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Abstract

In light of the era of information explosion,001
traditional relation extraction methods are in a002
bottleneck due to data limitations in the face003
of the constant emergence of new relation cate-004
gories. Therefore the study of low-shot relation005
extraction in real scenarios is crucial. In the006
few-shot scenario, it is necessary to build up007
the model’s ability to summarize the semantics008
of instances. In the zero-shot scenario, it is nec-009
essary to establish the label matching ability of010
the model. Although they need to establish dif-011
ferent basic abilities of the model, the common012
point is that they all need to build excellent013
semantic representations in the end, which is014
ignored by the existing methods. In this paper,015
we propose a method (TGCRE) based on token-016
generated contribution to unify low-shot rela-017
tion extraction by generating better semantic018
representations. Further, we propose a multi-019
level spatial semantic matching scheme in zero-020
shot scenarios, aiming to solve the problem that021
existing methods cannot fully utilize feature022
information and are susceptible to irrelevant023
contexts. Experimental results show that our024
method outperforms previous robust baselines025
and achieves state-of-the-art performance.026

1 Introduction027

Relation extraction (RE) is an important basic task028

in natural language understanding. Traditional rela-029

tion extraction relying on large-scale high-quality030

data has achieved excellent performance, but with031

the development of the times, high-quality data is032

consumed, and in the face of the emergence of var-033

ious new relation categories that lack training data,034

the traditional methods are in a bottleneck.035

To cope with this situation, low-shot relation ex-036

traction has become a hot research topic. There037

are two main branches of low-shot relation extrac-038

tion, namely the study of few-shot RE and zero-039

shot RE. The few-shot RE requires building the040

model’s ability to summarize the semantics of in-041

Figure 1: Semantic summarization methods.

stances, train the model’s learning ability using a 042

few labeled samples per class and quickly general- 043

ize it to classify new classes. At present few-shot 044

RE approaches focus on how to summarize better 045

semantic prototypes from a few illustrative exam- 046

ples (Snell et al., 2017; Gao et al., 2019a; Han 047

et al., 2021). Another idea is to augment the FSRE 048

model with knowledge from an external knowl- 049

edge base (Wen et al., 2021; Qu et al., 2020; Yang 050

et al., 2021). Zero-shot RE requires building the 051

model’s ability to match labels. The knowledge 052

transfer capability of the model is trained and gen- 053

eralized to unseen relation categories by the labeled 054

descriptions of the given relations. There are com- 055

mon solution paradigms such as question answer- 056

ing (Levy et al., 2017), textual entailment (Oba- 057

muyide and Vlachos, 2018) and semantic match- 058

ing (Chen and Li, 2021). Despite the advanced per- 059

formance achieved by semantic matching schemes, 060

there are still some problems, the most representa- 061

tive of which is the single matching pattern, which 062

causes the model to be negatively affected by irrel- 063

evant context when matching. 064

Since few-shot and zero-shot RE require the 065

model to build different basic capabilities, current 066
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state-of-the-art methods can only be applied and067

