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ABSTRACT

Continual learning deals with training models on new tasks and datasets in an on-
line fashion. One strand of research has used probabilistic regularization for con-
tinual learning, with two of the main approaches in this vein being Online Elastic
Weight Consolidation (Online EWC) and Variational Continual Learning (VCL).
VCL employs variational inference, which in other settings has been improved
empirically by applying likelihood-tempering. We show that applying this modifi-
cation to VCL recovers Online EWC as a limiting case, allowing for interpolation
between the two approaches. We term the general algorithm Generalized VCL
(GVCL). In order to mitigate the observed overpruning effect of VI, we take inspi-
ration from a common multi-task architecture, neural networks with task-specific
FiLM layers, and find that this addition leads to significant performance gains,
specifically for variational methods. In the small-data regime, GVCL strongly
outperforms existing baselines. In larger datasets, GVCL with FiLM layers out-
performs or is competitive with existing baselines in terms of accuracy, whilst also
providing significantly better calibration.

1 INTRODUCTION

Continual learning methods enable learning when a set of tasks changes over time. This topic is
of practical interest as many real-world applications require models to be regularly updated as new
data is collected or new tasks arise. Standard machine learning models and training procedures fail
in these settings (French, 1999), so bespoke architectures and fitting procedures are required.

This paper makes two main contributions to continual learning for neural networks. First, we de-
velop a new regularization-based approach to continual learning. Regularization approaches adapt
parameters to new tasks while keeping them close to settings that are appropriate for old tasks. Two
popular approaches of this type are Variational Continual Learning (VCL) (Nguyen et al., 2018) and
Online Elastic Weight Consolidation (Online EWC) (Kirkpatrick et al., 2017; Schwarz et al., 2018).
The former is based on a variational approximation of a neural network’s posterior distribution over
weights, while the latter uses Laplace’s approximation. In this paper, we propose Generalized Vari-
ational Continual Learning (GVCL) of which VCL and Online EWC are two special cases. Under
this unified framework, we are able to combine the strengths of both approaches. GVCL is closely
related to likelihood-tempered Variational Inference (VI), which has been found to improve perfor-
mance in standard learning settings (Zhang et al., 2018; Osawa et al., 2019). We also see significant
performance improvements in continual learning.

Our second contribution is to introduce an architectural modification to the neural network that
combats the deleterious overpruning effect of VI (Trippe & Turner, 2018; Turner & Sahani, 2011).
We analyze pruning in VCL and show how task-specific FiLM layers mitigate it. Combining this
architectural change with GVCL results in a hybrid architectural-regularization based algorithm.
This additional modification results in performance that exceeds or is within statistical error of strong
baselines such as HAT (Serra et al., 2018) and PathNet (Fernando et al., 2017).

The paper is organized as follows. Section 2 outlines the derivation of GVCL, shows how it unifies
many continual learning algorithms, and describes why it might be expected to perform better than
them. Section 3 introduces FiLM layers, first from the perspective of multi-task learning, and then
through the lens of variational over-pruning, showing how FiLM layers mitigate this pathology of
VCL. Finally, in Section 5 we test GVCL and GVCL with FiLM layers on many standard bench-
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marks, including ones with few samples, a regime that could benefit more from continual learning.
We find that GVCL with FiLM layers outperforms existing baselines on a variety of metrics, includ-
ing raw accuracy, forwards and backwards transfer, and calibration error. In Section 5.4 we show
that FiLM layers provide a disproportionate improvement to variational methods, confirming our
hypothesis in Section 31.

2 GENERALIZED VARIATIONAL CONTINUAL LEARNING

In this section, we introduce Generalized Variational Continual Learning (GVCL) as a likelihood-
tempered version of VCL, with further details in Appendix C. We show how GVCL recovers Online
EWC. We also discuss further links between GVCL and the Bayesian cold posterior in Appendix D.

2.1 LIKELIHOOD-TEMPERING IN VARIATIONAL CONTINUAL LEARNING

Variational Continual Learning (VCL). Bayes’ rule calculates a posterior distribution over model
parameters θ based on a prior distribution p(θ) and some dataset DT = {XT , yT }. Bayes’ rule
naturally supports online and continual learning by using the previous posterior p(θ|DT−1) as a
new prior when seeing new data (Nguyen et al., 2018). Due to the intractability of Bayes’ rule
in complicated models such as neural networks, approximations are employed, and VCL (Nguyen
et al., 2018) uses one such approximation, Variational Inference (VI). This approximation is based
on approximating the posterior p(θ|DT ) with a simpler distribution qT (θ), such as a Gaussian. This
is achieved by optimizing the ELBO for the optimal qT (θ),

ELBOVCL = Eθ∼qT (θ)[log p(DT |θ)]−DKL(qT (θ)‖qT−1(θ)), (1)

where qT−1(θ) is the approximation to the previous task posterior. Intuitively, this refines a distri-
bution over weight samples that balances good predictive performance (the first expected prediction
accuracy term) while remaining close to the prior (the second KL-divergence regularization term).

Likelihood-tempered VCL. Optimizing the ELBO will recover the true posterior if the approxi-
mating family is sufficiently rich. However, the simple families used in practice typically lead to
poor test-set performance. Practitioners have found that performance can be improved by down-
weighting the KL-divergence regularization term by a factor β, with 0 < β < 1. Examples of this
are seen in Zhang et al. (2018) and Osawa et al. (2019), where the latter uses a “data augmentation
factor” for down-weighting. In a similar vein, sampling from “cold posteriors” in SG-MCMC has
also been shown to outperform the standard Bayes posterior, where the cold posterior is given by
pT (θ|D) ∝ p(θ|D)

1
T , T < 1 (Wenzel et al., 2020). Values of β > 1 have also been used to improve

the disentanglement variational autoencoder learned models (Higgins et al., 2017). We down-weight
the KL-divergence term in VCL, optimizing the β-ELBO2,

β-ELBO = Eθ∼qT (θ)[log p(DT |θ)]− βDKL(qT (θ)‖qT−1(θ)).

VCL is trivially recovered when β = 1. We will now show that surprisingly as β → 0, we recover
a special case of Online EWC. Then, by modifying the term further as required to recover the full
version of Online EWC, we will arrive at our algorithm, Generalized VCL.

2.2 ONLINE EWC IS A SPECIAL CASE OF GVCL

We analyze the effect of KL-reweighting on VCL in the case where the approximating family is
restricted to Gaussian distributions over θ. We will consider training all the tasks with a KL-
reweighting factor of β, and then take the limit β → 0, recovering Online EWC. Let the approxi-
mate posteriors at the previous and current tasks be denoted as qT−1(θ) = N (θ;µT−1,ΣT−1) and
qT (θ) = N (θ;µT ,ΣT ) respectively, where we are learning {µT ,ΣT }. The optimal ΣT under the
β-ELBO has the form (see Appendix C),

Σ−1
T =

1

β
∇µT∇µTEqT (θ)[− log p(DT |θ)] + Σ−1

T−1. (2)

1Code is available at https://github.com/yolky/gvcl
2We slightly abuse notation by writing the likelihood as p(DT |θ) instead of p(yT |θ,XT ).
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Now take the limit β → 0. From Equation 2, ΣT → 0, so qT (θ) becomes a delta function, and

Σ−1
T = − 1

β
∇µT∇µT log p(DT |θ = µT ) + Σ−1

T−1 =
1

β
HT + Σ−1

T−1 =
1

β

T∑
t=1

Ht + Σ−1
0 , (3)

where HT is the T th task Hessian3. Although the learnt distribution qT (θ) becomes a delta function
(and not a full Gaussian distribution as in Laplace’s approximation), we will see that a cancellation
of β factors in the β-ELBO will lead to the eventual equivalence between GVCL and Online EWC.
Consider the terms in the β-ELBO that only involve µT :

β-ELBO = Eθ∼qT (θ)[log p(DT |θ)]−
β

2
(µT − µT−1)>Σ−1

T−1(µT − µT−1)

= log p(DT |θ = µT )− 1

2
(µT − µT−1)>

(
T−1∑
t=1

Ht + βΣ−1
0

)
(µT − µT−1), (4)

where we have set the form of ΣT−1 to be as in Equation 3. Equation 4 is an instance of the objective
function used by a number of continual learning methods, most notably Online EWC4 (Kirkpatrick
et al., 2017; Schwarz et al., 2018), Online-Structured Laplace (Ritter et al., 2018), and SOLA (Yin
et al., 2020). These algorithms can be recovered by changing the approximate posterior class Q
to Gaussians with diagonal, block-diagonal Kronecker-factored covariance matrices, and low-rank
precision matrices, respectively (see Appendices C.4 and C.5).

Based on this analysis, we see that β can be seen as interpolating between VCL, with β = 1,
and continual learning algorithms which use point-wise approximations of curvature as β → 0. In
Appendix A we explore how β controls the scale of the quadratic curvature approximation, verifying
with experiments on a toy dataset.. Small β values learn distributions with good local structure,
while higher β values learn distributions with a more global structure. We explore this in more
detail in Appendices A and B, where we show the convergence of GVCL to Online-EWC on a toy
experiment.

Inference using GVCL. When performing inference with GVCL at test time, we use samples from
the unmodified q(θ) distribution. This means that when β = 1, we recover the VCL predictive,
and as β → 0, the posterior collapses as described earlier, meaning that the weight samples are
effectively deterministic. This is in line with the inference procedure given by Online EWC and its
variants. In practice, we use values of β = 0.05 − 0.2 in Section 5, meaning that some uncertainty
is retained, but not all. We can increase the uncertainty at inference time by using an additional
tempering step, which we describe, along with further generalizations in Appendix D.

2.3 REINTERPRETING λ AS COLD POSTERIOR REGULARIZATION

As described above, the β-ELBO recovers instances of a number of existing second-order continual
learning algorithms including Online EWC as special cases. However, the correspondence does not
recover a key hyperparameter λ used by these methods that up-weights the quadratic regularization
term. Instead, our derivation produces an implicit value of λ = 1, i.e. equal weight between tasks
of equal sample count. In practice it is found that algorithms such as Online EWC perform best
when λ > 1, typically 10 − 1000. In this section, we view this λ hyperparameter as a form of cold
posterior regularization.

In the previous section, we showed that β controls the length-scale over which we approximate
the curvature of the posterior. However, the magnitude of the quadratic regularizer stays the same,
because theO(β−1) precision matrix and the β coefficient in front of the KL-term cancel out. Taking
inspiration from cold posteriors (Wenzel et al., 2020), which temper both the likelihood and the prior
and improve accuracy with Bayesian neural networks, we suggest tempering the prior in GVCL.

