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ABSTRACT

Mixed-precision quantization, where a deep neural network’s layers are quantized
to different precisions, offers the opportunity to optimize the trade-offs between
model size, latency, and statistical accuracy beyond what can be achieved with
homogeneous-bit-width quantization. However, the search space for layer-wise
quantization policies is intractable, and the execution latency of mixed-precision
networks is related non-trivially and non-monotonically to precision, depending
on the deployment target. This establishes the need for hardware-aware, directed
heuristic search algorithms. This paper proposes a hybrid search methodology for
mixed-precision network configurations consisting of a hardware-agnostic differ-
entiable search algorithm followed by a hardware-aware heuristic optimization to
find mixed-precision configurations latency-optimized for a specific hardware tar-
get. We evaluate our algorithm on MobileNetV1 and MobileNetV2 and deploy the
resulting networks on a family of multi-core RISC-V microcontroller platforms,
with different hardware characteristics. We achieve up to 29.2% reduction of end-
to-end latency compared to an 8-bit model at a negligible accuracy drop from
a full-precision baseline on the 1000-class ImageNet dataset. We demonstrate
speedups relative to an 8-bit baseline even on systems with no hardware support
for sub-byte arithmetic at negligible accuracy drop. Furthermore, we show the
superiority of our approach to both a purely heuristic search and differentiable
search targeting reduced binary operation counts as a proxy for inference latency.

1 INTRODUCTION

The number of internet of things (IoT) devices deployed is growing rapidly and is projected to
reach 19.1 billion by 2025 (Statista, Inc., 2022). Concurrently, the field of deep learning (DL)
has developed very rapidly, with DL-based algorithms currently representing the state of the art
in applications such as image recognition (Brock et al., 2021), natural language processing (Bao
et al., 2021), processing of biomedical data (Ingolfsson et al., 2020) and many more. To process the
data collected by IoT sensor nodes accurately, efficiently and with an adequate level of privacy, the
trend has been to execute DL algorithms directly on the edge devices that collect it. The application
scenarios for IoT nodes dictate that these devices be battery-powered and low-cost, which imposes
severe constraints on their power consumption and memory available on the node. Microcontroller
units (MCUs) have been a popular target for edge deployment of Deep Neural Network (DNN) due
to their ubiquity and low cost, and extensive research has been conducted into designing efficient
DNN models and techniques to enable inference on MCUs (Lin et al., 2021; Banbury et al., 2021).

An important technique to reduce the memory footprint of DNNs is quantization, where model pa-
rameters and intermediate activations are represented in low-precision formats. It has been shown
that integer quantization to 8 bits does not impact a model’s statistical performance (Jain et al.,
2020), and new generations of MCUs make use of Single Instruction Multiple Data (SIMD) instruc-
tions to enable faster and more energy-efficient execution of programs implementing 8-bit arithmetic
(Gautschi et al., 2017; Arm Ltd.). Quantization to even lower bit-widths has also seen widespread
interest (Choi et al., 2018; Zhou et al., 2017; Alemdar et al., 2017) and the hardware community has
followed suit, proposing low-precision DNN execution engines as well as instruction set architecture
(ISA) extensions to accelerate networks quantized to sub-byte precision. However, homogeneous

1



Under review as a conference paper at ICLR 2023

quantization to sub-byte precisions often incurs a non-negligible accuracy penalty. To find the best
trade-off between execution latency and statistical accuracy, mixed-precision quantization proposes
to quantize different parts (usually at the granularity of individual layers) of the network to different
precisions. As the search space of mixed-precision configurations for a given network is expo-
nential in the number of layers and thus intractable, various works have proposed directed search
algorithms for such configurations. Multiple works have applied differentiable neural architecture
search (DNAS) to mixed-precision search. However, these approaches generally rely on a proxy
for latency, such as binary operation (BOP) count, to guide the search (van Baalen et al., 2020; Cai
& Vasconcelos, 2020). On real hardware platforms, latency is highly dependent on factors such as
hardware implementation, memory hierarchy, tiling, and kernel implementation, none of which are
directly linked to the number of BOPs in a network. In this work, we propose a mixed-precision la-
tency optimization method consisting of a hardware-agnostic differentiable search step based on the
Bayesian Bits algorithm (van Baalen et al., 2020), followed by a hardware-aware, profiling-based
heuristic which both reduces execution latency and improves accuracy by increasing the precision
in layers where higher precisions achieve lower latency. To reach a desired target latency, the con-
figurations can be further refined in an optional greedy search step. In evaluations on MobileNetV1
(MNv1) and MobileNetV2 (MNv2), deployed to a cycle-accurate RISC-V multi-core simulator, our
approach results in an accuracy-latency trade-off curve that dominates those produced by either dif-
ferentiable search or greedy heuristics on their own. To our best knowledge, we demonstrate for
the first time end-to-end deployment of mixed-precision networks to an MCU-class platform that
exhibit not only a reduced memory footprint but also reduced execution latency by up to 29.2% at
full-precision equivalent classification accuracy. Our key contributions are the following:

