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Abstract

For the safe sharing pre-trained language mod-001
els, no guidelines exist at present owing to002
the difficulty in estimating the upper bound003
of the risk of privacy leakage. One problem004
is that previous studies have assessed the risk005
for different real-world privacy leakage sce-006
narios and attack methods, which reduces the007
portability of the findings. To tackle this prob-008
lem, we represent complex real-world privacy009
leakage scenarios under a universal parameter-010
ization, Knowledge, Anonymization, Resource,011
and Target (KART). KART parameterization012
has two merits: (i) it clarifies the definition013
of privacy leakage in each experiment and (ii)014
it improves the comparability of the findings015
of risk assessments. We show that previous016
studies can be simply reviewed by parameteriz-017
ing the scenarios with KART. We also demon-018
strate privacy risk assessments in different sce-019
narios under the same attack method, which020
suggests that KART helps approximate the up-021
per bound of risk under a specific attack or022
scenario. We believe that KART helps inte-023
grate past and future findings on privacy risk024
and will contribute to a standard for sharing025
language models.026

1 Introduction027

Recent natural language processing (NLP) has028

benefited from language models such as Trans-029

former (Vaswani et al., 2017), GPT (Radford et al.,030

2018), and BERT (Devlin et al., 2019). However,031

we face a privacy risk when sharing language mod-032

els since personal information in the pre-training033

data could be recovered from the models (Misra,034

2019; Hisamoto et al., 2020; Carlini et al., 2019,035

2021; Inan et al., 2021; Lehman et al., 2021; Vakili036

and Dalianis, 2021; Hoory et al., 2021).037

No guidelines for publishing pre-trained lan-038

guage models have been established since we lack039

knowledge about the impact of a model release040

on privacy safety. This is in contrast to the data041

itself, for which standards of processing, sharing, 042

and publishing have already been legislated in sev- 043

eral countries (The United States Department of 044

Health and Human Services, 2012; European Com- 045

mission, 2018). Alternatively, model providers 046

have published language models only when the 047

pre-training data is free of sensitive personal in- 048

formation. In the biomedical domain, for example, 049

BioBERT (Lee et al., 2019) and BioMegatron (Shin 050

et al., 2020) are publicly available, both of which 051

are pre-trained with biomedical articles. Clinical- 052

BERT (Huang et al., 2019), BlueBERT (Peng et al., 053

2019), UTH-BERT (Kawazoe et al., 2021), and 054

MS-BERT (D’Costa et al., 2020), which use man- 055

ually anonymized clinical records, have also been 056

published. However, EhrBERT (Li et al., 2019) and 057

AlphaBERT (Chen et al., 2020) are also pre-trained 058

with clinical records but have not been released. 059

How can we decide whether a language model 060

is safe enough to share? Studies have assessed the 061

privacy risk under various attacks and real-world 062

privacy leakage scenarios, but it has been difficult 063

to integrate them to estimate the upper bound of 064

the risk. Moreover, no studies have directly com- 065

pared the risk under the same definition of privacy 066

leakage with different attack methods or scenar- 067

ios. We attribute these shortcomings to a lack of 068

methodology to clarify the presupposed scenarios. 069

To address the issue, we represent a privacy leak- 070

age scenario as a set of primary factors under the 071

Knowledge, Anonymization, Resource, and Target 072

(KART) parameterization, as in Figure 1. The pri- 073

mary factors are as follows: (i) Prior knowledge 074

(K): information of the target people already known 075

to the attacker; (ii) Target information (T): personal 076

information that the attacker wishes to obtain; (iii) 077

Anonymization (A): removal of personal informa- 078

tion from the pre-training data; (iv) Auxiliary re- 079

sources (R): resources used by the attacker other 080

than the language model. We show that KART 081

can simplify complex scenarios assumed in previ- 082
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Figure 1: Scenario-aware privacy risk assessment using KART parameterization. Any privacy leakage experiment
implicitly or explicitly assumes the scenario where an attacker who has prior knowledge about a target person
attacks a pre-trained language model to obtain other personal target information. The attacker may also use auxil-
iary resources. The target information may or may not be in the pre-training data depending on the anonymization.
Parameterizing the assumed scenario would improve the portability of the findings of the experiment.