Therefore, rather than measuring the KL divergence between the posterior and prior, qT and qT−1,
respectively, we suggest regularizing towards tempered version of the prior, qλT−1. However, this

3The actual Hessian may not be positive semidefinite while Σ is, so here we refer to a positive semidefinite
approximation of the Hessian.

4EWC uses the Fisher information, but our derivation results in the Hessian. The two matrices coincide
when the model has near-zero training loss, as is often the case (Martens, 2020).
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form of regularization has a problem: in continual learning, over the course of many tasks, old tasks
will be increasingly (exponentially) tempered. In order to combat this, we also use the tempered ver-
sion of the posterior in the KL divergence, qλT . This should allow us to gain benefits from tempering
the prior while being stable over multiple tasks in continual learning.

As we now show, tempering in this way recovers the λ hyperparameter from algorithms such as
Online EWC. Note that raising the distributions to the power λ is equivalent to tempering by τ =
λ−1. For Gaussians, tempering a distribution by a temperature τ = λ−1 is the same as scaling the
covariance by λ−1. We can therefore expand our new KL divergence,

DKL

(
qλT ‖qλT−1

)
= 1

2

(
(µT − µT−1)>λΣ−1

T−1(µT − µT−1) + Tr(λΣ−1
T−1λ

−1ΣT ) + log
|ΣT−1|λ−d

|ΣT |λ−d
− d
)

= 1
2

(
(µT − µT−1)>λΣ−1

T−1(µT − µT−1) + Tr(Σ−1
T−1ΣT ) + log

|ΣT−1|
|ΣT |

− d
)

= DKLλ(qT ‖qT−1).

In the limit of β → 0, our λ coincides with Online EWC’s λ, if the tasks have the same number
of samples. However, this form of λ has a slight problem: it increases the regularization strength of
the initial prior Σ0 on the mean parameter update. We empirically found that this negatively affects
performance. We therefore propose a different version of λ, which only up-weights the “data-
dependent” parts of ΣT−1, which can be viewed as likelihood tempering the previous task posterior,
as opposed to tempering both the initial prior and likelihood components. This new version still
converges to Online EWC as β → 0, since the O(1) prior becomes negligible compared to the
O(β−1) Hessian terms. We define,

Σ̃−1
T,λ :=

λ

β

T∑
t=1

Ht + Σ−1
0 = λ(Σ−1

T − Σ−1
0 ) + Σ−1

0 .

In practice, it is necessary to clip negative values of Σ−1
T −Σ−1

0 to keep Σ̃−1
T,λ positive definite. This

is only required because of errors during optimization. We then use a modified KL-divergence,

DKLλ̃(qT ‖qT−1) = 1
2

(
(µT − µT−1)>Σ̃−1

T−1,λ(µT − µT−1) + Tr(Σ−1
T−1ΣT ) + log |ΣT−1|

|ΣT | − d
)
.

Note that in Online EWC, there is another parameter γ, that down-weights the previous Fisher ma-
trices. As shown in Appendix C, we can introduce this hyperparameter by taking the KL divergence
priors and posteriors at different temperatures: qλT−1 and qγλT . However, we do not find that this
approach improves performance. Combining everything, we have our objective for GVCL,

Eθ∼qT (θ)[log p(DT |θ)]− βDKLλ̃(qT (θ)‖qT−1(θ)).

3 FILM LAYERS FOR CONTINUAL LEARNING

The Generalized VCL algorithm proposed in Section 2 is applicable to any model. Here we discuss
a multi-task neural network architecture that is especially well-suited to GVCL when the task ID is
known at both training and inference time: neural networks with task-specific FiLM layers.

3.1 BACKGROUND TO FILM LAYERS

The most common architecture for continual learning is the multi-headed neural network. A shared
set of body parameters act as the feature extractor. For every task, features are generated in the same
way, before finally being passed to separate head networks for each task. This architecture does
not allow for task-specific differentiation in the feature extractor, which is limiting (consider, for
example, the different tasks of handwritten digit recognition and image recognition). FiLM layers
(Perez et al., 2018) address this limitation by linearly modulating features for each specific task so
that useful features can be amplified and inappropriate ones ignored. In fully-connected layers, the
transformation is applied element-wise: for a hidden layer with width W and activation values hi,
1 ≤ i ≤ W , FiLM layers perform the transformation h′i = γihi + bi, before being passed on to the
remainder of the network. For convolutional layers, transformations are applied filter-wise. Consider
a layer withN filters of sizeK×K, resulting in activations hi,j,k, 1 ≤ i ≤ N, 1 ≤ j ≤W, 1 ≤ k ≤
H , where W and H are the dimensions of the resulting feature map. The transformation has the
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(a) GVCL (b) GVCL+ FiLM

Figure 1: Visualizations of deviation from the prior distribution for filters in the first layer of a
convolutional networks trained on Hard-CHASY. Lighter colours indicate an active filter for that
task. Models are trained either (a) sequentially using GVCL, or (b) sequentially with GVCL +
FiLM. FiLM layers increase the number of active units.

form h′i,j,k = γi ∗ hi,j,k + bi. The number of required parameters scales with the number of filters,
as opposed to the full activation dimension, making them computationally cheap and parameter-
efficient. FiLM layers have previously been shown to help with fine-tuning for transfer learning
(Rebuffi et al., 2017), multi-task meta-learning (Requeima et al., 2019), and few-shot learning (Perez
et al., 2018). In Appendix F, we show how FiLM layer parameters are interpretable, with similarities
between FiLM layer parameters for similar tasks in a multi-task setup.

3.2 COMBINING GVCL AND FILM LAYERS

It is simple to apply GVCL to models which utilize FiLM layers. Since these layers are specific to
each task they do not need a distributional treatment or regularization as was necessary to support
continual learning of the shared parameters. Instead, point estimates are found by optimising the
GVCL objective function. This has a well-defined optimum unlike joint MAP training when FiLM
layers are added (see Appendix E for a discussion). We might expect an improved performance
for continual learning by introducing task-specific FiLM layers as this results in a more suitable
multi-task model. However, when combined with GVCL, there is an additional benefit.

When applied to multi-head networks, VCL tends to prune out large parts of the network (Trippe &
Turner, 2018; Turner & Sahani, 2011) and GVCL inherits this behaviour. This occurs in the follow-
ing way: First, weights entering a node revert to their prior distribution due to the KL-regularization
term in the ELBO. These weights then add noise to the network, affecting the likelihood term of
the ELBO. To avoid this, the bias concentrates at a negative value so that the ReLU activation ef-
fectively shuts off the node. In the single task setting, this is often relatively benign and can even
facilitate compression (Louizos et al., 2017; Molchanov et al., 2017). However, in continual learning
the effect is pathological: the bias remains negative due to its low variance, meaning that the node
is effectively shut off from that point forward, preventing the node from re-activating. Ultimately,
large sections of the network can be shut off after the first task and cannot be used for future tasks,
which wastes network capacity (see Figure 1a).

In contrast, when using task-specific FiLM layers, pruning can be achieved by either setting the
FiLM layer scale to 0 or the FiLM layer bias to be negative. Since there is no KL-penalty on these
parameters, it is optimal to prune in this way. Critically, both the incoming weights and the bias of
a pruned node can then return to the prior without adding noise to the network, meaning that the
node can be re-activated in later tasks. The increase in the number of unpruned units can be seen in
Figure 1b. In Appendix G we provide more evidence of this mechanism.

4 RELATED WORK

Regularization-based continual learning. Many algorithms attempt to regularize network param-
eters based on a metric of importance. Section 2 shows how some methods can be seen as special
cases of GVCL. We now focus on other related methods. Lee et al. (2017) proposed IMM, which is
an extension to EWC which merges posteriors based on their Fisher information matrices. Ahn et al.
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(2019), like us, use regularizers based on the ELBO, but also measure importance on a per-node basis
rather than a per-weight one. SI (Zenke et al., 2017) measures importance using “Synaptic Saliency,”
as opposed to methods based on approximate curvature.

Architectural approaches to continual learning. This family of methods modifies the standard
neural architecture by adding components to the network. Progressive Neural Networks (Rusu et al.,
2016) adds a parallel column network for every task, growing the model size over time. PathNet
(Fernando et al., 2017) fixes the model size while optimizing the paths between layer columns.
Architectural approaches are often used in tandem with regularization based approaches, such as
in HAT (Serra et al., 2018), which uses per-task gating parameters alongside a compression-based
regularizer. Adel et al. (2020) propose CLAW, which also uses variational inference alongside per-
task parameters, but requires a more complex meta-learning based training procedure involving
multiple splits of the dataset. GVCL with FiLM layers adds to this list of hybrid architectural-
regularization based approaches. See Appendix H for a more comprehensive related works section.

5 EXPERIMENTS

We run experiments in the small-data regime (Easy-CHASY and Hard-CHASY) (Section 5.1), on
Split-MNIST (Section 5.1), on the larger Split CIFAR benchmark (Section 5.2), and on a much
larger Mixed Vision benchmark consisting of 8 different image classification datasets (Section 5.3).
In order to compare continual learning performance, we compare final average accuracy, forward
transfer (the improvement on the current task as number of past tasks increases (Pan et al., 2020))
and backward transfer (the difference in accuracy between when a task is first trained and its accu-
racy after the final task (Lopez-Paz & Ranzato, 2017)). We compare to many baselines, but due to
space constraints, only report the best-performing baselines in the main text. We also compare to
two offline methods: an upper-bound “joint” version trained on all tasks jointly, and a lower-bound
“separate” version with each task trained separately (no transfer). Further baseline results are in Ap-
pendix J. The combination of GVCL on task-specific FiLM layers (GVCL-F) outperforms baselines
on the smaller-scale benchmarks and outperforms or performs within statistical error of baselines
on the larger Mixed Vision benchmark. We also report calibration curves, showing that GVCL-F is
well-calibrated. Full experimental protocol and hyperparameters are reported in Appendix I.

5.1 CHASY AND Split-MNIST

(a) Easy-CHASY (b) Hard-CHASY (c) Split-MNIST

Figure 2: Running average accuracy of Easy-CHASY, Hard-CHASY and Split-MNIST trained con-
tinually. GVCL-F and GVCL are compared to the best performing baseline algorithm. GVCL-F
and GVCL both significantly outperform HAT on Easy-CHASY. On Hard-CHASY, GVCL-F still
manages to perform as well joint MAP training, while GVCL performs as well as PathNet. In Split-
MNIST, GVCL-F narrowly outperforms HAT, with both performing nearly as well as joint training.
The CHASY benchmark consists of a set of tasks specifically designed for multi-task and continual
learning, with detailed explanation in Appendix K. It is derived from the HASYv2 dataset (Thoma,
2017), which consists of 32x32 handwritten latex characters. Easy-CHASY was designed to max-
imize transfer between tasks and consists of similar tasks with 20 classes for the first task, to 11
classes for the last. Hard-CHASY represents scenarios where tasks are very distinct, where tasks
range from 18 to 10 classes. Both versions have very few samples per class. Testing our algorithm
on these datasets tests two extremes of the continual learning spectrum. For these two datasets we
use a small convolutional network comprising two convolutions layers and a fully connected layer.
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(a) Easy-CHASY (b) Hard-CHASY

Figure 3: Accuracy of Easy-CHASY and Hard-CHASY trained models at the end of learning all
10 tasks continually. Performance of GVCL-F, GVCL and the best performing baselines (HAT
and Pathnet) are compared to Joint and Separate training. GVCL-F again strongly outperforms the
baselines and performs similar to the upper-bound VI joint training.