learned to handle one scenario alone. However,068

what they have in common is that they ultimately069

need to construct good semantic representations,070

with few-shot RE requiring the semantic distance071

between the class prototype representation and its072

corresponding query instance to be reduced, and073

zero-shot RE requiring the model to summarize the074

semantic features of the different relation labels in a075

focused manner. Obviously, existing methods that076

simply rely on the semantic summarization ability077

of special tokens inserted into sentences fail to do078

this well, because the model does not summarize079

an optimal semantic representation.080

For this reason, we propose the TGCRE method081

to unify low-shot relation extraction based on their082

commonalities. The method learns and utilizes the083

token attributes inherent to each token in a sen-084

tence, i.e., it generates a better semantic representa-085

tion based on the specific contribution each token086

makes to express the meaning of the sentence. Our087

and existing contextual semantic summarization088

methods are shown in Figure 1, it can be seen that089

our method does not depend on any special token,090

and the final contextual semantics is completely de-091

termined by the specific contribution of the token092

itself, which has richer semantics and better inter-093

pretability than existing methods. See appendix F.1094

for detailed analysis. Moreover, in order to solve095

the problem of a single matching pattern in zero-096

shot RE, we propose a multi-level spatial semantic097

matching scheme. Label matching is performed098

by projecting semantic features to different vector099

spaces and synthesizing the matching scores from100

different perspectives. The contributions of this101

paper are summarized as follows:102

1. We develop TGCRE, a low-shot relation ex-103

traction method for both zero-shot and few-shot104

tasks. Experiments demonstrate that our method105

outperforms previous baselines and achieves state-106

of-the-art performance in both zero-shot and few-107

shot tasks.108

2. We propose a method for learning token at-109

tribute information, based on which a model is110

guided to understand the magnitude of the contri-111

bution of a token, and thus generate a better se-112

mantic representation of the context. To the best of113

our knowledge, we are the first to propose learning114

and using token attribute information for natural115

language understanding (NLU) tasks.116

3. In the zero-shot RE task, we propose a multi-117

level spatial semantic matching scheme, which118

synthesizes the matching scores under multi-angle 119

space to perform semantic matching and greatly 120

improves the accuracy of semantic matching. 121

2 Related Work 122

Zero-Shot Relation Extraction. Levy et al. (2017) 123

et al. elucidated for the first time the concept 124

of zero-sample learning for relation extraction by 125

modeling the target task as a question-and-answer 126

problem, and categorizing invisible classes by hav- 127

ing the model answer a predefined question tem- 128

plate. Obamuyide and Vlachos (2018) et al. mod- 129

eled the target task as a textual entailment task, 130

which identifies relation categories by determin- 131

ing whether the input sentences entail the corre- 132

sponding relation descriptions, and fits well with 133

the task definition of zero-sample learning. Sainz 134

et al. (2021) et al. reformulate relation extraction 135

as a problem of entailment, where a linguistic rep- 136

resentation of relation labels is used to generate a 137

hypothesis that is confirmed by a ready-made en- 138

tailment engine. In the latest research, Chen and Li 139

(2021) et al. use different projection functions for 140

input text and relation description text respectively, 141

transform both to the same semantic space, and 142

based on this representation in the space defines re- 143

lation extraction as a semantic matching task. Zhao 144

et al. (2023a) et al. further proposed a fine-grained 145

semantic matching method to reduce the impact 146

of irrelevant context on matching accuracy. Wang 147

et al. (2022) et al. use contrastive learning to train 148

models that mitigate the prediction errors caused by 149

similar relations and similar entities to the model. 150

Recently, an even more difficult task, Zero-Shot Re- 151

lation Triplet Extraction (ZSRTE)(Chia et al., 2022; 152

Lv et al., 2023), has been proposed, which requires 153

simultaneous extraction of both entities and rela- 154

tions, which greatly increases the task difficulty 155

and further promotes the research on zero-shot re- 156

lation extraction. 157

Few-Shot Relation Extraction. When dealing 158

with few-shot RE tasks, model training and test- 159

ing are usually performed in a meta-learning man- 160

ner(Mishra et al., 2017; Huisman et al., 2020; 161

Hospedales et al., 2022). Snell et al. (2017) et al. 162

first proposed the use of prototypical networks for 163

few-shot learning, Han et al. (2018) et al. further 164

proposed a large-scale dataset, FewRel, to study 165

relation extraction methods under few-shot learn- 166

ing. There has been an increase in the number 167

of people involved in few-shot RE research. Gao 168
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et al. (2019a) et al. used an attention mechanism to169

