0.022

Ablation Studies

Ltex + LV iT 41.1/0.9826/0.021 35.3/0.958/0.025 39.5/0.983/0.021 33.1/0.924/0.024
Lstr + LV iT 43.1/0.9902/0.018 35.8/0.963/0.023 40.5/0.986/0.021 34.5/0.9301/0.024

LV iT 36.9/0.9745/0.027 34.2/0.943/0.027 37.2/0.962/0.025 31.3/0.903/0.028
Ltex + Lstr 37.6/0.9817/0.026 35.0/0.967/0.025 38.7/0.976/0.023 32.5/0.924/0.026

Table 1: Quantitative Results for IXI Dataset. Higher values of PSNR and SSIM, and lower
value of NMSE indicate better results.

1. http://brain-development.org/ixi-dataset/
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4.1. Implementation Details

ViT Parameters: For self supervised finetuning we use a batch size of 6 and cross entropy
loss, the AdamW optimizer (Loshchilov and Hutter, 2019) with initial learning rate of
0.0001 for 20, 000 iterations. For the specified batch size, the average training time was 10
hours for 20, 000 iterations. AE Network: The encoder consists of 4 convolution blocks
followed by max pooling after each step. The decoder is also symmetrically designed. 3× 3
convolution filters are used and 64, 64, 32, 32 filters are used in each conv layer. The input
to the AE is 256× 256 and dimension of ztex is 256, while zstr is 64× 64.

Super Resolution Network: We train our model using Adam (Kingma and Ba,
2014)) with β1 = 0.9, β2 = 0.999, a batch size of 256 and a weight decay of 0.1, for 100
epochs. We implement all models in PyTorch and train them using one NVIDIA Tesla V100
GPU with 32GB of memory. λ1 = λ2 = 1 and λ3 = 0.9 (from Eqn.9).

4.2. Quantitative Results

For a given upscaling factor we first downsample the original image by that factor and
recover the original size using different super resolution methods, and compare the per-
formance using different metrics such as peak signal to noise ratio (PSNR), Structural
Similarity Index Metric (SSIM), and Normalized Mean Square Error (NMSE). Tables 1, 2
show the average values of different methods for the IXI and fastMRI datasets at upscal-
ing factors of 2× and 4×. Our method shows the best performance for both datasets and
beats the next best method by a significant margin. While there is an expected noticeable
performance drop for higher scaling factors, our method still outperforms other methods
significantly. Our proposed method’s advantage is the combination of CNN and ViT fea-
tures that improve the image quality significantly. Although image quality degrades at
higher magnification factor, our method performs better than others due to its ability to
leverage local and global information.

Ablation Studies: Tables 1, 2 also show ablation study outcomes where different loss
terms are excluded during training. Excluding the ViT features results in reduced per-
formance. However it is still better than most other methods because of using feature
disentanglement that leads to better super resolution based on texture and structure fea-
tures. On the other hand excluding only one or more of structure and texture features leads
to poor performance despite including ViT features. Thus we conclude that both global
and local information is important for accurate super resolution.

4.3. Qualitative results:

In Figure 2 we show visualization results where the recovered images and their corresponding
difference image with the original image is shown. Our method shows a very accurate
reconstruction with minimal regions in the error map, while the recovered images from
other methods are blurred and of poor quality. These results demonstrate the effectiveness
of our approach.
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IXI-T2 Images Fast MRI

2× 4× 2× 4×
PSNR/SSIM/NMSE PSNR/SSIM/NMSE PSNR/SSIM/NMSE PSNR/SSIM/NMSE

(Feng et al., 2021b) 30.2/0.891/0.034 28.4/0.878/0.033 (Lim et al., 2017) 26.66/0.512/0.063 18.363/0.208/0.082
(Dong et al., 2016) 37.32/0.9796/0.027 29.69/0.9052/0.031 (Zhao et al., 2018) 28.27/0.667/0.051 21.81/0.476/0.067
(Zhang et al., 2018) 38.75/0.9838/0.026 31.45/0.9324/0.029 (Lyu et al., 2020) 28.870/0.670/.048 23.255/0.507/0.062
(Zhao et al., 2019) 39.71/0.9863/0.027 32.05/0.9413/0.031 (Kim et al., 2016) 29.484/0.682/0.049 28.219/0.574/0.059
(Zhang et al., 2021) 40.30/0.9874/0.022 32.62 / 0.9472/0.029 (Feng et al., 2021a) 31.769/0.709/0.045 29.819/0.601/0.054
(Hu et al., 2021) 41.9/0.991/0.020 34.2 / 0.951/0.027 - - -