For our Split-MNIST experiment, in addition to the standard 5 binary classification tasks for Split-
MNIST, we add 5 more binary classification tasks by taking characters from the KMNIST dataset
(Clanuwat et al., 2018). For these experiments we used a 2-layer fully-connected network, as in
common in continual learning literature (Nguyen et al., 2018; Zenke et al., 2017).

Figure 2 shows the raw accuracy results. As the CHASY datasets have very few samples per class
(16 per class, resulting in the largest task having a training set of 320 samples), it is easy to overfit.
This few-sample regime is a key practical use case for continual learning as it is essential to transfer
information between tasks. In this regime, continual learning algorithms based on MAP-inference
overfit, resulting in poor performance. As GVCL-F is based on a Bayesian framework, it is not
as adversely affected by the low sample count, achieving 90.9% accuracy on Easy-CHASY com-
pared to 82.6% of the best performing MAP-based CL algorithm, HAT. Hard-CHASY tells a similar
story, 69.1% compared to PathNet’s 64.8%. Compared to the full joint training baselines, GVCL-
F achieves nearly the same accuracy (Figure 3). The gap between GVCL-F and GVCL is larger
for Easy-CHASY than for Hard-CHASY, as the task-specific adaptation that FiLM layers provide
is more beneficial when tasks require contrasting features, as in Hard-CHASY. With Split-MNIST,
GVCL-F also reaches the same performance as joint training, however it is difficult to distinguish
approaches on this benchmark as many achieve near maximal accuracy.

GVCL-F GVCL HAT PathNet VCL Online EWC

Easy-CHASY
ACC (%) 90.9 ± 0.3 88.9± 0.6 82.6± 0.9 82.4± 0.9 78.4± 1.0 73.4± 3.4
BWT (%) 0.2 ± 0.1 −0.8± 0.4 −1.6± 0.6 0.0± 0.0 −4.1± 1.2 −8.9± 2.9
FWT (%) 0.4 ± 0.3 −0.6± 0.5 0.4 ± 1.4 −1.5± 0.9 −7.9± 0.8 −1.5± 0.5

Hard-CHASY
ACC (%) 69.5 ± 0.6 64.4± 0.6 62.5± 5.4 64.8± 0.8 45.8± 1.4 56.4± 1.7
BWT (%) −0.1 ± 0.1 −0.6± 0.2 −0.8± 0.4 0.0 ± 0.0 −11.9± 1.6 −7.1± 1.7
FWT (%) −1.6± 0.7 −6.3± 0.6 −3.7± 5.5 −2.2± 0.8 −13.5± 2.2 −3.4± 1.3

Split-MNIST
(10 Tasks)

ACC (%) 98.6 ± 0.1 94.6± 0.7 98.3± 0.1 95.2± 1.8 92.4± 1.2 94.0± 1.4
BWT (%) 0.0 ± 0.0 −4.0± 0.7 −0.2± 0.0 0.0 ± 0.0 −5.5± 1.1 −3.8± 1.4
FWT (%) −0.1 ± 0.1 −0.0 ± 0.0 −0.1± 0.1 −3.3± 1.8 −0.8± 0.1 −0.8± 0.1

Split-CIFAR
ACC (%) 80.0 ± 0.5 70.6± 1.7 77.3± 0.3 68.7± 0.8 44.2± 14.2 77.1± 0.2
BWT (%) −0.3 ± 0.2 −2.3± 1.4 −0.1 ± 0.1 0.0 ± 0.0 −23.9± 12.2 −0.5± 0.3
FWT (%) 8.8 ± 0.5 1.3± 1.0 6.8± 0.2 −1.9± 0.8 −3.5± 2.1 6.9± 0.3

Mixed Vision
Tasks

ACC (%) 80.0 ± 1.2 49.0± 2.8 80.3 ± 1.0 76.8± 2.0 26.9± 2.1 62.8± 5.2
BWT (%) −0.9 ± 1.3 −13.1± 1.6 −0.1 ± 0.1 0.0 ± 0.0 −35.0± 5.6 −18.7± 5.8
FWT (%) −4.8 ± 1.6 −23.5± 3.4 −5.8 ± 1.0 −9.5± 2.0 −23.7± 3.8 −4.8 ± 0.7

Table 1: Performance metrics of GVCL-F and GVCL compared to baselines (more in Appendix J).
GVCL-F obtains the best accuracy and backwards/forwards transfer on many datasets/architectures.

5.2 Split-CIFAR

The popular Split-CIFAR dataset, introduced in Zenke et al. (2017), has CIFAR10 as the first task,
and then 5 tasks as disjoint 10-way classifications from the first 50 classes of CIFAR100, giving a

7



Published as a conference paper at ICLR 2021

total of 6 tasks. We use the same architecture as in other papers (Zenke et al., 2017; Pan et al., 2020).
Like with Easy-CHASY, jointly learning these tasks significantly outperforms networks separately
trained on the tasks, indicating potential for forward and backward transfer in a continual learning
algorithm. Results are in Figure 4. GVCL-F is able to achieve the same final accuracy as joint
training with FiLM layers, achieving 80.0±0.5%, beating all baseline algorithms by at least 2%.
This confirms that our algorithm performs well in larger settings as well as the previous smaller-
scale benchmarks, with minimal forgetting. While the backwards transfer metric for many of the
best performing continual learning algorithms is near 0, GVCL-F has the highest forward transfer,
achieving 8.5%.

GVCL consistently outperforms VCL, but unlike in the CHASY experiments, it does not outperform
Online EWC. This also occurs in the Mixed Vision tasks considered next. Theoretically this should
not happen, but GVCL’s hyperparameter search found β = 0.2 which is far from Online EWC. We
believe this is because optimizing the GVCL cost for small β is more challenging (see Appendix B).
However, since intermediate β settings result in more pruning, FiLM layers then bring significant
improvement.

(a) Running average accuracy of Split-CIFAR (b) Final accuracies on Split-CIFAR

Figure 4: Running average accuracy of Split-CIFAR and final accuracies after continually training
on 6 tasks for GVCL-F, GVCL, and HAT. GVCL-F achieves the maximum amount of forwards
transfer, and achieves close to the upper-bound joint performance.

5.3 MIXED VISION TASKS

(a) Final accuracies after all tasks (b) Relative accuracy after training on the ith task

Figure 5: (a) Average accuracy of mixed vision tasks at the end of training for GVCL-F and HAT.
Both algorithms perform nearly equally well in this respect. (b) GVCL-F gracefully forgets, with
higher intermediate accuracies, while HAT has a lower initial accuracy but does not forget.

We finally test on a set of mixed vision datasets, as in Serra et al. (2018). This benchmark consists
of 8 image classification datasets with 10-100 classes and a range of dataset sizes, with the order
of tasks randomly permuted between different runs. We use the same AlexNet architecture as in
Serra et al. (2018). Average accuracies of the 8 tasks after continual training are shown in Figure 5.
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GVCL-F’s final accuracy matches that of HAT, with similar final performances of 80.0±1.2% and
80.3±1.0% for the two methods, respectively. Figure 5b shows the relative accuracy of the model
after training on intermediate tasks compared to its final accuracy. A positive relative accuracy after
t tasks means that the method performs better on the tasks seen so far than it does on the same
tasks after seeing all 8 tasks (Appendix I contains a precise definition). HAT achieves its continual
learning performance by compressing earlier tasks, hindering their performance in order to reserve
capacity for later tasks. In contrast, GVCL-F attempts to maximize the performance for early tasks,
but allows performance to gradually decay, as shown by the gradually decreasing relative accuracy in
Figure 5b. While both strategies result in good final accuracy, one could argue that pre-compressing
a network in anticipation of future tasks which may or may not arrive is an impractical real-world
strategy, as the number of total tasks may be unknown a priori, and therefore one does not know
how much to compress the network. The approach taken by GVCL-F is then more desirable, as it
ensures good performance after any number of tasks, and frees capacity by “gracefully forgetting”.

(a) Cifar100 Calibration Curve (b) Facescrub Calibration Curve (c) ECE on individual tasks

Figure 6: Calibration curves and Expected Calibration Error for GVCL-F and HAT trained on the
Mixed Vision Tasks benchmark. GVCL-F achieves much lower Expected Calibration Error, attain-
ing a value averaged across all tasks of 0.3% compared to HAT’s 1.7%.

Uncertainty calibration. As GVCL-F is based on a probabilistic framework, we expect it to have
good uncertainty calibration compared to other baselines. We show this for the Mixed Vision tasks
in Figure 6. Overall, the average Expected Calibration Error for GVCL-F (averaged over tasks) is
0.32%, compared to HAT’s 1.69%, with a better ECE on 7 of the 8 tasks. These results demonstrate
that GVCL-F is generally significantly better calibrated than HAT, which can be extremely important
in decision critical problems where networks must know when they are likely to be uncertain.

5.4 RELATIVE GAIN FROM ADDING FILM LAYERS

Algorithm Easy-CHASY Hard-CHASY Split-MNIST (10 tasks) Split-CIFAR Mixed Vision Tasks Average

GVCL 2.0± 0.5% 5.1± 0.4% 4.0± 0.7% 9.5± 1.4% 31.0± 2.2% 10.3± 10.6%
VCL 1.5± 1.2% 19.2± 1.4% 2.4± 1.5% 12.0± 16.4% 28.6± 3.6% 12.8± 10.3%
Online EWC 2.6± 3.3% 0.3± 7.1% 0.1± 1.2% 0.1± 0.1% 7.7± 2.1% 2.2± 2.9%

Table 2: Relative performance improvement from adding FiLM layers on several benchmarks, for
VI and non-VI based algorithms. VI-based approaches see a much more significantly gain over
EWC, suggesting that FiLM layers synergize very well with VI and address the pruning issue.