• We present a lightweight method to find latency-optimized mixed-precision quantization
configurations for DNNs, consisting of a hardware-agnostic differentiable model search
and hardware-aware heuristics, allowing the quick generation of optimized configurations
for different platforms,

• we compose an end-to-end flow consisting of precision search, training, generation of in-
tegerized models and deploy the found configurations on a cycle-accurate simulator for
high-performance RISC-V MCU systems and

• we analyze the resulting accuracy-latency trade-offs, showing that our approach achieves
an end-to-end latency reduction by up to 29.2% vs. 8-bit quantization at full-precision
equivalent classification accuracy and finds Pareto-dominant configurations with respect to
homogeneous 4-bit quantization.

2 RELATED WORK

Approaches to mixed-precision configuration search in literature can be broadly clustered into three
categories: Differentiable search algorithms which jointly train precision-selection parameters and
model parameters, static precision assignment, where the precision of each layer is determined
off-line based either on heuristic criteria or model statistics and reinforcement learning (RL)-based
approaches which train a RL agent to assign precisions to each layer.

van Baalen et al. (2020) adopt a differentiable-search approach, which we adapt for the first step of
our algorithm. In their Bayesian Bits algorithm, quantization to a given precision is decomposed
by first quantizing a tensor to the lowest supported bit-width, and higher precisions are recovered
by adding the difference to the next quantization level to the quantized tensor. During training, the
addition of the error tensors is controlled by stochastic, continuous-value gates whose distribution
is parametrized by trainable parameters. To encourage low-precision quantization, a regularization
term is added to the loss, with each precision gate contributing a term proportional to the BOP cost
its associated layer incurs in the precision level controlled by the gate. EdMIPS (Cai & Vasconcelos,
2020) uses a less complex approach, training gate parameters for each available precision which are
used to assemble the final tensor by weighting its differently quantized versions with the softmax
distribution parametrized by the gates. The regularizer term used is analogous to that of Bayesian
Bits, with a term proportional to the expected value of BOPs being added to the classification loss.
Nikolić et al. (2020) take a similar approach, learning a single continuous parameter used to inter-
polate between bit-widths per layer, and Wu et al. (2018) train only weight precisions, using the
Gumbel Softmax technique (Jang et al., 2017) to sample the precision gates’ values. All of these
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Figure 1: Overview of the proposed algorithm. Mixed-precision configurations (MP CFGs) for a
given topology are first generated using Bayesian Bits. These configurations are then optimized for
the target platform using profiling results for the layer types occurring in the topology by increas-
ing the precisions in layers where this results in lower latency (LAT.). Optionally, the resulting
configurations can be further refined to meet a latency target using a greedy heuristic. The final
configuration is fine-tuned with Quantization-Aware Training (QAT) using the Trained Quantization
Thresholds (TQT) algorithm, after which it can be deployed to the target hardware. Green boxes
represent steps with low computational effort while steps with high computational effort (i.e., in-
volving neural network training) are represented by red boxes.

algorithms have in common that the objective functions use BOP count (or another quantity that is
monotonically related to precision, such as model size) as the target metric. As we show in Section 3,
BOP count does not necessarily correlate with latency, and there is no trivial adaptation to enable
these algorithms to optimize for execution latency directly. Furthermore, differentiable search does
not allow for enforcing hard constraints on the configurations during the search.

In contrast, techniques performing static assignment of layer-wise precisions may target any per-
formance metric, including execution latency, but can not directly optimize statistical accuracy at
the same time. Rusci et al. (2019) greedily reduce weight precision to allow a network to fit in on-
device storage and decrease activation precision of those layers which would not otherwise fit into
device memory. As their target platform is an off-the-shelf MCU without native sub-byte arithmetic
support, the low-precision operations incur runtime overhead, and the reduced memory footprint
comes at the cost of increased runtime latency. Yao et al. (2020) calculate a second-order sensitivity
metric for each layer and use integer linear programming (ILP) to optimize layer-wise precisions for
execution latency, model size or BOP count while minimizing the estimated cumulative disturbance
due to quantization.

In the category of RL-based algorithms, Wang et al. (2019) use deep deterministic policy gradient
(DDPG) and restrict the agent’s action space to networks that fulfill a user-determined (latency, en-
ergy, or model size) constraint, such that the reward function only considers the evaluated network’s
accuracy drop relative to full-precision accuracy. Elthakeb et al. (2020) use a combined reward func-
tion incorporating both the state of quantization and the classification accuracy with the proximal
policy optimization (PPO) actor-critic algorithm to find weight-only quantization policies.