facilitate the generation of better prototype repre-170

sentations from prototype networks. Ye and Ling171

(2019) et al. used CNN as an encoder and proposed172

a Multi-Level Matching and Aggregation Network173

for encoding query instances and class prototypes174

in an interactive interface. Gao et al. (2019b) et al.175

present a more challenging dataset, FewRel 2.0, in176

which they compute the similarity distance between177

a query instance and all supported instances. Qu178

et al. (2020) et al. proposed modeling different rela-179

tions using a global graph approach to obtain prior180

knowledge between different relations. Han et al.181

(2021) et al. proposed representation modeling,182

prototype modeling and task difficulty modeling183

to solve difficult and simple few-shot extraction184

tasks. Recently, Liu et al. (2022) et al. proposed a185

simple direct additive method to introduce relation186

information, which proved that good relation infor-187

mation introduction is more effective than complex188

model structure. Li and Qian (2022) et al. pro-189

posed a model generation framework GM_GEN190

to achieve the optimal point on different N-way-191

K-shot tasks, separating the complexity of all the192

individual tasks from the complexity of the whole193

task space.194

3 Preliminary195

3.1 Token Attribution196

For any given sentence, the tokens in the sentence197

work together and bear the responsibility of ex-198

pressing the meaning of the sentence. However,199

each token makes a different specific contribution200

to the expression of the meaning of the sentence.201

For example, in the sentence "I really like carrots.",202

the contribution of "really" is obviously lower than203

that of "like". Without "really", the sentence can204

still convey the original meaning, but without "like",205

it is not clear whether I like carrots or hate them.206

We define this property as token attribution(Zhao207

et al., 2023b).208

The measure of token attribution can be approxi-209

mated by computing the dot product of the token210

xi corresponding to the embedding hIi and the gra-211

dient ▽xi , so that the attributes of all the tokens212

can be obtained after only one forward-backward213

computation. This approximation is proposed and214

applied in the interpretation methods of natural lan-215

guage classification models(Feng et al., 2018; Li216

et al., 2016; Arras et al., 2016). Thus, the method217

of measuring token attribution in practice can be218

formulated as: 219

attr (xi|I) = ▽xi · hIi (1) 220

221

4 Methodology 222

4.1 Model Training 223

In the training phase, the goal is to learn infor- 224

mation about the attributes of tokens so that the 225

model has the ability to understand token contribu- 226

tions like a human. For the different inputs in the 227

zero/few-shot setting, which we collectively refer 228

to as input example I, which is encoded by the en- 229

coder to get the token embedding containing rich 230

contextual semantics, i.e., Ĩ =
{
hI1, h

I
2, . . . , h

I
n

}
. 231

TGCRE is shown in Figure 2. 232

Forward-Backward Procedure. In section 3.1, 233

we introduced the first-order approximation for cal- 234

culating token attribution, so we need a forward- 235

backward procedure to obtain the gradient infor- 236

mation for each token in the sentence. The back- 237

ward process is straightforward, what matters is 238

how the forward inference is performed so that to- 239

kens with larger contributions have more distinct 240

gradients. We explore different forward inference 241

approaches(See appendix F.2 for detailed analysis 242

) in this paper as follows: 243

(1) Mean: We treat the process of computing 244

the mean of the token embeddings Ĩ as forward 245

propagation and the mean as the energy of back- 246

ward propagation. In this pattern, there is no need 247

to train any parameters other than those of the en- 248

coder. The advantage of this method is that it is 249

relatively simple to implement. 250

forward : energy = MA
(
LSE

(
Ĩ
))

(2) 251

252
backward : BP (energy) (3) 253

where MA (·) represents the mean function, LSE is 254

log-sum-exp which gives better numerical stability 255

and prevents the data from overflow and underflow 256

problems during computation, and BP (·) which 257

is the backward propagation of the model to obtain 258

the gradient information. 259

(2) Classification: In order to obtain more rea- 260

sonable gradient information, we insert a forward- 261

backward procedure based on classification in the 262

forward inference process of the whole method of 263

TGCRE. This is done by training a classification 264

function cls (·) and applying it to the word embed- 265

ding Ĩ so that the original word vector space is 266
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Figure 2: Model overview for TGCRE.

mapped into the relation vector space, obtaining267

the probability distribution of each relation corre-268

sponding to the input instance I. The loss is then269

calculated with the real label to get the energy as270

backward propagation. Compared to the Mean ap-271

proach, this approach requires the training of an272

additional classification function, but the use of a273

supervised signal y allows the model to focus more274

on meaningful tokens and obtain more reasonable275

gradient information.276

forward : energy = CEL
(
cls
(
LSE

(
Ĩ
))

, y
)

(4)277

278
backward : BP (energy) (5)279

280

where y represents the true label and CEL (·) rep-281

resents the cross-entropy loss function, which is282

used to calculate the gap between the model’s pre-283

dictions and the true values.284

Normalization Token Attribution. The gradient285

information▽xi of all tokens can be obtained by286

one forward-backward procedure, which in turn287

can obtain all word attributes
∣∣▽xi · hIi

∣∣. In order288

to visualize the specific degree of contribution of289

each token, it is necessary to normalize the token290

attributes to obtain the token attribute vector. The291

specific operation is shown below:292

nta (xi) =
|attr (xi|I)|∑n
j=1 |attr (xj |I)|

=

∣∣▽xi · hI
i

∣∣∑n
j=1

∣∣▽xj · hI
j

∣∣ (6)293

294

where nta (x1, x2, . . . , xn) is the normalized token295

attribute vector. 296

Training Objective1. For the purpose of utilizing 297

token attribute information and training the model 298

for a deeper understanding of natural language, a 299

generalized approximate attribute vector apa that 300

can learn token attribute information is proposed. 301

We take maximizing the similarity between the 302

approximate attribute vector natural language, a 303

generalized approximate attribute vector apa and 304

the token attribute vector nta as the training goal, 305

so that apa is able to learn transferable token at- 306

tribute knowledge, which in turn effectively guides 307

the model to focus on the contributing tokens in the 308

sentence and generate better semantic representa- 309

tions. First, the features of the token embedding Ĩ 310

are summarized based on the token attribute vec- 311

tor nta, and the attribute embedding is obtained by 312

highlighting the positively contributing token fea- 313

tures and ignoring the negatively contributing token 314

features in the sentence. Secondly, the approximate 315

attribute vector apa is also used to summarize the 316

features of token embedding Ĩ , and approximate 317

embedding is obtained. Finally, we use margin 318

loss to optimize the training objective by iteratively 319

training the model to shrink the similarity distance 320

between attribute embedding and approximate em- 321

bedding, and to increase the similarity between apa 322

and nta, so as to continuously optimize the feature 323

summarization ability of apa. The process can be 324

formulated as: 325

Lsim = max
(
0, 1− cos(nta · Ĩ , apa · Ĩ)