In Section 3, we suggested that adding FiLM layers to VCL in particular would result in the largest
gains, since it addresses issues specific to VI, and that FiLM parameter values were automatically
best allocated based on the prior. In Section 5.4, we compare the relative gain of adding FiLM layers
to VI-based approaches and Online EWC. We omitted HAT, since it already has per-task gating
mechanisms, so FiLM layers would be redundant. We see that the gains from adding FiLM layers
to Online EWC are limited, averaging 2.2% compared to over 10% for both VCL and GVCL. This
suggests that the strength of FiLM layers is primarily in how they interact with variational methods
for continual learning. As described in Section 3, with VI we do not need any special algorithm
to encourage pruning and how to allocate resources, as they are done automatically by VI. This
contrasts HAT, where specific regularizers and gradient modifications are necessary to encourage
the use of FiLM parameters.
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6 CONCLUSIONS

We have developed a framework, GVCL, that generalizes Online EWC and VCL, and we combined
it with task-specific FiLM layers to mitigate the effects of variational pruning. GVCL with FiLM
layers outperforms strong baselines on a number of benchmarks, according to several metrics. Fu-
ture research might combine GVCL with memory replay methods, or find ways to use FiLM layers
when task ID information is unavailable.

10



Published as a conference paper at ICLR 2021

REFERENCES

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Char-
less Fowlkes, Stefano Soatto, and Pietro Perona. Task2Vec: Task Embedding for Meta-
Learning. arXiv:1902.03545 [cs, stat], February 2019. URL http://arxiv.org/abs/
1902.03545. arXiv: 1902.03545.

Alessandro Achille, Giovanni Paolini, and Stefano Soatto. Where is the information in a deep neural
network?, 2020.

Tameem Adel, Han Zhao, and Richard E. Turner. Continual learning with adaptive weights
(claw). In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=Hklso24Kwr.

Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup Moon. Uncertainty-based continual
learning with adaptive regularization. In Advances in Neural Information Processing Systems 32,
pp. 4392–4402. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
8690-uncertainty-based-continual-learning-with-adaptive-regularization.
pdf.

Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A. Saurous, and Kevin Murphy. Fixing
a broken ELBO. volume 80 of Proceedings of Machine Learning Research, pp. 159–168, Stock-
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search, pp. 4548–4557, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/serra18a.html.

12

http://papers.nips.cc/paper/6921-bayesian-compression-for-deep-learning.pdf
http://papers.nips.cc/paper/6921-bayesian-compression-for-deep-learning.pdf
http://jmlr.org/papers/v21/17-678.html
http://jmlr.org/papers/v21/17-678.html
http://proceedings.mlr.press/v70/molchanov17a.html
http://proceedings.mlr.press/v70/molchanov17a.html
https://openreview.net/forum?id=BkQqq0gRb
https://openreview.net/forum?id=BkQqq0gRb
http://papers.nips.cc/paper/8681-practical-deep-learning-with-bayesian-principles.pdf
http://papers.nips.cc/paper/8681-practical-deep-learning-with-bayesian-principles.pdf
http://arxiv.org/abs/2004.14070
http://arxiv.org/abs/2004.14070
http://papers.nips.cc/paper/6654-learning-multiple-visual-domains-with-residual-adapters.pdf
http://papers.nips.cc/paper/6654-learning-multiple-visual-domains-with-residual-adapters.pdf
http://papers.nips.cc/paper/6654-learning-multiple-visual-domains-with-residual-adapters.pdf
http://arxiv.org/abs/1606.04671
http://proceedings.mlr.press/v80/schwarz18a.html
http://proceedings.mlr.press/v80/schwarz18a.html
http://proceedings.mlr.press/v80/serra18a.html


Published as a conference paper at ICLR 2021

Alexander Smola, Vishy Vishwanathan, and Eleazar Eskin. Laplace propagation. 01 2003.

Siddharth Swaroop, Cuong V. Nguyen, Thang D. Bui, and Richard E. Turner. Improving and
Understanding Variational Continual Learning. arXiv:1905.02099 [cs, stat], May 2019. URL
http://arxiv.org/abs/1905.02099. arXiv: 1905.02099.

Martin Thoma. The HASYv2 dataset. arXiv:1701.08380 [cs], January 2017. URL http://
arxiv.org/abs/1701.08380. arXiv: 1701.08380.

Brian Trippe and Richard Turner. Overpruning in Variational Bayesian Neural Networks.
arXiv:1801.06230 [stat], January 2018. URL http://arxiv.org/abs/1801.06230.
arXiv: 1801.06230.

R. Turner and M. Sahani. Two problems with variational expectation maximisation for time-series
models. 2011.

Florian Wenzel, Kevin Roth, Bastiaan S. Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt,
Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the
bayes posterior in deep neural networks really? CoRR, abs/2002.02405, 2020. URL https:
//arxiv.org/abs/2002.02405.

Dong Yin, Mehrdad Farajtabar, and Ang Li. SOLA: Continual Learning with Second-Order Loss
Approximation. arXiv:2006.10974 [cs, stat], June 2020. URL http://arxiv.org/abs/
2006.10974. arXiv: 2006.10974.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
volume 70 of Proceedings of Machine Learning Research, pp. 3987–3995, International Conven-
tion Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. URL http://proceedings.mlr.
press/v70/zenke17a.html.

Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy natural gradi-
ent as variational inference. volume 80 of Proceedings of Machine Learning Research, pp.
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A LOCAL VS GLOBAL CURVATURE IN GVCL

In this section, we look at the effect of β on the approximation of local curvature found from opti-
mizing the β-ELBO by analyzing its effect on a toy dataset. In doing so, we aim to provide intuition
why different values of β might outperform β = 1. We start by looking at the equation of the fixed
point of Σ.

Σ−1
T =

1

β
∇µT∇µTEqT (θ)[− log p(DT |θ)] + Σ−1

T−1. (5)

We consider the T = 1 case. We can interpret this as roughly measuring the curvature of
log p(DT |θ) at different samples of θ drawn from the distribution qT (θ). Based on this equation,
we know Σ−1

T increases as β decreases, so samples from qT (θ) are more localized, meaning that the
curvature is measured closer to the mean, forming a local approximation of curvature. Conversely,
if β is larger, Σ−1

T broadens and the approximation of curvature is on a more global scale. For
simplicity, we write∇µT∇µTEqT (θ)[− log p(DT |θ)] as H̃T .

To test this explanation of β, we performed β-VI on a simple toy dataset.

We have a true data generative distribution X ∼ N (0, 1), and we sample 1000 points forming the
dataset, D. Our model is a generative model withX ∼ N (f(θ), σ2

0 = 30), with θ being the model’s
only parameter and f(θ) an arbitrary fixed function. With β-VI, we aim to approximate p(θ|D) with
q(θ) = N (θ;µ, σ2) with a prior p(θ) = N (θ; 0, 1). We choose three different equations for f(θ):

1. f1(θ) = |θ|1.6

2. f2(θ) = 4
√
|θ|

3. f3(θ) = 3
√

(|θ| − 0.5)3 + 0.4

We visualize log p(D|θ) for each of these three functions in Figure 7. Here, we see that the data
likelihoods have very distinct shapes. f1 results in a likelihood that is flat locally but curves further
away from the origin. f2 is the opposite: there is a cusp at 0 then flattens out. f3 is a mix, where at a
very small scale it has high curvature, then flattens, then curves again. Now, we perform β-VI to get
µ and σ2, for β ∈ {0.1, 1, 10}. We then have values for σ2, which acts as Σ−1

T in Equation 5. We

want to extract H̃T
−1

from these values, so we perform the operation σ̃2 = β
1
σ2
−1

, which represents

our estimate of the curvature of log p(D|θ) at the mean. This operation also “cancels” the scaling
effect of β. We then plot these approximate log-likelihood functions log p̃(D|θ) = N (θ;µ, σ̃2) in
Figure 8.

(a) f1(θ) (b) f2(θ) (c) f3(θ)

Figure 7: True data log-likelihoods of a generative model of the form p(x|θ) = N (x; f(θ), σ2
0).

Curves are shifted so that they pass through the origin

From these figures, we see a clear trend: small values of β cause the approximate curvature to be
measured locally while larger values cause it to be measured globally, confirming our hypothesis.
Most striking is Figure 8c, where the curvature is not strictly increasing or decreasing further from
the origin. Here, we see that the curvature first is high for β = 0.1, then flattens out for β = 1 then
becomes high again for β = 10. Now imagine in continual learning our posterior for a parameter
whose posterior looks like Figure 8a. Here, the parameter would be under-regularized with β = 1,
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(a) f1(θ) (b) f2(θ) (c) f3(θ)

Figure 8: Approximate data log-likelihoods found using β-VI for various values of β for three
different generative models. Small values of β cause local approximations of curvature and large
values cause global ones.

so the parameter will drift far away, significantly affecting performance. Equally, if the posterior
was like Figure 8b, then values of β = 1 would cause the parameter to be over-regularized, limiting
model capacity than in practice could be freed. In practice we found that β values of 0.05 − 0.2
worked the best. We leave finding better ways of quantifying the posterior’s variable curvature and
ways of selecting appropriate values of β as future work.

B CONVERGENCE TO ONLINE-EWC ON A TOY EXAMPLE

Figure 9: Visualization of a simple 2d logistic regression clustering task. The first task is distin-
guishing blue and red, classes 1 and 2 respectively. The second task is distinguishing green (class 1)
from yellow (class 2). The combined task is shown on the left

Here, we demonstrate convergence of GVCL to Online-EWC for small β. In this problem, we deal
with 2d logistic regression on a toy dataset consisting of separated clusters. The clusters are shown in
Figure 9. The first set of tasks is separating the red/blue clusters, then the second is the yellow/green
clusters. Blue and green are the first class and red and yellow are the second. Or model is given by
the equation

p(yi = 1|w, b, xi) = σ(w>xi + b)

Where xi are our datapoints and w and b are our parameters. yi = 1 means class 2 (and yi = 0
means class 1). x is 2-dimensional so we have a total of 3 parameters.

Next, we ran GVCL with decreasing values of β and compared the resulting values of w and b
after the second task to solution generated by Online-EWC. For both cases, we set λ = 1. For our
prior, we used the unit normal prior on both w and b, our approximating distribution was a fully
factorized Gaussian. We ran this experiment for 5 random seeds (of the parameters, not the clusters)
and plotted the results.

Figure 10 shows the result. Evidently, the values of the parameters approach those of Online-EWC
as we decrease β, in line with our theory. However, it is worth noting that to get this convergent
behaviour, we had to run this experiment for very long. For the lowest β value, it took 17 minutes to
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Figure 10: Convergence of GVCL parameter values to Online-EWC parameter values for decreasing
values of β for a toy 2d logistic regression problem

converge compared to 1.7 for β = 1. A small learning rate of 1e-4 with 100000 iteration steps was
necessary for the smallest β =1e-4. If the optimization process was run for shorter, or too large a
learning rate was used, we would observe convergent behaviour for the first few values of β, but the
smallest values of β would result in completely different values.