Proposed 44.1/0.9953/0.017 35.4/0.959/0.024 Proposed 34.6/0.731/0.041 32.7/0.63/0.050

Ablation Studies

Ltex + LV iT 40.8/0.977/0.021 33.6/0.941/0.027 Ltex + LV iT 32.1/0.713/0.046 30.4/0.60/0.054
Lstr + LV iT 43.0/0.9875/0.020 34.3/0.947/0.026 Lstr + LV iT 33.3/0.723/0.044 32.1/0.61/0.053

LV iT 36.7/0.972/0.028 34.0/0.937/0.028 LV iT 30.1/0.694/0.048 28.9/0.59/0.056
Ltex + Lstr 36.9/0.980/0.026 34.6/0.948/0.026 Ltex + Lstr 31.3/0.703/0.046 29.8/0.61/0.054

Table 2: Quantitative Results for IXI and fastMRI dataset super resolution output. Higher
values of PSNR and SSIM, and lower value of NMSE indicate better results.

(a) (b) (c) (d) (e)

Figure 2: Visualization of superresolution results at 2× factor for the IXI dataset. The
top row dhows the original image and the super resolved images and the bottom
row shows the corresponding difference images.(a) Original image; Superesolved
images obtianed using: b) (Zhang et al., 2021); (c) (Zhao et al., 2019); (d) (Zhang
et al., 2018); (e) Our proposed method.

5. Conclusion

We proposed a novel method for MR image super resolution by combining CNNs and Vision
transformers. ViTs provide more global context features while CNNs provide discriminative
local information. We achieve feature disentanglement using swapped auto encoders to
obtain texture and structure features. We enforce constraints that the original and super
resolved images should have similar semantic information by minimizing the cosine loss of
the respective structure and texture features, as well as minimizing the difference between
the respective ViT features. Experimental results show our method outperforms state of
the art techniques on benchmark public datasets, and ablation studies demonstrate the
importance of our proposed loss terms.
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Appendix A. Feature Disentanglement

Similar to a classic autoencoder, the encoder E produces a latent code z ∼ Z for image
x ∼ X. The G reconstructs the original image from z using an image reconstruction loss
that is defined as:

LRec(E,G) = Ex∼X [∥x−G(E(x))∥] (10)

Additionally, the generated image should be realistic as determined by the Discriminator
D and is enforced using the adversarial loss defined as:

LAdv(E,G,D) = Ex∼X [− log(D(G(E(x))))] (11)

Furthermore, as part of our objective to achieve feature disentanglement we decompose
the latent code z into two components [zstr, ztex] corresponding to the structure and texture
components. We enforce that swapping these components of the latent code with those from
other images still produces realistic images. This is achieved by using a modified version of
the adversarial loss, which we term as the swapped GAN loss, and is defined as :

Lswap(E,G,D) = Ex1,x2∼X,x1 ̸=x2

[
− log(D(G(z1tex, z

2
str)))

]
(12)

Here z1tex, z
2
str are the first and second components of imagesX1, X2’s latent representations,

and X1, X2 from the same dataset in a minibatch. The component zstr is a tensor with
spatial dimensions, while ztex is a vector that encode structure and texture information.
LRec and LAdv, are applied to image X1 while Lswap is applied to the latent components
from X1, X2.The final loss function for feature disentanglement is defined as

LDisent = LRec + 0.7LAdv + 0.7Lswap (13)

Appendix B. UNETR Architecture

We use the ViT from UNETR (Hatamizadeh et al., 2021) pre-trained for MR image seg-
mentation and describe its architecture below. UNETR uses the contracting-expanding
pattern consisting of a stack of transformers as the encoder which is connected to the de-
coder using skip connections. A 1D sequence of 3D input volume x ∈ RH×W×D×C with
image dimension (H,W,D) and C input channels is created by dividing it into flattened
uniform non-overlapping patches xv ∈ RN×(P 3.C where P × P × P denotes the resolution
of each patch and N = (H ×W ×D)/P 3 is the length of the sequence.