)
(7) 326

Training Objective2. In the few-shot setting, we 327
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do not use a generalized approximate attribute vec-328

tor due to the fewer number of relation categories329

that are restricted during the training process, but330

instead take the approach of setting a separate ap-331

proximate attribute vector apai for each relation332

category ri. To prevent overfitting between the indi-333

vidual approximate attribute vectors, which causes334

most of the parameters to be invalidated, we intro-335

duce the second training objective — maximizing336

the differentiation between the groups of approxi-337

mate attribute vectors. First, we compare the sim-338

ilarity between each two vectors apai and apaj ,339

and then accumulate all the similarities to get the340

overall similarity score of the group of approximate341

attribute vectors, and use margin loss to reduce the342

value of the overall similarity score in differenti-343

ated training, thus preventing all the approximate344

attribute vectors from clustering in the same region345

in the vector space, and realizing the objective of346

differentiated training. The process can be formu-347

lated as:348

LDif = max

(
0,

∑N
i=1

∑N
j=1 cos (apai, apaj)

N

)
(8)349

4.2 Model Testing350

In the testing phase, we use the trained approximate351

attribute vector apa to summarize the token embed-352

dings and obtain the rich contextual semantics of353

the input examples for the subsequent few-shot RE354

task and zero-shot RE task. In the few-shot setting,355

the input examples include support samples and356

query samples, and the semantic representations af-357

ter apa summarization are SSapproximate embeding358

and QSapproximate embeding, respectively. In the359

zero-shot setting, the input examples consist of360

input sentence I and relation description d, where361

the summarized semantics of the I is represented362

as ISapproximate embeding, while the d is encoded363

using an independently fixed encoder that does not364

be summarized by the apa, and so the encoded365

semantics is represented as RDembeding. It is366

worth mentioning that the semantic representations367

of the head and tail entities are extracted in token368

embeddings, and for the sake of brevity, this369

process is not shown in Figure 2.370

Zero-Shot RE Task. In this paper, we define371

zero-shot RE as a semantic matching task,372

and in order to avoid the monotony of match-373

ing patterns, we propose a multi-level spatial374

semantic matching scheme. For the context375

embedding ISapproximate embeding, head entity 376

embedding ẽIh and tail entity embedding ẽIt of 377

the input sentences in the given original vector 378

space and the context embedding RDembeding, 379

head entity embedding ẽdh and tail entity em- 380

bedding ẽdt of the relation descriptions, we 381

define the embedding set of input sentences 382

SETIS =
{
ẽIh, ẽ

I
t , ISapproximate embeding

}
383

and the embedding set of relation descriptions 384

SETRD =
{
ẽdh, ẽ

d
t , RDembeding

}
. After that, 385

we define the left orthogonal transform function 386

Tl (x,wl) and the right orthogonal transform 387

function Tr (x,wr), through which we can map 388

the embedding set SETIS and the embedding set 389

SETRD into different vector spaces. 390

391

SET l
IS = Tl (SETIS , wl) (9) 392

393
SET l

RD = Tl (SETRD, wl) (10) 394
395

SET r
IS = Tr (SETIS , wr) (11) 396

397
SET r

RD = Tr (SETRD, wr) (12) 398

where wl ∈ R3×3, wr ∈ Rh×h are trainable orthog- 399

onal matrices and h is the hidden dimension of the 400

encoder. As shown in Figure 3(a), we show a sim- 401

ple schematic of the embedding set transformation, 402

although the real situation is much more complex 403

than this. As can be seen from the figure, after the 404

left (right) orthogonal transformation, SETIS and 405

SETRD in the original space show different poses 406

in different vector spaces, but the relative positions 407

of the vectors in the embedding set are not changed, 408

which ensures that their semantic similarities can 409

be compared from different perspectives without 410

changing the attributes of the original vector set. 411

We separately compute the semantic matching 412

scores of the SETIS and SETRD in different vec- 413

tor spaces, and the sum of all the matching scores is 414

used as the prediction scores of the input sentence 415

I and the relation description d. 416

pz(I, d) = α · cos
(
SET l

IS , SET l
RD

)
+ α · cos

(SET r
IS , SET r

RD) + β · cos (SETIS , SETRD)
(13) 417

418

where α and β are hyperparameters. 419

Few-Shot RE Task. In the N-way-K-shot setting, 420

the context embedding is SSapproximate embeding 421

and QSapproximate embeding for a given support set 422

S and query set Q , respectively. We average the 423

context embedding of each class in the support 424
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Figure 3: zero/few-shot task.