This shows that while in theory, for small β, GVCL should approach Online-EWC, it is extremely
hard to achieve in practice. Given that it takes so long to achieve convergent behaviour on a model
with 3 parameters, it is unsurprising that we were not able to achieve the same performance as
Online-EWC for our neural networks, and explains why despite GVCL, in theory, encompassing
Online-EWC, can sometimes perform worse.

C FURTHER DETAILS ON RECOVERING ONLINE EWC

Here, we show the full derivation to recover Online EWC from GVCL, as β → 0. First, we expand
the β-ELBO which for Gaussian priors and posteriors has the form:

β-ELBO = Eθ∼qT (θ)log p(DT |θ)− βDKL(qT (θ)||qT−1(θ))

= Eθ∼qT (θ)[log p(DT |θ)]−
β

2

(
log |ΣT−1| − log |ΣT | − d

+ Tr(Σ−1
T−1ΣT ) + (µT − µT−1)>Σ−1

T (µT − µT−1)

)
,

where qT (θ) is our approximate distribution with means and covariance µT and ΣT , and our prior
distribution qT−1(θ) has mean and covariance µT−1 and ΣT−1. DT refers to the T th dataset and d
the dimension of µ. Next, take derivatives wrt ΣT and set to 0:

∇ΣT β-ELBO = ∇ΣTEθ∼qT (θ)[log p(DT |θ)] +
β

2
Σ−1
T −

β

2
Σ−1
T−1 (6)

0 =
1

2
∇µ∇µEqT (θ)[log p(DT |θ)] +

β

2
Σ−1
T −

β

2
Σ−1
T−1 (7)

⇒ Σ−1
T =

1

β
∇µT∇µTEqT (θ)[− log p(DT |θ)] + Σ−1

T−1. (8)

We move from Equation 6 to Equation 7 using Equation 19 in Opper & Archambeau (2008). From
Equation 8, we see that as β → 0, the precision grows indefinitely, so qT (θ) approaches a delta
function centered at its mean. We give a more precise explanation of this argument in Appendix C.1.
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We have

Σ−1
T = − 1

β
∇µT∇µT log p(DT |θ = µT ) + Σ−1

T−1

Σ−1
T =

1

β
HT + Σ−1

T−1, (9)

where HT is the Hessian of the T th dataset log-likelihood. This recursion of Σ−1
T gives

Σ−1
T =

1

β

T∑
t=1

Ht + Σ−1
0 .

Now, optimizing the β-ELBO for µT (ignoring terms that do not depend on µT ):

β-ELBO = Eθ∼q(θ)[log p(D|θ)]− β

2
(µT − µT−1)>Σ−1

T−1(µT − µT−1) (10)

= log p(D|θ = µT )− 1

2
(µT − µT−1)>

(
T−1∑
t=1

Ht + βΣ−1
0

)
(µT − µT−1). (11)

Which is the exact optimization problem for Laplace Propagation (Smola et al., 2003). If we note
that HT ≈ NTFT (Martens, 2020), where NT is the number of samples in the T th dataset and FT
is the Fisher information matrix, we recover Online EWC with λ = 1 when N1 = N2 = ... = NT
(with γ = 1).

C.1 CLARIFICATION OF THE DELTA-FUNCTION ARGUMENT

In C, we argued,

Σ−1
T =

1

β
∇µT∇µTEqT (θ)[− log p(DT |θ)] + Σ−1

T−1

≈ 1

β
HT + Σ−1

T−1

for small β. We argued that for small β, q(θ) collapsed to its mean and it is safe to treat the
expectation as sampling only from the mean. In this section, we show that this argument is justified.
Lemma 1. If q(θ) has mean and covariance parameters µ and Σ, and
Σ−1 = 1

β∇µ∇µEθ∼q(θ)[f(θ)] + C, C = O( 1
β ), then for small β, Σ−1 ≈ 1

βHµ + C, where Hµ is
the Hessian of f(θ) evaluated at µ, assuming Hµ = O(1)

Proof. We first assume that f(θ) admits a Taylor expansion around µ. For notational purposes, we
define,

Tk1,...,kn

∣∣∣
θ=µ

=
∂f

∂θ(k1) . . . ∂θ(kn)

∣∣∣
θ=µ

For our notation, upper indices in brackets indicate vector components (not powers), and lower
indices indicate covector components. Note that, Hµ,i,j = Ti,j

∣∣∣
θ=µ

. 5

Then, a Taylor expansion centered at µ has the form

f(θ) = f(µ) +

∞∑
n=1

1

n!
Tk1,...,kn

∣∣∣
θ=µ

(θ − µ)(k1) . . . (θ − µ)(kn)

5In this case, the µ in Hµ,i,j refers to the Hessian evaluated at µ, while i, j refers to the indices
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Where we use Einstein notation, so

Tk1,...,kn

∣∣∣
θ=µ

(θ − µ)(k1) . . . (θ − µ)(kn) =

D∑
k1,...,kn=1

Tk1,...,kn

∣∣∣
θ=µ

(θ − µ)(k1) . . . (θ − µ)(kn)

(12)

With D the dimension of θ. To denote the central moments of q(θ), we define

µ̃(k1,...,kn) := Eθ∼q(θ)
[
(θ − µ)(k1) . . . (θ − µ)(kn)

]
These moments can be computed using Isserlis’ theorem. Notably, for a Gaussian, if n is odd,
µ̃(k1,...,kn) = 0

Now, we can compute our expectation as an infinite sum:

∇µ∇µEθ∼q(θ)[f(θ)] = ∇µ∇µEθ∼q(θ)

[
f(µ) +

∞∑
n=1

1

n!
Tk1,...,kn

∣∣∣
θ=µ

(θ − µ)(k1) . . . (θ − µ)(kn)

]

= ∇µ∇µ

[
f(µ) +

∞∑
n=1

1

n!
Tk1,...,kn

∣∣∣
θ=µ

µ̃(k1,...,kn)

]

= ∇µ∇µ

[
f(µ) +

∞∑
n=1

1

2n!
Tk1,...,k2n

∣∣∣
θ=µ

µ̃(k1,...,k2n)

]
(odd moments are 0)

= A for notational simplicity

We can look at individual components of A:

Ai,j =
∂

∂µ(i)

∂

∂µ(j)

[
f(µ) +

∞∑
n=1

1

2n!
Tk1,...,k2n

∣∣∣
θ=µ

µ̃(k1,...,k2n)

]

= Ti,j

∣∣∣
θ=µ

+

∞∑
n=1

1

2n!
Ti,j,k1,...,k2n

∣∣∣
θ=µ

µ̃(k1,...,k2n)

Now we can insert this into our original equation.

Σ−1 =
1

β
∇µ∇µEθ∼q(θ)[f(θ)] + C

Σ−1 =
1

β
A+ C

Σ−1
i,j =

1

β
Ai,j + Ci,j looking at individual indices

Σ−1
i,j︸︷︷︸

O( 1
β )

=
1

β

(
Ti,j

∣∣∣
θ=µ︸ ︷︷ ︸

O(1)

+

∞∑
n=1

1

2n!
Ti,j,k1,...,k2n

∣∣∣
θ=µ

µ̃(k1,...,k2n)

︸ ︷︷ ︸
O(β)

)
+ Ci,j︸︷︷︸
O( 1

β )

Now we assumed thatHµ isO(1) (so Ti,j
∣∣∣
θ=µ

is too), which means that Σ−1
i,j must be at leastO( 1

β ).

If Σ−1 = O( 1
β ), then Σ = O(β). From Isserlis’ theorem, we know that µ̃(k1,...,k2n) is composed of

the product of n elements of Σ, so µ̃(k1,...,k2n) = O(βn). Ti,j,k1,...,k2n
∣∣∣
θ=µ

is constant with respect

to β, so is O(1). Hence, the summation is O(β), which for small β is negligible compared to the
O(1) term Ti,j

∣∣∣
θ=µ

, so can therefore be ignored. Then, keeping only O( 1
β ) terms,
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O( 1
β )︷︸︸︷

Σ−1
i,j =

1

β

( O(1)︷ ︸︸ ︷
Ti,j

∣∣∣
θ=µ

+

O(β)︷ ︸︸ ︷
∞∑
n=1

1

2n!
Ti,j,k1,...,k2n

∣∣∣
θ=µ

µ̃(k1,...,k2n)

)
+

O( 1
β )︷︸︸︷

Ci,j

O( 1
β )︷︸︸︷

Σ−1
i,j =

O( 1
β )︷ ︸︸ ︷

1

β
Ti,j

∣∣∣
θ=µ

+

O(1)︷ ︸︸ ︷
1

β

( ∞∑
n=1

1

2n!
Ti,j,k1,...,k2n

∣∣∣
θ=µ

µ̃(k1,...,k2n)

)
+

O( 1
β )︷︸︸︷

Ci,j

≈ 1

β
Ti,j

∣∣∣
θ=µ

+ Ci,j

=
1

β
Hµ,i,j + Ci,j

Σ−1 ≈ 1

β
Hµ + C

C.2 CORRESPONDING GVCL’S λ AND ONLINE EWC’S λ

We use DKLλ̃ in place of DKL, with DKLλ̃ defined as

DKLλ̃(qT ‖qT−1) =
1

2

(
(µT − µT−1)>Σ̃−1T−1,λµT − µT−1) + Tr(Σ−1

T−1ΣT )

+ log |ΣT−1| − d− log |ΣT |
)
,

with

Σ̃−1
T,λ :=

λ

β

T∑
t=1

Ht + Σ−1
0 = λ(Σ−1

T − Σ−1
0 ) + Σ−1

0 .

Now, the fixed point for ΣT is still given by Equation 9, but the β-ELBO for for terms involving µT
has the form,

β-ELBO = Eθ∼q(θ)[log p(D|θ)]− β

2
(µT − µT−1)>Σ̃−1

T−1,λ(µT − µT−1)

= log p(D|θ = µT )− 1

2
(µT − µT−1)>

(
λ

T∑
t=1

Ht + βΣ−1
0

)
(µT − µT−1),

which upweights the quadratic terms dependent on the data (and not the prior), similarly to λ in
Online EWC.