ous studies and assist risk comparison in different083

scenarios or attacks.084

Our contribution is an introduction of KART,085

which will enable comprehensive privacy risk as-086

sessment by improving scenario awareness and the087

portability of findings of past and future studies.088

2 Related Work089

2.1 Security of clinical records090

Data is not secure after only deleting attributes091

that alone can determine from whom the data origi-092

nated, such as names or IDs. The data can still be re-093

identified using remaining attributes and external094

data. Sweeney (2002) proposed the deletion or gen-095

eralization of attributes to prevent re-identification.096

Clinical records must be handled carefully097

as they contain sensitive health information098

that patients do not wish to spread unnecessar-099

ily (Fernández-Alemán et al., 2013; Mooney and100

Pejaver, 2018). Improper disclosure may lead to101

mental pain, biases in education and employment,102

and target marketing to vulnerable people (Price103

and Cohen, 2019). In the United States, the re-104

search use of health information is mainly regulated105

by the Federal Common Rule for human subject106

research and the Health Insurance Portability and107

Accountability Act of 1996 (HIPAA). The HIPAA108

Privacy Rule1 refers to sensitive clinical informa-109

tion as protected health information (PHI), such as110

clinical history, clinical test results, and genomes.111

General identifiers such as names and addresses112

1https://www.hhs.gov/hipaa/
for-professionals/privacy/index.html

are also PHI if linked with health information. The 113

HIPAA Privacy Rule obligates the 18 identifiers 114

listed in Appendix A to be removed from clinical 115

records for the second usage (The United States 116

Department of Health and Human Services, 2012). 117

2.2 Privacy attacks on language models 118

There are two types of prior study on the privacy 119

risk in NLP according to the attack method. 120

The first is on attacks to obtain personal infor- 121

mation in input texts from gradients or encoded 122

representations (Zhu et al., 2019; Song and Raghu- 123

nathan, 2020; Pan et al., 2020). The second is 124

on attacks to restore personal information in the 125

pre-training data from a model, which we review 126

further in Section 4. They are divided into member- 127

ship inference and model inversion. Membership 128

inference is a prediction of whether a document 129

was in the pre-training data (Shokri et al., 2017; 130

Misra, 2019; Hisamoto et al., 2020). Model inver- 131

sion is an estimation of specific attributes of target 132

people (Fredrikson et al., 2015; Carlini et al., 2019, 133

2021; Inan et al., 2021; Lehman et al., 2021; Vakili 134

and Dalianis, 2021; Hoory et al., 2021). 135

2.3 Generalization in privacy risk evaluation 136

It is difficult to estimate the upper bound of the 137

privacy risk from pre-trained language models cov- 138

ering numerous privacy leakage scenarios. Several 139

universal evaluation methods have been introduced. 140

Carlini et al. (2019) proposed exposure, the fre- 141

quency with which natural language generation 142

(NLG) reproduces canary sequences added to the 143

pre-training data. Inan et al. (2021) used the per- 144
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Table 1: Examples of the possible values of the K, A, R, and T factors in KART parameterization.
Factor Value Scenario

K
∅ The attacker has no prior knowledge

{(age, sex)p}p∈P The attacker already knows the age and sex of the target people

A
fHIPAA The pre-training data is anonymized under the HIPAA Privacy Rule

id The pre-training data is not anonymized at all

R

∅ The attacker has no resource other thanM

{D̃train} The attacker has obtained a corpus with a similar distribution to the pre-training data

{full namep}p∈P The attacker knows the full name of the non-target people in the pre-training data

T

{addressp}p∈P The attacker predicts the address of the target people (model inversion)

{(full name, address)p}p∈P The attacker predicts the full name and address of the target people together
(model inversion)

{1[d ∈ Dtrain]}d∈D The attacker predicts whether a document d ∈ D was in the pre-training data
(membership inference)