set S to obtain a prototype representation SSi for425

each relation. As shown in Figure 3(b), the proto-426

typical representation of each relation is randomly427

distributed in the vector space. In this paper, we428

use the cosine distance as the prediction score of429

the query instance for each class prototype and use430

the highest similarity as the final prediction.431

Pf (S,Q) = cos (SSi, QS) (14)432

where QS represents the context embedding433

QSapproximate embedding of the query set.434

4.3 Loss Function435

In the zero-shot setting, in order to prevent436

the model overconfidence, we randomly sam-437

ple the negative pairs to constrain the model,438

assuming that the prediction score of the posi-439

tive pairs is pz (I, dy), and that of the negative440

pairs is piz (I, di), then we require that the predic-441

tion score of the model’s positive pairs is larger442

than that of the negative pairs, i.e., pz (I, dy) −443

piz (I, di) = φ > 0, and the loss term is Llim =444

max (0, γ − φ), where γ > 0 is a hyperparameter.445

To summarize, the total loss of the zero-shot RE is:446

Lz = Lsim + Llim (15)447

In the few-shot setting, we use a cross-entropy448

loss function to optimize the gap between the449

model’s prediction and the label, with a loss term450

of Lcel = CEL (p, y), where p is the model’s pre-451

diction and y is the true label. To summarize, the452

total loss of the few-shot RE is:453

Lf = Lsim + Ldif + Lcel (16)454

5 Experiments 455

In this section, we only show the main experimental 456

results, and the experimental setup and detailed 457

analysis are shown in the Appendix. 458

5.1 Experiments on Zero-Shot Relation 459

Extraction 460

Table 1 summarizes the experimental results of 461

our model with the baseline model on Wiki-ZSL 462

and FewRel, where bold denotes the best score 463

and underline denotes the second best score. As 464

can be seen from the table, (1) our method signifi- 465

cantly outperforms other baselines, and combining 466

the F1 scores under different unseen relation set- 467

tings, TGCRE improves 7.73% and 4.56% on the 468

Wiki-ZSL and FewRel datasets, respectively. (2) 469

Although both TGCRE and ZS-BERT adopt the 470

siamese scheme, which will lead to the relation 471

descriptions and input instances unable to have 472

effective information interaction. However, our 473

method is able to effectively summarize the seman- 474

tic features of different relation labels by learning 475

the attribute knowledge of token, which makes up 476

for the defect of insufficient relation information 477

interaction. Therefore our approach significantly 478

outperforms ZS-BERT. (3) RE-Matching achieves 479

better performance through a fine-grained matching 480

paradigm that explicitly models relations, but this 481

baseline is semantically matched under a single vec- 482

tor space, which will result in the model not being 483

able to comprehensively utilize the feature infor- 484

mation and being susceptible to irrelevant contexts. 485

Our approach is able to semantically match input 486

and relation descriptions under a comprehensive 487
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Unseen Method Wiki-ZSL FewRel

Prec. Rec. F1 Prec. Rec. F1

m=5

R-BERT 39.22 43.27 41.15 42.19 48.61 45.17
ESIM 48.58 47.74 48.16 56.27 58.44 57.33
ZS-BERT 71.54 72.39 71.96 76.96 78.86 77.90
RE-Matching 79.84 78.58 79.19 91.48 90.84 91.16
TGCRE 82.40 80.49 81.42 91.89 90.68 91.28

m=10

R-BERT 26.18 29.69 27.82 25.52 33.02 28.20
ESIM 44.12 45.46 44.78 42.89 44.17 43.52
ZS-BERT 60.51 60.98 60.74 56.92 57.59 57.25
RE-Matching 72.35 72.74 72.53 83.03 81.89 82.45
TGCRE 74.61 72.07 73.30 86.23 85.11 85.66

m=15

R-BERT 17.31 18.82 18.03 16.95 19.37 18.08
ESIM 27.31 29.62 28.42 29.15 31.59 30.32
ZS-BERT 34.12 34.38 34.25 35.54 38.19 36.82
RE-Matching 62.35 62.34 62.33 73.11 70.36 71.69
TGCRE 67.69 66.50 67.06 73.77 72.10 72.92

Table 1: Experimental results on the zero-shot task.