3 FREE BITS

Free Bits is a multi-step method to find mixed-precision configurations of DNNs optimized for low
latency on a given target hardware platform. In the first step, we apply a variant of Bayesian Bits
with different regularizer strengths to find reduced-precision configurations of the targeted network
architecture. The Bayesian Bits regularizer penalizes high BOP counts and has no concept of latency
(and indeed does not support targeting latency optimization directly, see Section 3.1). Thus, the
resulting configurations will parametrize mixed-precision networks which are not optimized for any
particular hardware platform and which may even exhibit higher inference latency than, e.g., an
all-8-bit baseline on the target platform.

In the second step, we optimize the mixed-precision configurations found with Bayesian Bits for a
specific target. To achieve this, we first profile the latency of each unique layer type in the network in
all allowed precision configurations on the target platform. This profiling data is used to update the
initial configuration by choosing, for every layer in the network, the lowest-latency precision setting
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that is higher or equal to that of the initial configuration. As the precision increase is expected to
improve both latency and statistical accuracy, we name this step the free bits heuristic.

The latency of a mixed-precision network resulting from the first two steps is not bounded by a hard
constraint, and if no satisfactory configuration is found, we apply a greedy heuristic in the third step
to reach the latency target. When starting from a configuration with latency higher than the target,
the heuristic successively decreases the precision of layers where this results in the largest latency
reduction until the latency target is met. When starting from a configuration with a latency lower
than the target, precision is increased in those layers where the latency penalty is the lowest.

The final configuration is then fine-tuned using a modified version of the TQT algorithm (Jain et al.,
2020) and automatically converted to an integer-only model, which can be fed to a deployment
backend for the target platform.

Our method emphasizes versatility and efficiency: Decoupling the differentiable search for low-
precision configurations from the platform-specific latency optimization means that the computa-
tionally intensive first step only needs to be performed once for every network. From the mixed-
precision configurations it produces, latency-optimized configurations can be generated for different
hardware targets efficiently, as the second and third steps only require profiling data from the target
platform.

3.1 DIFFERENTIABLE MIXED-PRECISION SEARCH

To find the initial mixed-precision configurations which are latency-optimized in the second step,
we apply two variants of the Bayesian Bits algorithm. Bayesian Bits aims to reduce a network’s
total BOP count with a regularizer that penalizes each precision gate’s contribution to the expected
BOP count individually (see also Section 2). There are two reasons why the algorithm cannot tar-
get latency directly. First, Bayesian Bits treats activation and linear operator layers individually,
summing up the regularizer terms for every layer and optimizing each layer’s gates independently.
However, the latency of a single layer is determined jointly by the precision of input activations and
weights and cannot be decomposed into additive contributions from each precision. Second, the reg-
ularizer terms for an individual layer’s gates are added together, yielding a monotonously increasing
penalty as a layer’s expected precision increases. As shown in Figure 4, this is not necessarily the
case for the execution latency of a layer: Instead, a layer may have lower latency when executed
in a higher precision than in a lower one, depending on the hardware platform. In addition to the
original Bayesian Bits algorithm, we also employ a modified version where the gate parameters for
each precision are shared between a linear operator layer and its input activation, enforcing equal
input and weight precisions. This modification accounts for the fact that on our target platforms, the
theoretical throughput for a layer with non-equal activation and weight precisions is bounded by the
higher of the two precisions.

3.2 FREE BITS HEURISTIC

We update the configurations found by the latency-agnostic Bayesian Bits with a target-specific
heuristic using profiling data from the hardware target platform. This step relies on two core
ideas: First, we assume our target platform executes networks layer-by-layer, which implies
Lnet ≈

∑N
i=1 Li for the total execution latency Lnet of an N -layer network where the i-th layer is

executed with latency Li. This is the case for most systems on which DNNs inference is run. Sec-
ond, increasing a layer’s input activation or weight precision never decreases the network’s statistical
accuracy.

Following the first assumption, we characterize each unique linear operator in the target network
as a layer type. A layer type is defined as the tuple of all parameters which determine how a com-
putational kernel is invoked, e.g., input dimensions, number of input/output channels, number of
channel groups, and kernel size. For each layer type occurring in the network, we measure the exe-
cution latency on the target platform for all supported combinations of input and weight bit-widths
(bin, bwt). With this estimation of {Li}, i ∈ [1, N ], we iterate over the layers in the network found
by Bayesian Bits and check for every layer if higher-precision configurations of the same layer type
with a lower estimated latency exist. If so, we update the layer’s precision configuration to that with
the lowest latency estimation. By the two assumptions above, the resulting network’s execution la-
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Algorithm 1 Profiling-based Heuristic Precision Search
Input:
LD: Latency dictionary mapping layer type c and precisions (bin, bwt) to a measured latency
Cnet: Dictionary of layer types and precisions representing a mixed-precision network, of

the form
{
i :