plexity with which a modelM outputs exact sub-145

strings of the pre-training data. If the substrings146

derive from a single person andM gives a far lower147

perplexity than other models, the disclosure can be148

actual privacy leakage rather than coincidental.149

Differential privacy (Dwork, 2006) is a con-150

straint on privacy risk integrated with privacy mech-151

anisms. In machine learning, a model M pre-152

trained on a dataset D is ε-differentially private153

if, for any adjacent dataset D′ different from D154

in a single record, the probability that a model155

M′ pre-trained on D′ is distinguished from M156

never exceeds the upper bound defined by ε. Model157

providers can determine the value of ε beforehand158

and ensure privacy by perturbing a model corre-159

spondingly during training (Abadi et al., 2016; Ker-160

rigan et al., 2020). Differential privacy is mathemat-161

ically guaranteed to be robust to any prior knowl-162

edge of the attacker. Hoory et al. (2021) assessed163

the practical privacy risk of an ε-differentially164

private language model using the exposure met-165

ric (Carlini et al., 2019).166

3 KART Parameterization167

We propose KART to characterize a privacy leak-168

age scenario with four primary factors. Refer to169

Table 1 for examples of the values of each factor.170

Personal information We denote personal infor-171

mation as categoryperson = value. For example,172

“full namep0 = Alice Roberts” means that the full173

name of the person p0 is Alice Roberts. We denote174

the universal set of all personal information in the175

world as IU : IU = {categoryperson}∀person,∀category.176

Let Dprivate denote a corpus, all of whose docu-177

ments are used for pre-training, and let P be the178

set of people in Dprivate. We denote the set of the179

personal information in Dprivate as IDprivate (⊂ IU ). 180

A factor: anonymization The A factor is an oper- 181

ation, which we denote as a, to anonymize Dprivate 182

to build pre-training data. Examples of a are the 183

complete manual deletion of personal information 184

under the HIPAA Privacy Rule (a = fHIPAA), au- 185

tomated anonymization, and no operation at all as 186

long as the model is strictly kept private (a = id). 187

We denote the pre-training data as Dtrain = 188

a(Dprivate) and the set of the remaining personal 189

information as IDtrain = a(IDprivate). 190

LetM be the pre-trained language model. M 191

may memorize some of the personal information in 192

a(IDprivate) during the pre-training. We denote such 193

memorization as m and the set of the memorized 194

information as m(a(IDprivate)). m(a(IDprivate)) is a 195

subset of a(IDprivate), which is a subset of IDprivate : 196

m(a(IDprivate)) ⊆ a(IDprivate) ⊆ IDprivate . 197

The attacker can obtain all of m(a(IDprivate)) in 198

the worst case, but the personal information not 199

memorized byM will not leak. 200

K and T factors: prior knowledge and target 201

information The K factor is the set of prior knowl- 202

edge about the target people that is already known 203

to the attacker such as full name, age, or sex. We de- 204

note the set as IK . IK is a subset of IU : IK ⊆ IU . 205

The T factor is the set of personal information 206

that the attacker aims to obtain, which we note as 207

IT . This greatly affects the definition of the privacy 208

risk since it determines which pieces of information 209

in the pre-training data are considered in the privacy 210

leakage. IK and IT are disjoint: IK ∩ IT = ∅. 211

In model inversion, IT is a subset of IU : IT ⊆ 212

IU . In membership inference, IT is existence or 213

absence of arbitrary documents in the pre-training 214
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data: IT = {1[d ∈ Dtrain]}d∈D.215

The notion of the K factor rests on the fact that216

the more prior knowledge available on a person, the217

more identifiable the person becomes after privacy218

attacks. Suppose that the attacker aims to obtain219

the disease names of a person p1 and has revealed220

that “diabetes” was in the pre-training data:221

IT ={diseasesp1}, {diabetes}⊂m(a(IDprivate)).222

The attacker does not yet know the diseases of p1223

since it is unclear who is diabetic in the pre-training224

data. However, if the attacker knows the full name225

of p1 (IK = {full namep1}) and the modelM as-226

sociates “diabetes” with the full name, the attacker227

can infer that p1 is diabetic. This is expressed as228

below with x̂ denoting the prediction of x:229

̂diseasesp1 ={diabetes}, ÎT ={ ̂diseasesp1}.230

Even if the attacker has prior knowledge about231

people who are not the target of the attack, we do232

not include such knowledge in the K factor but the233

R factor, as discussed in the next subsection.234

R factor: auxiliary resources The R factor is the235

set of resources other thanM that are available to236

the attacker and that can indirectly aid the disclo-237

sure of the target information. Possible examples238

are language models other thanM, corpora, and239

personal information of non-target people.240

Suppose again that the attacker guesses the dis-241

eases of the person p1. An extreme example is242

that the model provider has released the modelM243

whose pre-training data is not anonymized at all244

(a = id), and the attacker has access to Dpublic, the245

anonymized version of the pre-training data:246

R={Dpublic}, Dpublic=a
′(Dprivate), a

′=fHIPAA.247

In this scenario,Dpublic does not cause privacy leak-248

age alone but may raise its risk because the attacker249

only has to useM to fill Dpublic with the personal250

information removed from Dprivate.251

Another possible scenario is that the attacker has252

part of the pre-training data DPtrain where only non-253

target people are mentioned but cannot access the254

other part DPtrain:255

R = {DPtrain}.256

In this scenario, the attacker may train a new257

language model Mshadow with DPtrain and attack258

Mshadow repeatedly to see howMshadow reacts un-259

der the existence or absence of specific personal260

information in DPtrain. This may enable the training261

of a classifier that can receive the reactions ofM262

to the attacks and predict the existence or absence263

of specific target information in DPtrain.264

Even without DPtrain, similar attacks are possible 265

if the attacker has a corpus D̃train that is irrelevant 266

to Dtrain but has a very similar distribution: 267

R = {D̃train}. 268

Personal information can also be the R factor. 269

Suppose the attacker already knows the full name 270

and diseases of non-target people P , who are men- 271

tioned in Dprivate but not the target of the attack: 272

R = {(full name, diseases)p̄}p̄∈P . 273

This provides the attacker with positive sam- 274

ples of name-disease pairs in Dprivate. The model 275

M might act slightly differently to positive name- 276

disease pairs and randomly generated negative 277

name-disease pairs. Thus, the attacker may train a 278

classifier to predict whether arbitrary name-disease 279

pairs are present in Dprivate (Lehman et al., 2021). 280

We assume that the prior knowledge on non-target 281

people fits the R factor better than the K factor since 282

it provides an indirect clue for the privacy attack 283

unlike the knowledge on target people. 284

Summary In any privacy leakage scenario, the at- 285

tacker attempts to obtain the target information IT 286

and attacks the pre-trained language modelM to 287

obtain the personal information in the pre-training 288

data IDprivate using the prior knowledge IK and re- 289

sources R: 290291

M, IK , R
attack−−−→ ÎT

ÎT ⊆{ ̂categoryperson|categoryperson∈m(a(IDprivate))}.
292

Various privacy leakage scenarios can be repre- 293

sented as a combination (IK , a, R, IT ), where each 294

value corresponds to the K, A, R, and T factors. 295

4 KART-based Review of Related Work 296

We overview privacy leakage scenarios in prior 297

studies with our proposed KART parameterization, 298

which is outlined in Table 2. 299

Misra (2019) and Hisamoto et al. (2020) dealt 300

with membership inference. They assessed the 301

risk of a language model disclosing whether a spe- 302

cific document was in the training data (IT = 303

{1[d ∈ Dtrain]}d∈D). Misra (2019) discussed a 304

GPT-1 model pre-trained with a public corpus and 305

fine-tuned with a private corpus. Hisamoto et al. 306

(2020) examined a Transformer model pre-trained 307

with a private corpus. Both studies simulated the 308

case that the attacker can access part of the pre- 309

training data (R = {DPtrain}) and trains a classifier 310

to distinguish documents in and out of Dprivate. 311

4



Table 2: KART parameterization of the simulated privacy leakage scenarios in previous studies.
Study IK a R IT Attack method