multi-perspective view through multi-level spatial488

semantic matching, which mitigates the overfitting489

of visible relations in the training set, and thus our490

model still outperforms RE-Matching.491

5.2 Experiments on Few-Shot Relation492

Extraction493

Table 2 summarizes the experimental results of our494

model with other models on the few-shot relation495

extraction task. From the table, we can see that (1)496

our proposed TGCRE performs the best, indicating497

that our model is able to fully utilize the knowl-498

edge of token attributes to generate better semantic499

representations and effectively reduce the semantic500

distance between the class prototype representation501

and its corresponding query instance. (2) SimpleF-502

SRE achieves better performance by introducing503

relation information through direct addition, again504

demonstrating that generating better semantic rep-505

resentations is often more important than complex506

network structures. (3) The REGRAB, which uses507

external knowledge, does not achieve the desired508

results, and one possible reason is that although ex-509

ternal knowledge can bring additional reference in-510

formation to the model, it may also introduce noise511

and limit the performance of the model. Instead,512

our approach focuses on the token itself and learns513

knowledge about the naturally exists attributes of514

the token, bringing real and reliable information515

about the token contribution to the model without516

introducing any noise. (4) GM_GEN allows a sin-517

gle model to focus on a single task by separating 518

different N-way-K-shot tasks, so the model can 519

focus on specific tasks to generate semantic repre- 520

sentations. Similar to the idea of GM_GEN, we 521

introduce the maximum differentiation training in 522

the training process, which can let the model focus 523

on specific relations to learn attribute knowledge, 524

so our TGCRE can go further to generate seman- 525

tic representations based on specific relations and 526

achieve the most advanced performance. 527

6 Ablation study 528

For the purpose of understanding the specific con- 529

tribution of each component of the TGCRE model, 530

we designed the following ablation experiments, 531

the experimental results are shown in Table 3.In 532

the zero-shot task, when the token attribute vectors 533

are removed alone, i.e., the model is not allowed to 534

learn the attribute knowledge of the tokens to sum- 535

marize the contextual semantics, the performance 536

of TGCRE (-attribute) decreases significantly, in- 537

dicating that token attributes are effective in guid- 538

ing the model to focus on important tokens and 539

generate semantic representations that contain rich 540

contextual features. When the multi-level spatial 541

semantic matching scheme is removed alone, the 542

TGCRE (-mlss) performance also gets a signifi- 543

cant decrease, which indicates that synthesizing 544

the semantic matching scores under different vector 545

spaces can improve the model performance, which 546

is superior to the previous single matching mode. 547
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Method
5-way-1-shot 5-way-5-shot 10-way-1-shot 10-way-5-shot

validation/test validation/test validation/test validation/test
Proto-HATT 75.01/–– 87.09/90.12 62.48/– – 77.50/83.05
MLMAN 79.01/82.98 88.86/92.66 67.37/75.59 80.07/87.29
BERT-PAIR 85.66/88.32 89.48/93.22 76.84/80.63 81.76/87.02
REGRAB 87.95/90.30 92.54/94.25 80.26/84.09 86.72/89.93
HCRP 94.10/96.42 96.05/97.96 89.13/93.97 93.10/96.46
SimpleFSRE 96.21/96.63 97.07/97.93 93.38/94.94 95.11/96.39
GM_GEN 96.97/97.03 98.32/98.34 93.97/94.99 96.58/96.91
TGCRE 97.88/98.32 98.71/99.02 95.75/95.55 97.79/97.84

Table 2: Experimental results on the few-shot task, accuracy(%) as an evaluation metric.

When both of the above modules are removed at548

the same time, the model performance is severely549

impaired. From TGCRE (-attributue) and TGCRE550

(-both), it can be seen that the model performance551

is greatly impaired by removing the multi-level spa-552

tial semantic matching scheme on top of removing553

the token attribute vector, indicating that relying554

on the multi-level matching scheme alone can still555

allow the model to maintain excellent performance556

when there is no excellent semantic representation557

support. In the few-shot task, when we removed558

the maximum differentiation training objective, i.e.,559

prohibited the model from focusing on specific re-560

lations to learn attribute knowledge, TGCRE(-dif)561

showed degradation in performance, which resulted562

in the problem of the model failing to generate563

good semantic representations according to a spe-564

cific relation without sufficient training samples.565

Further, when we remove the token attribute vec-566

tors on top of TGCRE(-dif), the performance of567

the TGCRE(-attribute) shows a catastrophic degra-568

dation, which indicates that the model does not569

generate good semantic representations based on570

special tokens without learning knowledge of token571

attributes. More experimental results are detailed572

in Appendix G.573

7 Conclusions574

In this paper, we propose TGCRE, a low-shot rela-575

tion extraction method based on token-generated576

contribution. The TGCRE summarizes instance577

features based on the specific contributions made578

by each token to generate better semantic repre-579

sentations that unify low-shot relation extraction.580

Specifically, TGCRE learns knowledge of token581

attributes by training approximate attribute vec-582

tor, which guides the model to focus on tokens583

that contribute significantly to sentence expression.584

zero-shot

Method m=5 m=10
-attribute 89.99 83.59
-mlss 91.08 83.81
-both 88.06 83.14
TGCRE 91.28 85.66

few-shot

Method 5-1 10-1
-dif 94.92 91.14
-attribute 92.11 87.89
TGCRE 98.32 95.55

Table 3: Ablation experiments on the FewRel dataset,
where zero-shot is evaluated in F1 and few-shot is eval-
uated in accuracy.

Moreover, in the zero-shot scenario, we propose a 585

multi-level spatial semantic matching scheme that 586

synthesizes the matching scores from different per- 587

spectives for label matching and greatly improves 588

the matching accuracy. Extensive experiments have 589

proved the effectiveness of our method, achieving 590

state-of-the-art performance. 591

Limitations 592

The token attribute information has been shown to 593

facilitate the model in generating better semantic 594

representations, and although we propose two ap- 595

proaches for generating gradient information in the 596

paper (Mean, Classification), this is still not the op- 597

timal choice. Exploring richer gradient generation 598

approaches that motivate models to better utilize 599

token attribute information is a promising direction 600

that will be the focus of our future work. 601
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A Task Formulation 783