(
ti,

(
biin, b

i
wt

))}N

i=1
Pall: Set of allowed combinations (bin, bwt) of input and weight precisions

Output:
C ′

net: Latency-optimized mixed-precision configuration of the input network
function HIGHER((bin,1, bwt,1), (bin,2, bwt,2)) ▷ Returns True if precision 1 ≥ precision 2

return (bin,1 ≥ bin,2) ∧ (bwt,1 ≥ bwt,2)
end function
C ′ ← C
for all i,

(
ti,

(
biin, b

i
wt

))
∈ Cnet do

lati0 ← LD
[(
ti,

(
biin, b

i
wt

))]
▷ Initial latency

cands←{(bin, bwt) | (bin, bwt) ∈ Pall,
LD

[(
ti, (bin, bwt)

)]
≤ lati0,

HIGHER((bin, bwt), (b
i
in, b

i
wt))}

▷ Select lower-or-equal-latency configu-
rations with higher-or-equal precisions

best← argmin
(bin,bwt)∈cands

LD[(ti, (bin, bwt))] ▷ Select lowest-latency candidate

C ′
net[i]← (ti, best) ▷ Update net configuration

end for

tency and statistical accuracy will be upper-bounded and lower-bounded, respectively, by those of
the configuration found by Bayesian Bits. As it is expected to produce strictly superior configura-
tions in terms of latency and statistical accuracy, we call this procedure the free bits heuristic. A
pseudocode description of the procedure is shown in Algorithm 1.

3.3 GREEDY MIXED-PRECISION SEARCH

The configurations produced by the free bits heuristic can optionally be further refined with a greedy
heuristic. Given a latency target Ltgt and a network configuration C0 with estimated execution la-
tency L0, we aim to modify C0 to reach a latency lower than, but as close as possible to, Ltgt.
If L0 < Ltgt, we apply the heuristic in the upward direction, seeking to increase the precision of
as many layers as possible to maximize the accuracy improvement. Accordingly, we increase the
precision of layers where this carries the lowest latency penalty. Conversely, in the downward di-
rection (i.e., L0 > Ltgt), we want to decrease the precision of as few layers as possible to minimize
accuracy drop and thus choose the layers where a precision reduction results in the largest latency
reduction. In the case L0 > Ltgt, we additionally try to keep the layer-wise precision reductions
applied ”small”, e.g, we prefer modifying two layers’ configurations from 8b/8b to 8b/4b to modi-
fying a single layer from 8b/8b to 8b/2b to achieve the same latency improvement. This is based on
the experience that very low bit-widths have a disproportionate impact on classification accuracy. A
pseudocode description of the two versions of the greedy heuristic is given in Appendix A.2.

This greedy heuristic can be applied to arbitrary C0, and, applied to homogeneous-precision baseline
configurations, serves as a test to assess the utility of the initial differentiable-search step: If applying
this low-cost heuristic directly yields an accuracy-latency curve that is not Pareto-dominated by
that resulting from the full algorithm, the computationally expensive differentiable search serves no
useful purpose. The results of this comparison are detailed in Section 4.

3.4 QUANTIZATION-AWARE FINE-TUNING AND DEPLOYMENT

Having arrived at a latency-optimized mixed-precision configuration, we perform QAT to fine-tune
the network’s parameters using a generalized version of the TQT algorithm. Our implementation of
TQT differs from the original algorithm only in that we do not force clipping bounds to be exact
powers of two. For the conversion of full-precision networks to fake-quantized (FQ) models, QAT
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and generation of deployable integer-only models, we use the [omitted for double-blind review]1

framework, which allows automating large parts of this flow. For integerization, we follow the
procedure referred to as integer channel norm (ICN) by Rusci et al. (2019) and dyadic quantization
by Yao et al. (2020). The inputs to element-wise addition nodes which occur in networks with
residual connections are quantized to 8 bits, and an equal quantization step size is enforced during
the QAT phase. Likewise, the outputs of adder nodes are always quantized to 8-bit precision.

4 RESULTS

4.1 EXPERIMENTAL SETUP

We performed experiments on two network architectures, applying the procedure proposed in Sec-
tion 3 to MNv1 (Howard et al., 2017) and MNv2 (Sandler et al., 2018). We used width multipliers
of 0.75 for MNv1 and 1.0 for MNv2. The input resolution was 224 × 224 for both networks. We
train our networks on the ILSVRC2012 (Russakovsky et al., 2015) 1000-class dataset and report
top-1 classification accuracies on the validation set.

Differentiable Mixed-Precision Search and QAT Fine-Tuning We applied the two variants of
Bayesian Bits described in Section 3.1 to the MNv1 and MNv2 network topologies. The hyper-
parameters for Bayesian Bits training are listed in Table 3. The configurations produced by our
algorithm (as well as those produced by Bayesian Bits in the case of MNv1) were fine-tuned with
TQT using the hyperparameters listed in Table 2. In accordance with the capabilities of our hard-
ware target (see below), the precisions Bayesian Bits can select from are 2, 4, and 8 bits for both
weights and activations. We did not use the pruning mechanism of Bayesian Bits, i.e., 2-bit gates
are always fully turned on.