C.3 RECOVERING γ FROM TEMPERING

In order to recover λ, we used the KL-divergence between tempered priors and posteriors qλT−1 and
qλT . Recovering γ can be done using the same trick, except we temper the posterior to qγλT :

DKL(q
λ
T ‖q

γλ
T−1) = 1

2

(
(µT − µT−1)>λΣ−1

T−1(µT − µT−1)

+ Tr(γλΣ−1
T−1λ

−1ΣT ) + log |λ
−1ΣT−1|

|(γλ)−1ΣT | − d
)

= 1
2

(
(µT − µT−1)>λΣ−1

T−1(µT − µT−1) + γTr(Σ−1
T−1ΣT )− log |ΣT |

)
+ cons.

= DKLλ,γ(qT ‖qT−1)
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We can apply the same λ to λ̃ as before to get DKLλ̃,γ(qT ‖qT−1). Plugging this into the β-ELBO
and solving yields the recursion for ΣT to be

Σ−1
T =

1

β
HT + γΣ−1

T−1,

which is exactly that of Online EWC.

C.4 GVCL RECOVERS THE SAME APPROXIMATION OF FT AS ONLINE EWC

The earlier analysis dealt with full rank ΣT . In practice, however, ΣT is rarely full rank and we deal
with approximations of ΣT . In this subsection, we consider diagonal ΣT , like Online EWC, which in
practice uses a diagonal approximation of FT . The way Online EWC approximates this diagonal is
by matching diagonal entries of FT . There are many ways of producing a diagonal approximation of
a matrix, for example matching diagonals of the inverse matrix is also valid, depending on the metric
we use. Here, we aim to show that that the diagonal approximation of ΣT that is produced when Q
is the family of diagonal covariance Gaussians is the same as the way Online EWC approximates
FT , that is, diagonals of Σ−1

T,approx match diagonals of Σ−1
T,true, i.e. we match the diagonal precision

entries, not the diagonal covariance entries.

Let ΣT,approx = diag(σ2
1 , σ

2
2 , ..., σ

2
d), with d the dimension of the matrix. Because we are performing

VI, we are optimizing the forwards KL divergence, i.e. DKL(qapprox||qtrue). Therefore, ignoring
terms that do not depend on ΣT,approx,

DKL(qapprox||qtrue) =
1

2
Tr(ΣT,approxΣ−1

T,true)−
1

2
log |ΣT,approx|+ (constants wrt ΣT,approx)

=
1

2

d∑
i=1

(ΣT,approxΣ−1
T,true)i,i −

1

2

d∑
i=1

log σ2
i

=
1

2

d∑
i=1

(
σ2
i (Σ−1

T,true)i,i)− log σ2
i

)
.

Optimizing wrt σ2
i :

∂DKL(qapprox||qtrue)

∂σ2
i

= 0 =
1

2

(
(Σ−1

T,true)i,i −
1

σ2
i

)
⇒ σ2

i =
1

(Σ−1
T,true)i,i

.

So we have that diagonals of Σ−1
T,approx match diagonals of Σ−1

T,true.

C.5 GVCL RECOVERS THE SAME APPROXIMATION OF HT AS SOLA

SOLA approximates the Hessian with a rank-restricted matrix H̃ (Yin et al., 2020). We first consider
a relaxation of this problem with full rank, then consider the limit when we reduce this relaxation.

Because we are concerned with limiting β → 0, it is sufficient to consider Σ−1
true as H , the true

Hessian. Because H is symmetric (and assuming it is positive-semi-definite), we can also write
H as H = V DV > =

∑p
i=1 λixix

>
i , with D, and V be the diagonal matrix of eigenvalues and

a unitary matrix of eigenvectors, respectively. These eigenvalues and eigenvectors are λi and xi,
respectively, and p the dimension of H .

For H̃ , we first consider full-rank matrix which becomes low-rank as δ → 0:

H̃ =

k∑
i=1

λ̃ix̃ix̃
>
i +

p∑
j=k+1

δx̃j x̃
>
j
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This matrix has λ̃i, 1 ≤ i ≤ k as its first k eigenvalues and δ as its remaining. We also set x̃>i x̃i = 1
and x̃>i x̃j = 0, i 6= j.

With KL minimization, we aim to minimize (up to a constant and scalar factor),

KL = Tr(ΣapproxΣ−1
true)− log |Σapprox|

In our case, this is Equation 13, which we can further expand as,

KL = Tr(H̃−1H)− log |H̃−1| (13)

= Tr

 k∑
i=1

1

λ̃i
x̃ix̃
>
i +

p∑
j=k+1

1

δ
x̃j x̃
>
j

H

+

k∑
i=1

log(λ̃i) +

p∑
j=k+1

log δ (14)

= Tr

(
k∑
i=1

1

λi
x̃ix̃
>
i H

)
+ Tr

 p∑
j=k+1

1

δ
x̃j x̃
>
j H

+

k∑
i=1

log(λ̃i) +

p∑
j=k+1

log δ (15)

=

k∑
i=1

1

λi
x̃>i Hx̃i +

p∑
j=k+1

1

δ
x̃>j Hx̃j +

k∑
i=1

log(λ̃i) +

p∑
j=k+1

log δ (16)

(17)

Taking derivatives wrt λ̃i, we have:

∂KL

∂λ̃i
= 0 = − 1

λ̃2
i

x̃>i Hx̃i +
1

λ̃i
(18)

⇒ λ̃i = x̃>i Hx̃i (19)

Which when put into Equation 16,

KL =

k∑
i=1

1

λi
x̃>i Hx̃i +

p∑
j=k+1

1

δ
x̃>j Hx̃j +

k∑
i=1

log(λ̃i) +

p∑
j=k+1

log δ (20)

=

k∑
i=1

x̃>i Hx̃i
x̃>i Hx̃i

+

p∑
j=k+1

1

δ
x̃>j Hx̃j +

k∑
i=1

log(λ̃i) +

p∑
j=k+1

log δ (21)

= k +

p∑
j=k+1

1

δ
x̃>j Hx̃j +

k∑
i=1

log(λ̃i) +

p∑
j=k+1

log δ (22)

=
1

δ

p∑
j=k+1

x̃>j Hx̃j +

k∑
i=1

log(λ̃i) (removing constants) (23)

=
1

δ

p∑
j=k+1

x̃>j Hx̃j +

k∑
i=1

log(x̃>i Hx̃i) (24)

Now we need to consider the constraints x̃>i x̃i = 1 and x̃>i x̃j = 0, i 6= j by adding Lagrange
multipliers to our KL cost,

L =
1

δ

p∑
j=k+1

x̃>j Hx̃j +

k∑
i=1

log(x̃>i Hx̃i)−
k∑
i=1

φi,i(x̃
>
i x̃i − 1)−

∑
i,j,i 6=j

φi,j x̃
>
i x̃j (25)
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Taking derivatives wrt x̃i:

∂L

∂x̃i
= 0 =

2Hx̃i
x̃>i Hx̃i

− 2φi,ix̃i − 2
∑
i,j 6=i

φi,j x̃j (26)

∑
i,j 6=i

φi,j x̃j =

(
H

x̃>i Hx̃i
− φi,iIp

)
x̃i (27)

In Equation 27, we have x̃i expressed as a linear combination of x̃j , j 6= i, but x̃i and x̃j are
orthogonal, so x̃i cannot be expressed as such, so φi,j = 0, i 6= j, and,

Hx̃i
x̃>i Hx̃i

= φi,ix̃i (28)

Meaning x̃i are eigenvectors of H for 1 ≤ i ≤ k. We can also use the same Lagrange multipliers to
show that x̃i for k + 1 ≤ i ≤ p are also eigenvectors of H .

This means that our cost,

KL =
1

δ

p∑
j=k+1

x̃>j Hx̃j +

k∑
i=1

log(x̃>i Hx̃i) (29)

=
1

δ

p∑
j=k+1

κ̃j +

k∑
i=1

log(κ̃i) (30)

where the set (κ̃1, κ̃2, ..., κ̃p) is a permutation of (λ1, λ2, ..., λp) and κ̃i = λ̃i for 1 ≤ i ≤ k. I.e., H̃
shares k eigenvalues with H , and the rest are δ. It now remains to determine which eigenvalues are
shared and which are excluded.

Considering only two eigenvalues, λi, λj , and let λi > λj ≥ 0. Let r = λi
λj

. The relative cost of
excluding λi in the set {κ̃1, κ̃2, ..., κ̃k} compared to including it is,

Relative Cost =
λi − λj

δ
− log

λi
λj

=
λi(1− 1

r )

δ
− log r

If the relative cost is positive, then including λi as one of the eigenvalues of H̃ is the more optimal
choice. Now solving the inequality,

Relative Cost > 0

λi(1− 1
r )

δ
− log r > 0

λi > δ(1− 1

r
) log r

Which, for sufficiently small δ is always true because r > 1. Thus, it is always better to swap
two eigenvalues which are included/excluded, if the excluded one is larger. This means that H̃ has
the k largest eigenvalues of H , and we already showed that it shares the same eigenvectors. This
maximum eigenvalue/eigenvector pair selection is exactly the procedure used by SOLA.
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D COLD POSTERIOR VCL AND FURTHER GENERALIZATIONS

The use of KL-reweighting is closely related related to the idea of “cold-posteriors,” in which
pT (θ|D) ∝ p(θ|D)

1
τ . Finding this cold posterior is equivalent to find optimal q distributions for

maximizing the τ -ELBO:

τ -ELBO := Eθ∼q(θ)[log p(D|θ) + log p(θ)− τ log q(θ)]

whenQ is all possible distributions of θ. This objective is the same as the standard ELBO with only
the entropy term reweighted, and contrasts the β-ELBO where both the entropy and prior likelihoods
are reweighted. Here, β acts similarly to T (the temperature, not to be confused with task number).
This relationship naturally leads to the transition diagram shown in Figure 11. In this, we can see
that we can easily transition between posteriors at different temperatures by optimizing either the
β-ELBO, τ -ELBO, or tempering the posterior.

Cold (τ < 1) p ∝ p(θ) 1
τ p ∝ p(θ|D1)

1
τ p ∝ p(θ|D1:2)

1
τ ...

Warm (τ = 1) p(θ) p(θ|D1) p(θ|D1:2) ...

Tempering

β-ELBO

Tempering

β-ELBO

Temperingτ -ELBO

ELBO

τ -ELBO

ELBO

Figure 11: Transitions between posteriors at different temperatures using tempering and optimizing
either the τ -ELBO or β-ELBO

When Q contains all possible distributions, moving along any path results in the exact same distri-
bution, for example optimizing the τ -ELBO then tempering is the same as directly optimizing the
ELBO. However in the case where Q is limited, this transition is not exact, and the resulting poste-
rior is path dependent. In fact, each possible path represents a different valid method for performing
continual learning. Standard VCL works by traversing the horizontal arrows, directly optimizing the
ELBO, while an alternative scheme of VCL would optimize the τ -ELBO to form cold posteriors,
then heat the posterior before optimizing the τ -ELBO for a new task. Inference can be done at either
the warm or cold state. Note that for Gaussians, heating the posterior is just a matter of scaling the
covariance matrix by a constant factor τafter

τbefore
.