Few-Shot RE. In resource-poor few-sample sce- 784

narios, the purpose of few-shot relation extraction 785

is to train the model’s triplet extraction capabil- 786

ity using only a small number of training samples 787

when there are not a large number of labeled sam- 788

ples in the candidate class, usually with the number 789

of samples specified in an N-way-K-shot setting. 790

Specifically, there is a support set S and a query set 791

Q in different N-way-K-shot tasks, respectively. S 792

contains N randomly sampled relation categories 793

r ∈ Rs and each class r corresponds to K labeled 794

instances si used for training. Q contains m (cus- 795

tom hyperparameters) query instances qi for test- 796

ing. The goal of the few-shot RE task is to train the 797

model’s learning ability by supporting instances si 798

so that the model can quickly adapt and deal with 799

similar types of tasks, rather than just a single clas- 800

sification task. Finally, the learning capability of 801

the model is verified using instances qi in the query 802

set Q, predicting to which of the categories r in Rs 803

that qi belongs. Formally, this can be formulated 804

as: 805

S
train−→ M(LB)

validation←− Q (17) 806

where M(LB) represents the learning capacity 807

learned by the model. 808

Zero-Shot RE. In zero-sample scenarios where 809

no data resources are available, zero-shot RE aims 810

to use existing well-labeled datasets to train the 811

model’s triple-extraction capability and then apply 812

it to extract the relations of entity pairs from new 813

unseen data. Specifically, each relation r ∈ R in 814

the dataset corresponds to a relation description 815

d ∈ D. A model is trained to measure the dis- 816

tance between sentence instances I and relation 817

descriptions D, and to predict to which type r in 818

R that I belongs. The goal of zero-shot RE is to 819

use relation-visible data Ys to train the knowledge 820

transfer capability of the model, allowing the model 821

to use past knowledge to infer and recognize new 822

things that have not been seen before. Ultimately, 823

relation-invisible data Yu is used to validate the 824

model’s knowledge transfer capability. Formally, 825
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this can be formulated as:826

Ys
train−→ M(KG)