Misra (2019) ∅ id {DPtrain} {1[d ∈ Dtrain]}d∈D Membership inference

Hisamoto et al. (2020) ∅ id {DPtrain} {1[d ∈ Dtrain]}d∈D Membership inference

Carlini et al. (2019)
∅ id ∅ {credit card

numberp}p∈P NLG∗

∅ id ∅ {social security
numberp}p∈P NLG∗

Carlini et al. (2021) ∅ id ∅ IU NLG∗

Inan et al. (2021) ∅ id ∅ IU NLG∗

Lehman et al. (2021)

{(full name,
sex)p}p∈P id ∅ {diseasesp}p∈P Language modeling∗

{(full name,
sex)p}p∈P id

{(full name, sex,
diseases)p}p∈P

{diseasesp}p∈P Classification∗

∅ id {full namep}p∈P {full namep}p∈P Classification∗

{first namep}p∈P id ∅ {last namep}p∈P Language modeling∗

{last namep}p∈P id ∅ {first namep}p∈P Language modeling∗

Vakili and Dalianis (2021)
∅ id ∅ {(full name,

diseases)p}p∈P
NLG∗

{sexp}p∈P id ∅ {(full name,
diseases)p}p∈P

NLG∗

∗ Model inversion.

Carlini et al. (2019), Carlini et al. (2021), and312

Inan et al. (2021) simulated NLG to restore sub-313

strings of the pre-training data without prior knowl-314

edge or auxiliary resources (IK = ∅, R = ∅).315

Carlini et al. (2019) provided a case study of risk316

assessment the disclosure of for credit card num-317

bers or social security numbers. Carlini et al. (2021)318

and Inan et al. (2021) considered the disclosure of319

any substring in the training data to be a privacy320

breach. That is, the attacker places no limits on the321

target information (IT = IU ).322

Lehman et al. (2021) and Vakili and Dalianis323

(2021) assumed that an attacker cross-refers to mul-324

tiple personal information to reveal diseases of pa-325

tients. The attacker cannot learn about a target326

person if the model only outputs a disease, but the327

attacker can associate the disease with the person328

if the model relates the disease to another attribute329

such as a full name. This problem formulation330

has a drawback in that the range of the target in-331

formation is limited. However, it is advantageous332

because it covers scenarios where the model does333

not output an exact substring of the pre-training334

data but a similar one, or where the model out-335

puts multiple pieces of personal information non-336

adjacently within a sentence. Such privacy leakage337

has not been examined in other studies. Lehman338

et al. (2021) examined a scenario where the attacker339

already knows the full name and sex of the target340

people (IK = {(full name, sex)p}p∈P) and uses341

them as an NLG prompt to disclose diseases (IT =342

{diseasesp}p∈P). They also simulated the case that 343

the attacker knows the name, sex, and diseases of 344

non-target people in the pre-training data (R = 345

{(full name, sex, diseases)p}p∈P) and trains a clas- 346

sifier to predict whether arbitrary people appeared 347

in the pre-training data. Vakili and Dalianis (2021) 348

simulated predictions of the full name and diseases 349

together (IT = {(full name, diseases)p}p∈P) us- 350

ing no prior knowledge (IK = ∅) or the sex of the 351

target people (IK = {sexp}p∈P), although the risk 352

was not directly compared. 353

This KART-based review shows that previous 354

studies have covered various scenarios and attacks. 355

These are difficult to directly compare at present 356

but may be integrated in a future meta-analysis. 357

5 Experimental Demonstration 358

We demonstrate scenario-aware privacy risk assess- 359

ment and compare the privacy risk among scenarios 360

under the same definition of privacy leakage. 361

5.1 Scenarios 362

We prepared eight privacy leakage scenarios. In all 363

the scenarios, a pre-trained BERT modelM is pub- 364

lished whose pre-training data comprises clinical 365

records in a hospital. An attacker exploitsM to 366

estimate the full name and diseases of the patients 367

in the pre-training data. The scenarios, however, 368

have different details that may affect privacy risks. 369

We name each scenario using “K+,” “K−,” “A+,” 370

“A−,” “R+,” and “R−” because they are represented 371
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Figure 2: Overview of the privacy leakage experiment. (a) The model provider publishes a BERT model. Its
pre-training data is anonymized in the A− scenarios (Dpublic) but not in the A+ scenarios (Dprivate). (b) The
attacker aims to reveal name-disease pairs present in “full name mentions” in Dprivate. (c) Attack with NLG using
the pre-trained BERT model. Different templates are used in the K+ and K− scenarios. Predictions are refined
differently when Dpublic is available (R+ scenarios) or unavailable (R− scenarios) to the attacker.