Profiling, Deployment and Hardware Targets We use [omitted for double-blind review]’s auto-
mated integerization flow to generate precision-annotated, integer-only ONNX models, which are
consumed by the DORY (Burrello et al., 2020) deployment backend. DORY generates compilable
C code leveraging the PULP-NN (Garofalo et al., 2020a) kernel library, which we run on GVSOC,
a cycle-accurate, open-source simulator for multi-core RISC-V systems. The hardware platforms
we target are open-source RISC-V MCUs of the parallel ultra-low-power (PULP) family. One core,
designated the fabric controller, orchestrates system operation, while compute-intensive tasks are
executed on a PULP cluster of 8 RI5CY cores (Gautschi et al., 2017). System memory is split into
two parts. A low-bandwidth L2 memory (parametrized to 512KiB for MNv1 and 640KiB for Mo-
bileNetV2 to accommodate the larger code size) stores program code and data and is used for partial
result storage. The cluster cores operate on 64KiB of high-bandwidth L1 scratchpad memory, op-
timized for low access contention. This hierarchical memory structure necessitates tiled execution
of a network’s layers with each tile’s input, output, and weight data fitting into the L1 scratchpad.
Tiling is automatically performed by DORY. If the total size of a layer’s inputs, outputs, and weights
exceeds the size of the L2 memory, an off-chip HyperRAM memory is used to store intermediate
activations. Off-chip memory is also used to store the weights for all network layers.

All cores in the target system implement the base RV32IMF ISA in addition to the custom XpulpV2
extensions. We evaluate our found configurations on three systems, each containing a cluster whose
cores have varying degrees of sub-byte arithmetic support. The first system’s cluster implements
only XpulpV2, which supports only 8-bit SIMD arithmetic. We refer to this system as XpulpV2.
The second system implements the XpulpNN (Garofalo et al., 2020b) extension, which additionally
provides support for packed-SIMD sub-byte arithmetic (for 2- and 4-bit data). However, XpulpNN’s
sub-byte arithmetic instructions require operands to have equal bit-widths. For operands of mis-
matching precisions, the lower-precision operands must first be unpacked in software to the larger
data size. We refer to this version of the system as XpulpNNv1. The third system’s cluster imple-
ments an improved version of XpulpNN which eliminates the runtime overhead from unpacking
lower-precision operands by performing it transparently in hardware. We refer to this version of the
system as XpulpNNv2. To generate the profiling data used by the heuristic steps of our algorithm,
we again use DORY to generate and export dummy networks for all layer types in all precision
configurations.

1Code will be open-sourced upon publication
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(a) (b)

Figure 2: Latency-Accuracy trade-off of mixed-precision MobileNetV1 configurations running on a
PULP system with XpulpNNV1 ISA extensions. a shows the configurations found by Bayesian Bits
before and after applying the free bits heuristic, with grey arrows indicating the effect of applying the
heuristic. b shows the Pareto-optimal configurations from a along with configurations produced by
the greedy search described in Section 3.3. BB orig./locked: Configurations found by the original
Bayesian Bits algorithm and the modified version enforcing symmetric activation/weight precisions,
respectively. FB: Free bits. GU/GD: Greedy search in the upward/downward direction.

4.2 LATENCY-ACCURACY TRADE-OFFS FOR XPULPNNV1

MobileNetV1 Figure 2a shows the latency-accuracy trade-off for MNv1 deployed to a PULP sys-
tem with the XpulpNNv1 ISA extensions, with the effect of the free bits heuristic indicated. We
observe that the original Bayesian Bits algorithm generally does not produce low-latency config-
urations. This confirms that even on hardware with native sub-byte arithmetic support, low BOP
count does not directly translate to low latency. With two exceptions, applying the free bits heuris-
tic improves the latency of all configurations substantially while increasing classification accuracy.
For the homogeneous-precision 4 b/4 b baseline, the heuristic increases the precision of 12 layers,
improving latency and accuracy by 7% and 0.7 percentage points, respectively. As symmetric acti-
vation and weight precisions are theoretically optimal for XpulpNNv1’s hardware implementation
of sub-byte arithmetic, this is a non-trivial result. The free bits heuristic lifts the previously uncom-
petitive configurations found by the original Bayesian Bits algorithm to the Pareto front, leading to
accuracy and latency gains of 1.4 − 6.6 percentage points and 12.3% − 61.6%, respectively. The
most accurate configuration matches the 8b/8b baseline in statistical accuracy at 69.1% while reduc-
ing execution latency by 7.6%, and the configuration at the Pareto front’s knee point improves the
execution latency by 27.8% at a classification accuracy within 0.2 percentage points of the 32-bit
floating-point baseline of 68.8%.