validation←− Yu (18)827

where M(KG) represents the knowledge transfer828

capability learned by the model and Ys ∩ Yu = ∅.829

B Encoding830

Sentence Encoding. For any given input instance831

I = {x1, x2, . . . , xn}, the head entity eIh and the832

tail entity eIt are surrounded by the special sym-833

bols "#" and "@", respectively. We use the pre-834

trained language model BERT as a sentence en-835

coder with encoded context features formulated as836

Ĩ =
{
hI1, h

I
2, . . . , h

I
n

}
, and then extract the head837

entity feature ẽIh and tail entity feature ẽIt from the838

context features based on the locations of the spe-839

cially tagged annotated entities using maximum840

pooling.841

Relation Description Encoding. For any given842

relation description d = {d1, d2, . . . , dn}, we use843

an independently fixed sentence-BERT as a rela-844

tion description encoder, following the work of845

Zhao et al. (2023a) et al., we extract the con-846

textual features of the relation description d̃ =847 {
hd1, h

d
2, . . . , h

d
n

}
and the head entity description848

features ẽdh and tail entity description feature ẽdt .849

C Datasets850

We evaluated our method on two popular datasets851

in low-shot RE. The FewRel dataset is used in the852

few-shot RE task, and the FewRel and Wiki-ZSL853

datasets are used in the zero-shot RE task.854

FewRel dataset consists of 70,000 sentences from855

100 relations on Wikipedia, annotated by crowd-856

funding workers. The standard FewRel follows857

the setup of training/validation/testing sets corre-858

sponding to 64/16/20 relation categories, where the859

training and validation sets are publicly accessible,860

whereas the testing set is not.861

Wiki-ZSL dataset contains 113 relations and862

94,383 instances from Wikipedia, completed by re-863

mote supervised annotation. The dataset is divided864

into three subsets: training set/validation set/test865

set, corresponding to 98/5/10 relation categories,866

respectively.867

D Baseline Models868

In order to evaluate the effectiveness of our method,869

we compare TGCRE with state-of-the-art methods870

in the few-shot RE and zero-shot RE tasks, respec- 871

tively, selecting a representative number of models 872

from recent years. 873

For the few-shot RE, the models include Proto- 874

HATT(Gao et al., 2019a), MLMAN(Ye and 875

Ling, 2019), BERT-PAIR(Gao et al., 2019b), RE- 876

GRAB(Qu et al., 2020), HCRP(Han et al., 2021), 877

SimpleFSRE(Liu et al., 2022), and GM_GEN(Li 878

and Qian, 2022). For zero-shot RE, the models 879

include R-BERT(Wu and He, 2019), ESIM(Levy 880

et al., 2017), ZS-BERT(Chen and Li, 2021), and 881

RE-Matching(Zhao et al., 2023a). 882

E Experimental settings 883

Following existing methods, we use Bert- 884

base(Devlin et al., 2019) as an encoder for the in- 885

put sentences. In particular, we employ a separate 886

fixed sentence-Bert(Reimers and Gurevych, 2019) 887

for the relation descriptions as an encoder, with the 888

aim of reducing the computational overhead. 889

In the zero-shot RE task, the learning rate is set 890

to 2e-6, batchsize is set to 16, and 10 epochs are 891

trained. We randomly choose m ∈ {5, 10, 15} rela- 892

tions as visible relations in the test set and consider 893

the rest as visible relations in the training set. In 894

this paper, we randomly repeat the relation category 895

selection five times and report the average results 896

under different selections to ensure the reliability 897

of the experimental results. 898

In the few-shot RE task, the learning rate is set 899

to 1e-5, the batchsize is set to 2, and the number 900

of training iterations and validation iterations are 901

set to 30,000 and 1,000, respectively. Following 902

the official evaluation setup, we use 5-way-1-shot, 903

5-way-5-shot, 10-way-1-shot, and 10-way-5-shot 904

to measure the performance of the model on the 905

validation and test sets. 906

AdamW(Loshchilov and Hutter, 2017) is used 907

as an optimizer in both the above tasks. In this 908

paper, the IDE used for the experiments is Pycharm 909

2021 Professional Edition. PyTorch version 1.9.1; 910

CUDA version 11.7. model training and inference 911

were performed on an NVIDIA A100-SMX with 912

40GB of GPU memory and 16GB of CPU memory. 913

F Case Study 914

F.1 Analysis of different semantic 915

summarization approaches 916

In order to compare the advantages and disadvan- 917

tages of each semantic summarization approach, 918

we designed the following comparison experiments, 919
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Method Prec. Rec. F1
CLS 91.38 90.47 90.92
CLS+Avg 89.56 88.44 88.99
Eh + Et 90.24 89.34 89.99
Attribute 91.89 90.68 91.28

Table 4: Comparison of different semantic summariza-
tion approaches.

and the results are shown in Table 4. We take the920

FewRel dataset as an example and use TGCRE as921

the base model for zero-shot relation extraction us-922

ing different semantic summarization approaches.923

From the experimental results, it can be seen that924

the semantic summarization approach based on925

token attributes proposed in this paper achieves926

the best performance in all three metrics, which is927

superior to previous approaches based on special928

tokens. In particular, CLS+Avg achieves only 88.99929

and Eh + Et up to 89.99 in terms of F1 metrics,930

which suggests that they do not seem to achieve the931

desired results in an unsupervised task that lacks932

supervised signals. Instead, the use of the most933

simple [CLS] as an embedding token for seman-934

tic summarization reached 90.92, just below our935

proposed approach.936

F.2 Analysis of different forward-backward937

procedures938

In order to understand the impact of our proposed939

two forward-backward procedures, Mean and Clas-940

sification, on the performance of the model, we set941

up relevant experiments by randomly sampling the942

set of invisible relations five times with unseen=5.943

The experimental results are shown in Table 5. We944

observe the counterfactual that the Classification945

method based on supervised labeling is actually946

lower than the simple Mean method, although there947

is no large gap between the two methods. From the948

results of the five random samples, each of the two949

emerged victorious and defeated, possibly due to950

the chance of random sampling. We believe that951

another important reason is that the Classification952

method, despite the additional support provided by953

the supervised signals, only undergoes one back-954

ward pass, which makes the gradient information955

generated by each token more contingent, and the956

model suffers from more noise compared to the957

Mean method.958

Method Random Prec. Rec. F1
Mean 0 94.58 94.63 94.60
Classification 0 94.88 94.57 94.73
Mean 1 90.37 87.74 89.03
Classification 1 89.63 86.29 87.93
Mean 2 83.45 83.09 83.37
Classification 2 85.42 83.46 84.43
Mean 3 93.55 92.89 93.22
Classification 3 93.35 92.89 93.12
Mean 4 96.33 96.34 96.34
Classification 4 96.18 96.20 96.19
Mean average 91.66 90.94 91.31
Classification average 91.89 90.68 91.28

Table 5: Comparison of different forward-backward
procedures.
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Unseen Method Wiki-ZSL FewRel

m=5

-attribute 81.33 89.99
-mlss 81.06 91.08
-both 80.15 88.06
TGCRE 81.42 91.28

m=10

-attribute 71.97 83.59
-mlss 71.04 83.81
-both 71.47 83.14
TGCRE 73.30 85.66

m=15

-attribute 66.45 72.39
-mlss 66.40 72.09
-both 66.16 71.72
TGCRE 67.06 72.92

Table 6: Ablation experiments on zero-shot, evaluated
in terms of F1.

Method 5-1 5-5 10-1 10-5
-dif 94.92 97.05 91.14 94.80
-attribute 92.11 97.90 87.89 96.52
TGCRE 98.32 99.02 95.55 97.84

Table 7: Ablation experiments on few-shot, evaluated
in terms of accuracy.

G Ablation Experiments959

We show the results of the full ablation experiments.960

Table 6 presents the ablation experiments of the961

TGCRE in the zero-shot task and Table 7 presents962

the ablation experiments of the TGCRE in the few-963

shot task.964
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