A linear layer projects the patches onto a K dimensional embedding space which re-
mains constant throughout the transformer layers. To preserve spatial information a 1D
learnable positional embedding Epos ∈ RN×K is added to the projected patch embedding

E ∈ RP 3.C×K according to

z0 =
[
x1
vE;x2

vE; · · ·xN
v E

]
+Epos (14)

Then multiple transformer blocks (Dosovitskiy et al., 2020) are used that have multi-head
self-attention (MSA) and multilayer perceptron (MLP) sublayers according to

z′i = MSA(Norm(zi−1)) + zi−1, i = 1 · · ·L (15)
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zi = MLP (Norm(z′i)) + z′i, i = 1 · · ·L (16)

where Norm() denotes layer normalization (Ba et al., 2016), MLP has two linear layers
with GELU activation functions, i denotes intermediate block and L denotes transformer
layers. A MSA sublayer comprises of n parallel self-attention (SA) heads. Specifically, the
SA block, is a parameterized function that maps a query (q) and the corresponding key
(k) and value (v) representations in a sequence z ∈ RN×K . Attention weights (A) measure
similarity between elements in z and their key-value pairs according to

A = Softmax

(
qkT

√
Kh

)
. (17)

Kh = K/n is a scaling factor for maintaining the number of parameters to a constant value
with different values of the key k. Using the computed attention weights, the output of SA
for values v in the sequence z is computed as

SA(z) = Av, (18)

v denotes input sequence values, and MSA output is:

MSA = [SA1(z);SA2(z); · · · ;SAn(z)]Wmsa, (19)

where Wmsa ∈ Rn.Kh×K represents the multi-headed trainable parameter weights.
At the encoder bottleneck (i.e. output of transformer’s last layer), a deconvolutional

layer is applied to the transformed feature map to increase its resolution by a factor of 2.
The resized feature map is concatenated with the feature map of the previous transformer
output and fed into consecutive 3× 3× 3 convolutional layers, whose output is upsampled
using a deconvolutional layer. This process is repeated for all the other subsequent layers
up to the original input resolution where the final output is fed into a 1×1×1 convolutional
layer with a softmax activation function to generate voxel-wise semantic predictions.

B.1. Loss Function

The loss function is a combination of soft dice loss and cross-entropy loss, and it can be
computed in a voxel-wise manner according to

L(G, Y ) = 1− 2

J

J∑
j=1

∑I
i=1Gi,jYi,j∑I

i=1G
2
i,j +

∑I
i=1 Y

2
i,j

− 1

I

I∑
i=1

J∑
j=1

Gi,j log Yi,j (20)

where I is the number of voxels; J is the number of classes; Yi,j and Gi,j denote the
probability output and one-hot encoded ground truth for class j at voxel i, respectively.
For a detailed explanation of all terms we urge the reader to refer (Hatamizadeh et al.,
2021).

The UNETR was implemented by the authors in PyTorch and MONAI and trained
using a NVIDIA DGX-1 server. All models were trained with the batch size of 6, using
the AdamW optimizer (Loshchilov and Hutter, 2019) with initial learning rate of 0.0001 for
20,000 iterations. For the specified batch size, the average training time was 10 hours for
20,000 iterations. The transformer-based encoder follows the ViT-B16 (Dosovitskiy et al.,
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2020) architecture with L=12 layers, an embedding size of K=768. The patch resolution
was 16 × 16 × 16. For inference a sliding window was used with an overlap portion of 0.5
between the neighboring patches. The authors did not use any pre-trained weights for the
transformer backbone (e.g. ViT on ImageNet) since it did not demonstrate any performance
improvements for the medical images.

Appendix C. Additional Visual Results

In this section we show additional visual results (Figures 3,4,5) from the IXI and Fast MRI
dataset at different super resolution factors for the different ablation settings. The figures
show the original image and the reconstructed image along with the difference image. They
clearly illustrate the important contribution of each of the loss terms, and the adverse
impact on super resolution if we exclude different terms.