Figure 2b shows the effect of applying the greedy search (see Section 3.3) to the configurations pro-
duced by Bayesian Bits and the freebie heuristic, as well as the homogeneous-precision baselines.
The greedy heuristic produces mostly non-optimal configurations when applied in the downward di-
rection. In contrast, when applied in the upward direction to configurations found by our combined
algorithm, it yields Pareto-optimal networks, refining the original Pareto front and finding a con-
figuration that reduces latency by 29.2% at an accuracy drop of only 0.3% from the full-precision
baseline. Finally, we note that while the configurations produced by the upward greedy heuristic
starting from the 4b/4b baseline are completely dominated by those found by Bayesian Bits and the
free bits heuristic, they form a Pareto front which lies within 0.3 percentage points of classification
accuracy.

We conclude that i) the differentiable-search step is indeed helpful in finding mixed-precision config-
urations optimized for low end-to-end latency, ii) the greedy search step applied to these configura-
tions in the upward direction reliably refines the Pareto front, and iii) greedy search which increases
layer-wise precisions starting from a low-precision baseline can provide a low-cost alternative to the
multi-step procedure.

MobileNetV2 Figure 3 shows the latency-accuracy trade-off of MNv2 configurations produced by
Bayesian Bits modified with the free bits heuristic running on the XpulpNNv1 system. The baseline
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Figure 3: Latency-Accuracy tradeoff of MobileNetV2 configurations optimized for XpulpNNv1.
The grey arrow indicates the effect of applying the heuristic to the 4b/4b baseline.

Acc. Margin ISA MobileNetV1 MobileNetV2
Lat. vs. 8b Acc. Lat. vs. 8b Acc.

8b Baseline all +0% 69.1% +0% 71.5%

0.5 pp.
XPv2 −5.5% 69.3% −3.4% 71.0%
XPNNv1 −27.9% 68.6% −10.9% 71.2%
XPNNv2 −28.6% 68.6% −15.3% 71.0%

1.5 pp.
XPv2 −5.5% 69.3% −6.3% 70.7%
XPNNv1 −34.4% 67.6% −15.1% 70.4%
XPNNv2 −35.1% 67.6% −15.3% 71.0%

4b + FB
XPv2 −3.5% 67.7% −7.7% 70.9%
XPNNv1 −37.1% 66.3% −12.8% 69.9%
XPNNv2 −39.8% 66.6% −25.7% 69.6%

4b Baseline
XPv2 +49.9% 65.6% +37.0% 69.3%
XPNNv1 −32.3% 65.6% +48.9% 69.3%
XPNNv2 −38.3% 65.6% −23.4% 69.3%

Table 1: Configurations within margins of 0.5 and 1.5 percentage points (pp.) of 8b/8b classification
accuracy for PULP systems implementing different ISA extensions: XpulpV2 (XPv2), XpulpNNv1
(XPNNv1) and XpulpNNv2 (XPNNv2). The configurations listed here were found without the
greedy heuristic search step. 4b+FB: target-specific free bits heuristic applied to homogeneously
quantized 4b/4b network.

4b/4b configuration contains many asymmetric-precision convolutional layers due to adder node
outputs being quantized to 8 bits. This leads to a latency higher than that of the 8b/8b baseline, which
is reduced by the free bits heuristic by 46%. At the same time, classification accuracy is improved by
0.6 percentage points. Nevertheless, the resulting configuration is not Pareto-optimal with respect to
those produced by our algorithm. In particular, the locked-precision version of Bayesian Bits, when
combined with the free bits heuristic, produces configurations that dominate the optimized 4b/4b
baseline and the 8b/8b baseline. The configuration at the Pareto front’s knee point reduces execution
latency by 10.9% at an accuracy penalty of only 0.3 percentage points relative to the 8b/8b baseline.

4.3 FREE BITS ACROSS DIFFERENT TARGET PLATFORMS

To evaluate the portability of our algorithm, we optimized MNv1 and MNv2 configurations found
with Bayesian Bits for the three different PULP systems with different levels of support for sub-
byte arithmetic, described in Section 4.1. Table 1 shows the lowest-latency configurations within
0.5 and 1.5 percentage points of classification accuracy of the 8b/8b baseline. The configurations
listed were found with only the first two steps of our algorithm. Notably, our approach achieves
latency reductions even on the XpulpV2 system without hardware support for sub-byte arithmetic,
which can be attributed to a lower data movement overhead thanks to larger tile sizes. While relative
latency reduction and the resulting accuracies are very similar between XpulpNNv1 and XpulpNNv2
on MNv1, significant differences can be observed on MNv2’s 4b/4b baselines, both before and after
applying the free bits heuristic. On XpulpNNv2, both exhibit significantly lower latency than the
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8b/8b baseline, while on XpulpNNv1 the unoptimized baseline is uncompetitive and the optimized
configuration is dominated in accuracy and latency by other configurations.