While warm posteriors generated through this two-step procedure are not optimal under the ELBO,
whenQ is limited, they may perform better for continual learning. Similar to Equation 2, the optimal
Σ when optimizing the τ -ELBO is given by

Σ−1
T =

1

τ

T∑
t=1

H̃t +
1

τ
Σ−1

0

Where H̃t is the approximate curvature for a specific value of τ for task t, which coincides with the
true Hessian for τ → 0, like with the β-ELBO. Here, both the prior and data-dependent component
are scaled by 1

τ , in contrast to Equation 2, where only the data-dependent component is reweighted.
As discussed in Section 2.2 and further explored in appendix A, this leads to a different scale of
the quadratic approximation, which may lend itself better for continual learning. This also results
in a second way to recover γ in Online EWC by first optimizing the β-ELBO with β = γ, then
tempering by a factor of 1

γ (i.e. increasing the temperature when γ < 1).

E MAP DEGENERACY WITH FILM LAYERS

Here we describe how training FiLM layer with MAP training leads to degenerate values for the
weights and scales, whereas with VI training, no degeneracy occurs. For simplicity, consider only
the nodes leading into a single node and let there be d of them, i.e. θ has dimension d. Because we
only have one node, our scale parameter γ is a single variable.
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For MAP training, we have the loss function L = −p(D|θ, γ) + λ
2 θ

2, with D the dataset and λ
the L2 regularization hyperparameter. Note that p(D|θ, γ) = p(D|cθ, 1

cγ), hence we can scale θ
arbitrarily without affecting the likelihood, so long as γ is scaled inversely. If c < 1, λ2 θ

2 < λ
2 ( 1

cθ)
2,

so increasing c decreases the L2 penalty if θ is inversely scaled by c. Therefore the optimal setting
of the scale parameter γ is arbitrarily large, while θ shrinks to 0.

At a high level, VI-training (with Gaussian posteriors and priors) does not have this issue because
the KL-divergence penalizes the variance of the parameters from deviating from the prior in addi-
tion to the mean parameters, whereas MAP training only penalizes the means. Unlike with MAP
training, if we downscale the weights, we also downscale the value of the variances, which increases
the KL-divergence. The variances cannot revert to the prior either, as when they are up-scaled
by the FiLM scale parameter, the noise would increase, affecting the log-likelihood component of
the ELBO. Therefore, there exists an optimal amount of scaling which balances the mean-squared
penalty component of the KL-divergence and the variance terms.

Mathematically we can derive this optimal scale. Consider the scenario with VI training with Gaus-
sian variational distribution and prior, where our approximate posterior q(θ) has mean and variance
µ and Σ and our prior p(θ) has parameters µ0 and Σ0. First consider the scenario without FiLM Lay-
ers. Now, have our loss function L = −Eθ∼q(θ) log p(D|θ) + DKL(q(θ)||q0(θ)). For multivariate
Gaussians,

DKL(q(θ)||p(θ)) =
1

2
(log |Σ0| − log |Σ| − d+ Tr(Σ−1

0 Σ) + (µ− µ0)TΣ−1
0 (µ− µ0)).

Now consider another distribution q′(θ), with mean and variance parameters cµ and c2Σ. Now if
q′(θ) is paired with FiLM scale parameter γ set at 1

c , the log-likelihood component is unchanged:

Eθ∼q(θ) log p(D|θ) = Eθ∼q′(θ) log p(D|θ, γ =
1

c
),

with γ being our FiLM scale parameter and p(D|θ, γ) representing a model with FiLM scale layers.
Now consider the DKL(q′(θ)||q0(θ)), and optimize c with µ and Σ fixed:

DKL(q′(θ)||p(θ)) =
1

2
(log |Σ0| − log |c2Σ| − d+ Tr(Σ−1

0 c2Σ) + (cµ− µ0)TΣ−1
0 (cµ− µ0))

=
1

2
(log |Σ0| − log |Σ| − 2d log c− d+ c2Tr(Σ−1

0 Σ)

+ (cµ− µ0)TΣ−1
0 (cµ− µ0))

∂DKL

∂c
|c=c∗ = 0 = − d

c∗
+ c∗Tr(Σ−1

0 Σ) + (c∗µ− µ0)TΣ−1
0 µ

0 = −d+ c∗2Tr(Σ−1
0 Σ) + c∗2µTΣ−1

0 µ− c∗µT0 Σ−1
0 µ

0 = c∗2(Tr(Σ−1
0 Σ) + µTΣ−1

0 µ)− c∗µT0 Σ−1
0 µ− d

⇒ c∗ =
µT0 Σ−1

0 µ±
√

(µT0 Σ−1
0 µ)2 + 4d(Tr(Σ−1

0 Σ) + µTΣ−1
0 µ)

2(Tr(Σ−1
0 Σ) + µTΣ−1

0 µ)
.

Also note that c = 0 results in an infinitely-large KL-divergence, so there is a barrier at c = 0, i.e. If
optimized through gradient descent, c should never change sign. Furthermore, note that

∂2DKL

∂c2
=

d

c2
+ Tr(Σ−1

0 Σ) + µTΣ−1
0 µ > 0.

So the KL-divergence is concave with respective to c, so c∗ is a minimizer of DKL and therefore

DKL(q(θ)||p(θ)) ≥ DKL(q′(θ)||p(θ))|c=c∗,
which implies the optimal value of the FiLM scale parameter γ is 1

c∗ . While no formal data was
collected, it was observed that the scale parameters do in fact reach very close to this optimal scale
value after training.
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F CLUSTERING OF FILM PARAMETERS

(a) Scales (b) Shifts (c) Shifts and Scales

Figure 12: T-SNE of FiLM layer parameters of 58 tasks coming from different domains. Shift and
scale parameters from the same domain are more similar than those from different ones.

In this section, we test the interpretability of learned FiLM Parameters. Such clustering has been
done in the past with FiLM parameters, as well as node-wise uncertainty parameters. One would
intuitively expect that tasks from similar domains would finds similar features salient, and thus share
similar FiLM parameters. To test this hypothesis, we took the 8 mixed vision task from Section 5.3
and split each task into multi 5-way classification tasks so that there were many tasks from similar
domains. For example, CIFAR100, which originally had 100 classes, became 20 5-way clasification
tasks, Trafficsigns became 8 tasks (7 5-way and 1 8-way), and MNIST 2 (2 5-way). Next, we trained
the same architecture used in Section 5.3 except trained all 58 resulting tasks. Joint training was
chosen over continual learning to avoid artifacts which would arise from task ordering. Figure 12
shows that the results scale and shift parameters can be clustered and FiLM parameters which arise
from the same base task cluster together. Like in Achille et al. (2019), this likely could be used as
a means of knowing which tasks to learn continually and which tasks to separate (i.e. tasks from
the same cluster would likely benefit from joint training, while tasks from different ones should be
separately trained), however we did not explore this idea further.

G HOW FILM LAYERS INTERACT WITH PRUNING

(a) Weights, no FiLM layers (b) Biases, no FiLM layers

(c) Weights, with FiLM layers (d) Biases, with FiLM layers

Figure 13: Posterior distributions for incoming weights (left) or biases (right) for a node in the
first layer. Nodes are either unrpruned (left within a column) or pruned (right within a column).
Without FiLM Layers (top row), we see that pruned nodes have their bias concentrated at a negative
value, preventing future tasks from reactivating the node. With FiLM Layers, a pruned node prunes
using the FiLM parameters rather than the shared ones, allowing the posteriors to revert to the prior
distribution, allowing for node reactivation.

In Section 3, we discussed the problem of pruning in variational continual learning and how it
prevents nodes from becoming reactivated. To reiterate, pruning broadly occurs in three steps:

1. Weights incoming to a node begin to revert to the prior distribution

2. Noise from these high-variance weights affect the likelihood term in the ELBO
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3. To prevent noise, the bias concentrates at a negative value to be cut off by the ReLU acti-
vation

Later tasks then are initialized with this negative bias with low variance, meaning that the node has
a difficult time reactivating the node without incurring a high prior cost. This results in the effect
shown in Figure 1, where after the first task, effectively no more nodes are reactivated. The effect
is further exacerbated with larger values of β, where the pruning effect is stronger. Increasing λ
worsens this as well, as increasing the quadratic cost further prevents already low-variance negative
biases from moving.

We verify that this mechanism is indeed the cause of the limited capacity use by visualizing the
posteriors for weights and biases entering a node in the first convolutional layer for a network trained
on Easy-CHASY (Figure 13). Here, we see that biases in pruned nodes when there are no FiLM
Layers do indeed concentrate at negative values. In contrast, biases in models with FiLM layers are
able to revert to their prior because the FiLM parameters perform pruning.

H RELATED WORK

Regularization-based continual learning. Many algorithms attempt to regularize network param-
eters based on a metric of importance. The most directly comparable algorithms to GVCL are EWC
(Kirkpatrick et al., 2017), Online EWC (Schwarz et al., 2018), and VCL (Nguyen et al., 2018).
EWC measures importance based on the Fisher information matrix, while VCL uses an approxi-
mate posterior covariance matrix as an importance measure. Online EWC slightly modifies EWC so
that there is only a single regularizer based on the cumulative sum of Fisher information matrices.
Lee et al. (2017) proposed IMM, which is an extension to EWC which merges posteriors based on
their Fisher information matrices. Ritter et al. (2018) and Yin et al. (2020) both aim to approximate
the Hessian by using either Kronecker-factored or low-rank forms, using the Laplace approximation
to form approximate posteriors of parameters. These methods all use second-order approximations
of the loss.Ahn et al. (2019), like us, use regularizers based on the ELBO, but also measure impor-
tance on a per-node basis than a per-weight one. SI (Zenke et al., 2017) measures importance using
“Synaptic Saliency,” as opposed to methods based on approximate curvature.

Architectural approaches to continual and meta-learning. This family of methods modifies the
standard neural architecture by either adding parallel or series components to the network. Pro-
gressive Neural Networks adds a parallel column network for every task. Pathnet (Fernando et al.,
2017) can be interpreted as a parallel-network based algorithm, but rather than growing model size
over time, the model size remains fixed while paths between layer columns are optimized. FiLM
parameters can be interpreted as adding series components to a network, and has been a mainstay
in the multitask and meta-learning literature. Requeima et al. (2019) use hypernetworks to amortize
FiLM parameter learning, and has been shown to be capable of continual learning. Architectural
approaches are often used in tandem with regularization based approaches, such as in HAT (Serra
et al., 2018), which uses per-task gating parameters alongside a compression-based regularizer. Adel
et al. (2020) propose CLAW, which also uses variational inference alongside per-task parameters,
but requires a more complex meta-learning based training procedure involving multiple splits of
the dataset. GVCL with FiLM layers adds to this list of hybrid architectural-regularization based
approaches.