by different K, A, and R factors:372

K+ : IK = {full namep}p∈P , K− : IK = ∅,
A+ : a = fHIPAA, A− : a = id,

R+ : R = {fHIPAA(Dprivate)}, R− : R = ∅
373

X+ and X− are higher and lower severity choices374

for the X factor, respectively.375

K+A+R+ scenario Let Dprivate be the clinical376

records. They are used with no anonymization to377

pre-train a BERT modelM from scratch (Dtrain =378

a(Dprivate), a = id). In addition toM, the model379

provider also publishes a corpus Dpublic, which380

is composed of the same documents as Dprivate381

but anonymized under the HIPAA Privacy Rule382

(Dpublic = a′(Dprivate), a
′ = fHIPAA). An attacker383

estimates the past or present diseases of N patients384

P = {p1, ..., pN}, all of whose full name is already385

known to the attacker. This scenario can be param-386

eterized as follows: IK = {full namep}p∈P , a =387

id, R = {Dpublic}, and IT = {diseasesp}p∈P .388

K+A+R− scenario The same as K+A+R+ except389

that Dpublic is unavailable: IK={full namep}p∈P ,390

a = id, R = ∅, and IT = {diseasesp}p∈P .391

K+A−R+ scenario The same as K+A+R+ except392

that the pre-training data is anonymized under the393

HIPAA Privacy Rule: IK = {full namep}p∈P , a =394

fHIPAA, R = {Dpublic}, and IT = {diseasesp}p∈P .395

K−A+R+ scenario The same as K+A+R+ except 396

that the attacker does not know the full name of the 397

patients. Note that the attacker must guess the full 398

name and diseases together since the prediction of 399

the diseases alone does not often reveal the subject: 400

IK = ∅, a = id, R = {Dpublic}, and IT = 401

{(full name, diseases)p}p∈P . 402

K+A−R− scenario The same as K+A−R+ except 403

that Dpublic is unavailable: IK={full namep}p∈P , 404

a = fHIPAA, R = ∅, and IT = {diseasesp}p∈P . 405

K−A+R− scenario The same as K−A+R+ except 406

that Dpublic is unavailable: IK = ∅, a = id, R = 407

∅, and IT = {(full name, diseases)p}p∈P . 408

K−A−R+ scenario The same as K−A+R+ except 409

that the pre-training data is anonymized under the 410

HIPAA Privacy Rule: IK = ∅, a = fHIPAA, R = 411

{Dpublic}, and IT = {(full name, diseases)p}p∈P . 412

K−A−R− scenario The same as K−A−R+ except 413

that Dpublic is unavailable: IK = ∅, a = fHIPAA, 414

R = ∅, and IT = {(full name, diseases)p}p∈P . 415

This choice of scenarios is only an example and 416

does not cover all real-world privacy leakage, but it 417

may still help estimate the upper bound of risk since 418

the K+A+R+ scenario is favorable to the attacker. 419

For simplicity, we collectively refer to the sce- 420

narios with a parameter value X+ or X− as “X+ 421
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Table 3: Results of the comparison of the privacy risk from a pre-trained language model in different scenarios.

Anchor scenario Weakened scenario Privacy risk margin

Name
Name-disease pairs
per 10k generations
(correct/valid)

Privacy
leakage
ratio∗

Name
Name-disease pairs
per 10k generations
(correct/valid)

Privacy
leakage
ratio∗

K+A+R+ 351 / 10,049 3.50%
K+A+R− 351 / 27,239 1.29% 2.21% (≥0%)
K+A−R+ 306 / 9,721 3.14% 0.36% (≥0%)
K−A+R+ 0 / 101 0.00% 3.50% (≥0%)

K+A+R− 351 / 27,239 1.29% K+A−R− 306 / 25,644 1.19% 0.10% (≥0%)
K−A+R− 0 / 249 0.00% 1.29% (≥0%)

K+A−R+ 306 / 9,721 3.14% K+A−R− 306 / 25,644 1.19% 1.95% (≥0%)
K−A−R+ 0 / 0 NA∗∗ NA∗∗

K−A+R+ 0 / 101 0.00% K−A+R− 0 / 249 0.00% 0.00% (≥0%)
K−A−R+ 0 / 0 NA∗∗ NA∗∗

K+A−R− 306 / 25,644 1.19% K−A−R− 0 / 0 NA∗∗ NA∗∗

K−A+R− 0 / 249 0.00% K−A−R− 0 / 0 NA∗∗ NA∗∗

K−A−R+ 0 / 0 NA∗∗ K−A−R− 0 / 0 NA∗∗ NA∗∗

∗Calculated with the actual numbers of pairs, not with the values in the table. ∗∗No valid name-disease pairs were generated.

scenarios” or “X− scenarios,” respectively.422

5.2 BERT pre-training423

We pre-trained two BERT models, each of which424

was repeatedly used in A+ and A− scenarios, re-425

spectively. Two sets of pre-training data were made426

by sampling the same 100k clinical records from427

MIMIC-III (Johnson et al., 2016), which comprises428

clinical records anonymized under the HIPAA Pri-429

vacy Rule, and “MIMIC-III-dummy-PHI,” which430

we built by adding dummy personal information431

to MIMIC-III2. This method eliminated the risk432

of a real-world privacy breach. The samples from433

MIMIC-III-dummy-PHI corresponded to Dtrain in434

the A+ scenarios and Dprivate in all the scenarios.435

The samples from MIMIC-III were used asDtrain in436

the A− scenarios and Dpublic in the R+ scenarios.437

See Appendices B.1, B.2, and C.1 for more details.438

5.3 Model inversion attack439

5.3.1 Gold standard target information440

The privacy attack is a prediction of name-disease441

pairs IT = {(ni, di,j)}1≤i≤N,1≤j≤Ni , where ni442

and di,1, di,2, ... denote the full name and diseases443

of the i-th patient, respectively. We made the444

gold standard from Dprivate as in Figure 2. First,445

we extracted all “full name mentions,” five con-446

secutive sentences beginning with the patient de-447

mographics “(first name) (last name) is a (age)448

year old (sex).” Then, we chose full name men-449

tions s1, ..., sN so that every full patient name in450

2The implementation is at https://github.com/[***
masked ***]/[*** masked ***]

Figure 3: Risk comparison between anchor and weak-
ened scenarios. All the primary factors of the weakened
scenario are the same or less severe than those of the an-
chor scenario. The weakened scenario may result in a
zero or positive privacy risk margin.