4.4 ANALYSIS

(a)

(b)

Figure 4: (a): Results of the layer-wise profiling of MNv1 on systems implementing XpulpV2
(XPv2), XpulpNNV1 (XPNNv1) and XpulpNNV2 (XPNNv2). Notably, depthwise (DW) layers
may see a speedup from sub-byte quantization even on XpulpV2, which has no hardware support
for sub-byte arithmetic. (b) shows the modifications performed by the free bits heuristic for the three
target platforms. The free bits (FB) heuristic acts differently according to each hardware platform’s
characteristics.

To explain the mechanism by which the free bits heuristic reduces latency on different target plat-
forms, it is helpful to consider the results of the layer-wise profiling step, shown in Figure 4a. Despite
having no native sub-byte arithmetic support, XPv2 sometimes exhibits speedups from reduced pre-
cisions due to reduced tiling overheads in the memory-bound depthwise (DW) layers as well as in
the early layers of the network, which have the largest activation tensor sizes. Conversely, XPNNv1
supports sub-byte arithmetic, but non-DW layers with lower weight than activation precisions incur
overhead from weight unpacking, which results in lower performance. XpulpNNv2 does not see this
performance degradation as the unpacking is performed by the hardware with no latency penalty.
This explains the action of the free bits heuristic (Figure 4b): Activation and weight precisions of
non-DW layers are increased to 8 bits on many layers for XPv2 and set to be equal for XPNNv1,
while for XPNNv2, many layers are left in asymmetric precision.

5 CONCLUSION

In this paper, we have presented Free Bits, an efficient method to find latency-optimized mixed-
precision network configurations for inference on edge devices. Taking advantage of the fact that,
depending on the target platform, increasing input or weight precision may lead to lower execu-
tion latency, the method optimizes mixed-precision configurations found by the hardware-agnostic
Bayesian Bits differentiable search algorithm. To further refine the precision configurations found
in this way, a greedy heuristic can be applied. Deploying the MNv1 and MNv2 configurations found
with our algorithm on a family of high-performance MCU-class RISC-V platforms, we find that, i)
with hardware support for sub-byte arithmetic, MNv1 end-to-end latency can be reduced by 30%
while retaining full-precision equivalent accuracy, ii) even without such hardware support, mixed-
precision quantization enables a latency reduction of up to 7.7%, and iii) the found configurations
offer a superior accuracy-latency trade-off to homogeneous 4-bit and 8-bit quantization.
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A APPENDIX

A.1 TRAINING HYPERPARAMETERS

Table 2: QAT hyperparameters for MobileNetV1 and MobileNetV2 trained with TQT

MobileNetV1 MobileNetV2
Epochs 11 13
Batch Size 256 340
Opt. SGD w/ momentum 0.9 SGD w/ momentum 0.9
LR0 0.001 0.00075
LR decr. a 4,7 5,8
Quant. start b 0 1
Act. clip init. c Const. 6.0 Const. 6.0/Maxd

a LR is decreased by a factor of 0.1 at specified epochs
b Activations and weights are quantized starting from specified epoch
c Const. x: clipping bounds initialized to x,

Max: clipping bounds initialized to maximum value observed during unquantized training
d Activations inserted before and after adder nodes have clipping bounds initialized to Max, all

others to Const. 6.0

Table 3: Bayesian Bits hyperparameters for MobileNetV1 and MobileNetV2

MobileNetV1 MobileNetV2
Epochs 11 12
Batch Size 256 150
Net Opt. SGD w/ momentum 0.9 SGD w/ momentum 0.9
LR0,net 0.001 0.00075
Prec. Gate Opt. Adam Adam
LRgate 0.0001 0.0002
LR decr. c 4,7 4,7
Quant. start 0 0
Act. clip init. Const. 6.0 Const. 6.0
Φ0

a 2.0 2.0
µ0

b 0.01, 0.03, 0.06, 0.12 0.01, 0.03, 0.06, 0.12
a Initialization of precision gating parameters
b Global regularizer strength
c Only network parameters’ learning rate is decreased
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A.2 GREEDY LATENCY-MATCHING HEURISTICS

Algorithm 2 Greedy Heuristic Precision Search - Latency Reduction
Input:
LD: Latency dictionary mapping layer type t and precisions (bin, bwt) to a measured latency
Cnet: Dictionary mapping layer indices to layer types and precisions representing a

mixed-precision network with latency L0, of the form
{
i :

(
ti,

(
biin, b

i
wt

))}N

i=1
with∑N

i=1 LD[Cnet[i]] = L0

Pall: Set of allowed combinations bin, bwt of input and weight precisions
Op: Ordering of Pall, e.g. {2b : 0, 4b : 1, 8b : 2}
Ltgt > L0: Target latency