Appendix D. Computation Time

The original UNETR model has 92.58 Million parameters, and our finetuned model has
similar number of parameters at 93.4 Million. The training time on a NVIDIA Tesla V100
GPU was 10 hours for 20, 000 iterations for the finetuning stage. The feature disentangle-
ment network took 18 hours to train for 100 epochs. For the actual super resolution step,
it took us 14 hours to train for 80 epochs. Note that feature disentanglement and ViT fine-
tuning wer pre-trained and while training the super resolution network we only extracted
features from them

The original UNETR model’s inference time was 12.08s. Feature extraction from the
finetuned UNETR model took 1.3s, while the disentangled feature extraction took 0.05
seconds per image. For the actual super resolution at inference stage it took 1.2 seconds
for 2x upsampling for a 512× 512 image

Appendix E. Architecture of Super Resolution Network

Figure 6 shows the detailed architecture of the super resolution network’s generator and
discriminator components. In the generator (Figure 6 (a)) the input low resolution image
ILR is passed through a convolution block followed by ReLU activation. The output is
passed through a residual block with skip connections. Each block has convolutional layers
with 3×3 filters and 64 feature maps, followed by batch normalization and ReLU activation.
This output is subsequently passed through multiple residual blocks. Their output is passed
through a series of upsampling stages, where each stage doubles the input image size.
The output is passed through a convolution stage to get the super resolved image ISR.
Depending upon the desired scaling, the number of upsampling stages can be changed. The
discriminator outputs the Ladv in Eqn 9, and is defined as:

Ladv,SR(E,G,D) = Elr∼LR [− log(D(G(E(lr))))] (21)

where LR is the set of low resolution images and G(E(lr)) is the super resolved high
resolution image. The other two loss terms, LV iT ,Ltex,Lstr, have been defined before.
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For IXI Image Dataset at 2x superresolution

Figure 3: Visualization of superresolution. For each figure the top row is the original image
followed by the difference image inthe bottom row. Column 1- original image;
Reconstructed Image using: Column 2- Our Proposed method; Column 3 - Lstr+
LV iT ; Column 4 - Ltex + LV iT ; Column 5 - Ltex + Lstr; Column 6 - LV iT .
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For IXI Image Dataset at 4x superresolution

Figure 4: Visualization of superresolution. For each figure the top row is the original image
followed by the difference image inthe bottom row. Column 1- original image;
Reconstructed Image using: Column 2- Our Proposed method; Column 3 - Lstr+
LV iT ; Column 4 - Ltex + LV iT ; Column 5 - Ltex + Lstr; Column 6 - LV iT .

Appendix F. Loss Plots

In figure 7 we show the loss plots for training, validation and test data splits ont he IXI
brain image dataset. We see that the training error decreases gradually , which is also
observable for the validation and test errors, although their magnitudes are higher than the

17



Mahapatra Ge

For FastMRI Image Dataset at 2x superresolution

For FastMRI Image Dataset at 4x superresolution

Figure 5: Visualization of superresolution results. For each figure the top row is the original
image followed by the difference image inthe bottom row. Column 1- original
image; Reconstructed Image using: Column 2- Our Proposed method; Column 3
- Lstr +LV iT ; Column 4 - Ltex+LV iT ; Column 5 - Ltex+Lstr; Column 6 - LV iT .

training error. The plots show that there is minimal chance of overfitting of the models and
the results are not biased.

Appendix G. Comparison With (Feng et al., 2021b)

The results of (Feng et al., 2021b) come up as worse than bicubic interpolation on the IXI
dataset. This is surprising considering that they use a task transformer network. In our
re-implementation we report better results than those reported on the paper (Feng et al.,
2021b) since we devote significant bit of time in finetuning the parameters. Our experiments
show that by removing the task transformer component the performance degrades but is
still better than the numbers in (Feng et al., 2021b). While it is difficult to ascertain the
reason behind their low performance, a possible reason could be the architecture of the task
transformer network. This requires further investigation and is beyond the scope of our
current work.
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(a)

(b)

Figure 6: (a) Generator Network; (b) Discriminator network. n64s1 denotes 64 feature
maps (n) and stride (s) 1 for each convolutional layer..
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(a)

(b)

Figure 7: Loss plots for (a) UNETR Fine tuning using the IXI dataset; (b) Image super-
resolution training for IXI dataset.
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