Fprivate = {si}1≤i≤N was unique and encoded as 451

two tokens by the BERT tokenizer. For each si, 452

we extracted and normalized disease names into 453

a controlled unique identifier (CUI) in the UMLS 454

metathesaurus (Bodenreider, 2004) using MetaMap 455

2020 (Aronson, 2001). We built IT by pairing a 456

full name ni and CUIs di,1, di,2, ... identified in si. 457

5.3.2 Name-disease estimation 458

To simulate attacks as in Figure 2, we generated 459

at least 10k documents with the BERT model, ex- 460

tracted name-disease pairs, and made predictions 461

ÎT by choosing “valid” pairs and excluding erro- 462

neous ones. Appendices B.3 and B.4 give details. 463

5.3.3 Risk comparison between scenarios 464

We measured the privacy risk in each scenario with 465

the privacy leakage ratio, the ratio of the num- 466

ber of correct predictions to that of valid ones 467

(|IT ∩ ÎT | / |ÎT |). Then, we compared the risk 468

in two scenarios differing in one factor as in Figure 469

7



3. For each pair, we referred to the more severe470

scenario as the anchor scenario and the other as the471

weakened scenario, and computed the privacy risk472

margin, the pairwise difference of privacy leakage473

ratio.474

5.4 Results and analysis475

As shown in Table 3, the privacy risk margin was476

greater than or equal to zero for all the scenario477

pairs where the margin could be calculated, sug-478

gesting that the scenario parameterizations coin-479

cided with the resulting privacy risk.480

The upper bound of risk under this attack method481

could be approximated by the privacy risk ratio in482

the K+A+R+ scenario. Its magnitude may be small483

because the privacy leakage ratio in the K+A+R+484

scenario may be mostly contributed to by random485

guesses rather than actual disclosures of personal486

information, given the small privacy risk margin487

between the K+A+R+ and K+A−R+ scenarios.488

6 Discussion489

We have introduced KART, a simple parameteri-490

zation to clarify assumed privacy leakage scenar-491

ios during the risk assessment of sharing language492

models.493

The estimation of the upper bound of privacy494

risk requires a wide coverage of real-world privacy495

leakage scenarios. Our KART-based review first496

simply clarified the scenarios dealt with in previous497

studies and their variety, suggesting the difficulty498

in direct comparison. Although we have not yet499

successfully integrated their findings, KART may500

provide a novel meta-analysis method for gaining501

comprehensive knowledge in the future. We have502

also shown that KART helps risk comparison in503

different scenarios under the same attack method or504

vice versa. Applying KART prior to every privacy505

leakage experiment would improve the comparabil-506

ity of future studies. KART should also spotlight507

scenarios that have not been fully explored.508

The privacy risk margin was always zero or pos-509

itive between anchor and weakened scenarios in510

our experiment. This may not always be consistent511

since privacy leakage occurs stochastically. How-512

ever, if the scenario severity often coincides with513

the privacy risk margin in future studies, risk as-514

sessment may be streamlined by focusing on the515

most severe scenario possible under a given attack.516

We assume that it is worthwhile simulating spe-517

cific practical scenarios one by one in privacy risk518

assessment. KART alone does not provide a uni- 519

versal risk score valid in all scenarios. However, it 520

has been unclear whether a single universal privacy 521

risk metric covering all scenarios is possible. For 522

example, Carlini et al. (2019) and Inan et al. (2021) 523

proposed universal metrics of the upper bound of 524

risk, but they focused on the disclosure of the ex- 525

act substring of the pre-training data and did not 526

cover other types of privacy leakage (Lehman et al., 527

2021; Vakili and Dalianis, 2021). Differential pri- 528

vacy (Dwork, 2006) is a strong framework to en- 529

sure privacy, but the relationship between ε and its 530

real-world impact should still be examined (Hoory 531

et al., 2021). Moreover, differential privacy in NLP 532

is usually defined as the indistinguishability of two 533

models pre-trained with datasets differing in one 534

document. It is unclear whether the safety is ro- 535

bust to any privacy leakage, such as that caused 536

by the generation of paraphrases of substrings of 537

the dataset. Wagner and Eckhoff (2018) pointed 538

out the existence of numerous privacy metrics and 539

provided a guide to making suitable choices de- 540

pending on the problem setting, which is probably 541

a feasible means of privacy risk assessment. 542

It may be sufficient to always enforce a complete 543

manual anonymization of pre-training data before 544

sharing models for safe management. However, 545

privacy risk assessment is still valuable, because 546

language models can be accidentally made pub- 547

lic if stolen or mistakenly put into public storage, 548

as has happened to electronic health records (My- 549

ers et al., 2008). Moreover, the risk assessment 550

may provide knowledge that may decrease future 551

anonymization costs. Several off-the-shelf systems 552

can effectively anonymize clinical records automat- 553

ically (Heider et al., 2020), whose performance 554

may be sufficient to publish language models pre- 555

trained on anonymized corpora. 556

We expect KART to promote a wide range of 557

future studies on privacy risks since it does not rely 558

on domain-specific concepts. 559

7 Conclusion 560

It has been a challenge to assess the upper bound 561

of the risk of sharing language models consider- 562

ing various real-world privacy leakage scenarios. 563

We have proposed KART to simply parameterize 564

complex scenarios. KART is expected to improve 565

the portability of past and future privacy risk as- 566

sessments and contribute to formulating privacy 567

guidelines on language models. 568
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A 18 HIPAA Identifiers786