Output:
C ′

net: Latency-optimized mixed-precision configuration of the input network
function DIST((bin,1, bwt,1), (bin,2, bwt,2)) ▷ Returns distance between two

layer precisions based on Op

return Op [bin,1]−Op [bin,2] +Op [bwt,1]−Op [bwt,2]
end function
function GET MOVES(cfg, smax) ▷ Returns net configuration with largest latency de-

crease for each layer by decreasing each layer’s pre-
cision at most by smax

moves← cfg ▷ Initialize with starting configuration
for all i,

(
ti,

(
biin, b

i
wt

))
∈ cfg do ▷ Iterate over network layers

lati0 ← LD [cfg [i]] ▷ Initial latency of layer i
cands←{(bin, bwt) | (bin, bwt) ∈ Pall,

LD [(ti, (bin, bwt))] ≤ lati0,
DIST((bin, bwt) ,

(
biin, b

i
wt

)
) < smax}

▷ All precisions within
stepmax precision distance
with latency ≤ lati0

best← argmin
(bin,bwt)∈cands

LD [(ti, (bin, bwt))] ▷ Select lowest-latency candi-
date for layer i

moves [i]← (ti, best) ▷ Update configuration
end for
return moves

end function
C ′ ← C ▷ Initialize to original net configuration
for all stepmax ∈ [0, ..., 2 |Op|] do ▷ Prioritize low-distance modifications

moves← GET MOVES(C, stepmax)

if
∑N

i=1 LD [moves [i]] < Ltgt then ▷ Modified configuration satisfies latency target
while

∑N
i=1 LD [C ′ [i]] > Ltgt do ▷ Not all layers may need to be modified

moveappl ← argmax
i

LD [C [i]]− LD [moves [i]] ▷ Find highest-impact mod-
ification and apply it

C ′ [moveappl]← moves [moveappl]
moves← moves \moves [moveappl] ▷ Discard applied move

end while
return C ′

end if
end for
return Failure ▷ If no configuration was found, declare failure
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Algorithm 3 Greedy Heuristic Precision Search - Latency Increase
Input:
LD: Latency dictionary mapping layer type t and precisions (bin, bwt) to a measured latency
Cnet: Dictionary mapping layer indices to layer types and precisions representing a

mixed-precision network with latency L0, of the form
{
i :

(
ti,

(
biin, b

i
wt

))}N

i=1
with∑N

i=1 LD[Cnet[i]] = L0

Pall: Set of allowed combinations bin, bwt of input and weight precisions
Op: Ordering of Pall, e.g. {2b : 0, 4b : 1, 8b : 2}
Ltgt < L0: Target latency

Output:
C ′

net: Latency-optimized mixed-precision configuration of the input network
function HIGHER((bin,1, bwt,1), (bin,2, bwt,2)) ▷ Returns True if precision 1 > precision 2

return ((bin,1 > bin,2) ∧ (bwt,1 ≥ bwt,2)) ∨ ((bin,1 ≥ bin,2) ∧ (bwt,1 > bwt,2))
end function
function GET MOVES(cfg) ▷ Return layer-wise precision increases

with lowest latency degradation
moves← cfg ▷ Initialize to input config.
for all i,

(
ti,

(
biin, b

i
wt

))
∈ cfg do ▷ Loop over network layers

cands←{(bin, bwt) | (bin, bwt) ∈ Pall,
HIGHER((bin, bwt) ,

(
biin, b

i
wt

)
)}

▷ Find all higher-or-equal precision
configurations

if cands ̸= ∅ then
best← argmin

(bin,bwt)∈cands

LD [(ti, (bin, bwt))] ▷ Choose lowest-latency candidate

moves [i]← (ti, best) ▷ Modify layer’s configuration
end if

end for
return moves

end function
C ′ ← C ▷ Initialize to original net configuration
while True do ▷ Loop until failure or success

moves← GET MOVES(C ′) ▷ Increase layer-wise precision at minimal latency penalty
if moves == C ′ then

return Failure ▷ If no moves are found, the algorithm fails
end if

if
N∑
i=1

LD [moves [i]] < Ltgt then ▷ Moves do not increase latency past the target...

C ′ ← moves ▷ ...so apply all of them
else ▷ Moves can increase latency past the target

while True do
moveappl ← argmin

i
LD [moves [i]]− LD [C ′ [i]] ▷ Lowest-latency move

if
N∑
i=1

i ̸=moveappl

LD [C ′ [i]] + LD [moves [moveappl]] > Ltgt then

return C ′ ▷ If the move would increase latency past the target, return
else

C ′ [moveappl]← moves [moveappl] ▷ Otherwise, apply it
end if

end while
end if

end while
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