Under the HIPAA Privacy Rule, clinical records for787

the second usage must meet either of the two condi-788

tions: (i) Experts determine that the clinical records789

are anonymized properly and that there is little risk790

of disclosing the subject of the information, or (ii)791

a set of specific identifiers (18 HIPAA identifiers)792

regarding the subjects of the information and their793

relatives, employers, and household members is re-794

moved from the clinical records (The United States795

Department of Health and Human Services, 2012).796

Table 4 the lists 18 HIPAA identifiers.797

Table 4: 18 identifiers to be masked under the HIPAA
Privacy Rule.

(A) Names
(B) All geographic subdivisions smaller than a state,

including street address, city, county, precinct, ZIP
code, and their equivalent geocodes, except for the
initial three digits of the ZIP code if, according to
the current publicly available data from the Bureau
of the Census: (1) The geographic unit formed by
combining all ZIP codes with the same three initial
digits contains more than 20,000 people and (2)
the initial three digits of a ZIP code for all such
geographic units containing 20,000 or fewer people
are changed to 000

(C) All elements of dates (except year) for dates that
are directly related to an individual, including birth
date, admission date, discharge date, death date,
and all ages over 89 and all elements of dates (in-
cluding year) indicative of such age, except that
such ages and elements may be aggregated into a
single category of age 90 or older

(D) Telephone numbers
(E) Fax numbers
(F) Email addresses
(G) Social security numbers
(H) Medical record numbers
(I) Health plan beneficiary numbers
(J) Account numbers
(K) Certificate/license numbers
(L) Vehicle identifiers and serial numbers, including

license plate numbers
(M) Device identifiers and serial numbers
(N) Web Universal Resource Locators (URLs)
(O) Internet Protocol (IP) addresses
(P) Biometric identifiers, including finger and voice

prints
(Q) Full-face photographs and any comparable images
(R) Any other unique identifying number, characteris-

tic, or code, except as permitted

B Details of Privacy Leakage798

Experiment799

B.1 Pre-training Data800

MIMIC-III (Johnson et al., 2016) is a publicly avail-801

able dataset including over 2M clinical records of802

patients in the intensive care unit of Beth Israel 803

Deaconess Medical Center. The clinical records 804

are divided into 15 categories, including discharge 805

summaries and progress notes. The clinical records 806

are anonymized under the HIPAA Privacy Rule 807

by replacing PHI incorporated into the HIPAA 808

18 identifiers with de-identification placeholders. 809

To make MIMIC-III-dummy-PHI, we replaced the 810

placeholders with dummy PHI. Dummy hospital 811

names were randomly sampled from the i2b2 2006 812

dataset (Uzuner et al., 2007), and the other dummy 813

identifiers were randomly generated with Faker.3 814

Next, we built two sets of pre-training data by 815

sampling the same documents from MIMIC-III- 816

dummy-PHI and MIMIC-III. The sampling was 817

a random choice of 50% of the clinical records 818

and further extraction of discharge summaries and 819

progress notes, which left us with around 100k 820

documents. 821

B.2 BERT Pre-training 822

We pre-trained an uncased BERT-base model from 823

scratch usingDtrain. We did not fine-tune the BERT 824

model provided by Devlin et al. (2019), which was 825

pre-trained with BooksCorpus and Wikipedia, in 826

order to avoid noise in the privacy leakage experi- 827

ment. This was because it would be difficult to de- 828

termine whether the full names and disease names 829

output by the BERT model were disclosures from 830

clinical records or just a reproduction of BooksCor- 831

pus or Wikipedia. 832

Dtrain was preprocessed in almost the same way 833

as ClinicalBERT (Huang et al., 2019), but we did 834

not delete digits. All the de-identification place- 835

holders were removed. Owing to limitations in 836

computational resources, we pre-trained the BERT 837

model for 1M steps with the maximum length set 838

to 128. The other hyperparameters were the same 839

as in ClinicalBERT: learning rate, 2e-5; batch size, 840

64. 841

B.3 Privacy Attack Strategy 842

Step 1: Name-disease pair generation In 843

the K− scenarios, the full patient name and 844

diseases were estimated simultaneously. We 845

generated L documents x1, ..., xL by filling 846

[MASK] tokens of a 128-token-length tem- 847

plate. The template contained four masking 848

spans such as “[CLS] (name-masking) is 849

a (age-masking) year old (sex-masking) 850

3https://github.com/joke2k/faker
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presented with (disease-masking) [SEP].”851

In practice, the name-, age-, sex-, and disease-852

masking spans consisted of two, one, one, and 116853

consecutive [MASK] tokens, respectively. Refer854

to Appendix B.4 for details of the method used to855

fill the blanks.856

For each generated document xl, we used the857

content filling the name-masking span as the pre-858

diction of the full patient name n̂l. We also859

automatically extracted CUIs d̂l,1, d̂l,2, ... using860

MetaMap 2020. Finally, we collected name-disease861

pairs {(n̂l, d̂l,m)}1≤l≤L from the L generated doc-862

uments.863

In the K+ scenarios, we obtained name-disease864

pairs similarly except that the name-masking span865

in the template was replaced with a randomly866

sampled full patient name ni ∈ IT in each867

generation. This was because the attacker was868

supposed to already know the full patient names869

and only had to estimate the diseases.870

871

Step 2: Prediction refinement The BERT output872

for the name-masking span sometimes made no873

sense as a person’s full name. We excluded such874

“invalid” name-disease pairs where the predicted875

full name n̂l did not match any of the full names876

listed in the Faker library.877

In the R− scenarios, the remaining “valid” name-878

disease pairs were used as the prediction (ÎT ):879

ÎT = {(n̂l, d̂l,m) | n̂l ∈ valid full names}1≤l≤L.880

In the R+ scenarios, name-disease pairs were881

further excluded if their CUI had no corresponding882

disease name in Fpublic:883

ÎT = {(n̂l, d̂l,m) | n̂l ∈ valid full names,

d̂l,m ∈ Fpublic}1≤l≤L.
884

This is because the attacker, who has access to885

Fpublic, can assume that predictions are probably886

incorrect if they contain diseases that are absent887

from Fpublic.888

Owing to limitations in computational resources889

and time, we obtained predictions for R+ scenar-890

ios by refining corresponding ones for R− scenar-891

ios. For example, we made predictions ÎT for the892

K+A+R+ scenario by reusing name-disease pairs893

obtained in Step 1 in the K+A+R− scenario and894

then following Step 2.895

B.4 Details of Natural Language Generation896

Our NLG method is based on the Markov chain897

Monte Carlo method following Wang and Cho898

(2019). First, we designated the positions in the 899

template where the [MASK] tokens are initially 900

placed as “writable positions.” Then, we repeated 901

1,000 iterations to randomly select one of the 902

writable positions and to overwrite the word in 903

that place with a new word. The new word was 904

chosen randomly on the basis of the distribution 905

given by masked language modeling in the first 250 906

iterations (burn-in period). Subsequently, we used 907

a top-100 sampling strategy by setting the probabil- 908

ity to zero for all of the words outside the top-100 909

posterior probabilities. The batch size was set to 910

32. 911

C Complementary Results 912

C.1 Performance of BERT Models in 913

Downstream Task 914

We examined the performance of the pre-trained 915

BERT models used in our experiment in the 916

MedNLI task (Romanov and Shivade, 2018) to 917

evaluate how well they were pre-trained. We fine- 918

tuned the two BERT models used in A+ and A− sce- 919

narios and the off-the-shelf model released by De- 920

vlin et al. (2019). 921

For each model, we calculated the validation 922

accuracy for each learning rate ∈ {2e − 5, 3e − 923

5, 4e − 5, 5e − 5} and each number of epochs ∈ 924

{2, 3, 4}, and used the combination that maximized 925

the validation accuracy for the test set. The batch 926

size was set to 16. 927

Table 5 shows the results. The performance of 928

the off-the-shelf BERT model was comparable to 929

that reported by Alsentzer et al. (2019). Our BERT 930

model in A− scenarios outperformed the off-the- 931

shelf model and our BERT model in A+ scenarios 932

achieved similar performance. Our BERT models 933

benefited from being pre-trained with MIMIC-III, 934

the source from which the premise sentences in 935

MedNLI were extracted. However, our models are 936

the same as the off-the-shelf model in that they 937

are pre-trained for 1M steps from scratch and are 938

disadvantageous for a much smaller pre-training 939

corpus (120M vs 3,300M words). We assume that 940

the BERT models used in our privacy leakage ex- 941

periments are well pre-trained. 942

C.2 Privacy Leakage Experiment 943

We show the actual numbers of generated docu- 944

ments, valid name-disease pairs, and correct name- 945

disease pairs in each scenario in Table 6, which is 946

complementary to Table 3. For the efficient use of 947
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Table 5: Performance of the BERT models used in our
experiment and the model provided by Devlin et al.
(2019) in the MedNLI test set.

Model Hyperparameters Test acc.
Learning rate Epoch

Ours (A+ scenarios) 3e-5 4 72.29%
Ours (A− scenarios) 2e-5 3 77.50%
Devlin et al. (2019) 3e-5 3 76.09%

Table 6: Actual numbers of generated documents, valid
name-disease pairs, and correct name-disease pairs in
each scenario.

Scenario Generated
documents

Name-disease pairs

Valid Correct

K+A+R+ 10,016 10,065 352
K+A+R− 10,016 27,283 352
K+A−R+ 10,016 9,737 306
K+A−R− 10,016 25,685 306
K−A+R+ 111,968 1,127 0
K−A+R− 111,968 2,789 0
K−A−R+ 310,016 0 0
K−A−R− 310,016 0 0

computational resources, we increased the number948

of generations only for the four scenarios in which949

no correct name-disease pairs were obtained, but950

this did not change the result. See also Appendix951

B.3.952
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