Cold Posteriors and likelihood-tempering. As mentioned in Section 2, likelihood-tempering (or
KL-reweighting) has been empirically found to improve performance when using variational infer-
ence for Bayesian Neural Networks over a wide number of contexts and papers (Osawa et al., 2019;
Zhang et al., 2018). Cold posteriors are closely related to likelihood tempering, except they temper
the full posterior rather than only the likelihood term, and often empirically outperform Bayesian
posteriors when using MCMC sampling Wenzel et al. (2020). From an information-theoretic per-
spective, KL-reweighted ELBOs have also studied as compression (Achille et al., 2020). Achille
et al. (2019), like us, considers a limiting case of β, and uses this to measure parameter saliency,
but use this information to create a task embedding rather than for continual learning. Outside of
the Bayesian Neural Network context, values of β > 1 have also been explored (Higgins et al.,
2017), and more generally different values of β trace out different points on a rate-distortion curve
for VAEs (Alemi et al., 2018).
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I EXPERIMENT DETAILS

I.1 REPORTED METRICS

All reported scores and figures present the mean and standard deviation across 5 runs of the algo-
rithm with a different network initialization. For Easy-CHASY and Hard-CHASY, train/test splits
are also varied across iterations. For the Mixed Vision tasks, task permutation of the 8 tasks is also
randomized between iterations.

Let the matrix Ri,j represent the performance of jth task after the model was trained on the ith task.
Furthermore, let Rindj be the mean performance of the jth for a network trained only on that task
and let the total number of tasks be T . Following Lopez-Paz & Ranzato (2017) and Pan et al. (2020),
we define

Average Accuracy (ACC) =
1

T

T∑
j=1

RT,j ,

Forward Transfer (FWT) =
1

T

T∑
j=1

Rj,j −Rindj ,

Backward Transfer (BWT) =
1

T

T∑
j=1

RT,j −Rj,j .

Note that these metrics are not exactly the same as those presented in all other works, as the FWT
and BWT metrics are summed over the indices 1 ≤ j ≤ T , whereas Lopez-Paz & Ranzato (2017)
and Pan et al. (2020) sum from 2 ≤ j ≤ T and 1 ≤ j ≤ T − 1 for FWT and BWT, respectively.
For FWT, this definition does not assumes that R1,1 = Rind1 , and affects algorithms such as HAT
and Progressive Neural Networks, which either compress the model, resulting in lower accuracy, or
use a smaller architecture for the first task. The modified BWT transfer is equal to the other BWT
metrics apart from a constant factor T−1

T .

Intuitively, forward transfer equates to how much continual learning has benefited a task when a
task is newly learned, while backwards transfer is the accuracy drop as the network learns more
tasks compared to when a task was first learned. Furthermore, in the tables in Appendix J, we also
present net performance gain (NET), which quantifies the total gain over separate training, at the
end of training continually:

NET = FWT + BWT =
1

T

T∑
j=1

RT,j −Rindj .

Note that for computation of Rind, we compare to models trained under the same paradigm, i.e.
MAP algorithms (all baselines except for VCL) are compared to a MAP trained model, and VI
algorithms (GVCL-F, GVCL and VCL) are compared to KL-reweighted VI models. This does not
make a difference for most of the benchmarks where RindMAP ≈ RindVI . However, for Easy and Hard-
CHASY, RindMAP < RindVI , so we compare VI to VI and MAP to MAP to obtain fair metrics.

In Figure 5b, we plot ∆ACCi, which we define as

∆ACCi =
1

i

i∑
j=1

Ri,j −RT,j .

This metric is useful when the tasks have very different accuracies and their permutation is random-
ized, as is the case with the mixed vision tasks. Note that this means that Ri,j would refer to a
different task for each permutation, but we average over the 5 permutations of the runs. Empirically,
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if two algorithms have similar final accuracies, this metric measures how much the network forgets
about the first i tasks from that point to the end, and also measures how high the accuracy would
have been if training was terminated after i tasks. Plotting this also captures the concept of graceful
vs catastrophic forgetting, as graceful forgetting would show up as a smooth downward curve, while
catastrophic forgetting would have sudden drops.

I.2 OPTIMIZER AND TRAINING DETAILS

The implementation of all baseline methods was based on the Github repository6 for HAT (Serra
et al., 2018), except the implementions of IMM-Mode and EWC were modified due to an error in
the computation of the Fisher Information Matrix in the original implementation. Baseline MAP
algorithms were trained with SGD with a decaying learning starting at 5e-2 with a maximum epochs
of 200 per task for the Split-MNIST, Split-CIFAR and the mixed vision benchmarks. The number
of maximum epochs for Easy-CHASY and Hard-CHASY was 1000, due to the small dataset size.
Early stopping based on the validation set was used. 10% of the training set was used as validation
for these methods, and for Easy and Hard CHASY, 8 samples per class form the validation set (which
are disjoint from the training samples or test samples).

For VI models, we used Adam optimizer with a learning rate of 1e-4 for Split-MNIST and Mixture,
and 1e-3 for Easy-CHASY, Hard-CHASY and Split-CIFAR. We briefly tested running the baselines
algorithms using Adam rather than SGD and performance did not change. Easy-CHASY and Hard-
CHASY were run for 1500 epochs per task, Split-MNIST for 100, Split-CIFAR for 60, and 180
for Mixture. The number of epochs was changed so that the number of gradient steps for each
task was roughly equal. For Easy-CHASY, Hard-CHASY and Split-CIFAR, this means that later
tasks are run for more epochs, since the largest training sets are at the start. For Mixture, we ran
180 equivalents epochs for Facescrub. For how many epochs this equates to in the other datasets,
we refer the reader to Appendix A in Serra et al. (2018). We did not use early stopping for these
VI results. While we understand that in some cases we trained for many more epochs than the
baselines, the baselines used early stopping and therefore all stopped long before the 200 epoch
limit was reached, so allocating more time would not change their results. Swaroop et al. (2019)
also finds that allowing VI to converge is crucial for continual learning performance. We leave the
discussion of improving this convergence time for future work.

All experiments (both the baselines and VI methods) use a batch size of 64.

I.3 ARCHITECTURAL DETAILS

Easy and Hard CHASY. We use a convolutional architecture with 2 convolutions layers with:

1. 3x3 convolutional layer with 16 filters, padding of 1, ReLU activations
2. 2x2 Max Pooling with stride 2
3. 3x3 convolutional layer with 32 filters, padding of 1, ReLU activations
4. 2x2 Max Pooling with stride 2
5. Flattening layer
6. Fully connected layer with 100 units and ReLU activations
7. Task-specific head layers

Split-MNIST. We use a standard MLP with:

1. Fully connected layer with 256 units and ReLU activations
2. Fully connected layer with 256 units and ReLU activations
3. Task-specific head layers

Split-CIFAR. We use the same architecture from Zenke et al. (2017):

1. 3x3 convolutional layer with 32 filters, padding of 1, ReLU activations
6Repository at https://github.com/joansj/hat
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2. 3x3 convolutional layer with 32 filters, padding of 1, ReLU activations

3. 2x2 Max Pooling with stride 2

4. 3x3 convolutional layer with 64 filters, padding of 1, ReLU activations

5. 3x3 convolutional layer with 64 filters, padding of 1, ReLU activations

6. 2x2 Max Pooling with stride 2

7. Flattening

8. Fully connected layer with 512 units and ReLU activations

9. Task-specific head layers

Mixed vision tasks. We use the same AlexNet architecture from Serra et al. (2018):

1. 4x4 convolutional layer with 64 filters, padding of 0, ReLU activations

2. 2x2 Max Pooling with stride 2

3. 3x3 convolutional layer with 128 filters, padding of 0, ReLU activations

4. 2x2 Max Pooling with stride 2

5. 2x2 convolutional layer with 256 filters, padding of 0, ReLU activations

6. 2x2 Max Pooling with stride 2

7. Flattening

8. Fully connected layer with 2048 units and ReLU activations

9. Fully connected layer with 2048 units and ReLU activations

10. Task-specific head layers

For MAP models, dropout layers with probabilities of either 0.2 or 0.5 were added after convolu-
tional or fully-connected layers. For GVCL-F, FiLM layers were inserted after convolutional/hidden
layers, but before ReLU activations.

I.4 HYPERPARAMETER SELECTION

For all algorithms on Easy-CHASY, Hard-CHASY, Split-MNIST and Split-CIFAR, hyperparameter
selection was done by selecting the combination which produced the best average accuracy on the
first 3 tasks. The algorithms were then run on the full number of tasks. For the Mixed Vision tasks,
the best hyperparameters for the baselines were taken from the HAT Github repository. For GVCL,
we performed hyperparameter selection in the same way as in Serra et al. (2018): we found the
best hyperparameters for the average performance on the first random permutation of tasks. Note
that in the mixture tasks, we randomly permute the task order for each iteration (with permutations
kept consistent between algorithms), whereas for the other 4 benchmarks, the task order is fixed.
Hyperparameter searches were performed using a grid search. The best selected hyperparameters
are shown in Table 3.
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Algorithm Hyperparameter Easy-CHASY Hard-CHASY Split-MNIST Split-CIFAR Mixed Vision

GVCL-F β 0.05 0.05 0.1 0.2 0.1
λ 10 10 100 100 50

GVCL β 0.05 0.05 0.1 0.2 0.1
λ 100 100 1 1000 100

HAT λ 1 1 0.1 0.025 0.75*
smax 10 50 50 50 400*

PathNet # of evolutions 20 200 10 100 20*

VCL None - - - - -

Online EWC λ 100 500 10000 100 5

Progressive None - - - - -

IMM-Mean λ 0.0005 1e-6 5e-4 1e-4 0.0001*

IMM-Mode λ 1e-7 0.1 0.1 1e-5 1

LWF λ 0.5 0.5 2 2 2*
T 4 2 4 4 1*

* Best hyperparameters taken from HAT code

Table 3: Best (selected) hyperparameters for continual learning experiments for various
algorithms. We fix Online EWC’s γ = 1.

For the Joint and Separate VI baselines, we used the same β. For the mixed vision tasks, we had to
used a prior variance of 0.01 (for both VCl, GVCL and GVCL-F), but for all other tasks we did not
need to tune this.

J FURTHER EXPERIMENTAL RESULTS

In following section we present more quantitative results of the various baselines on our benchmarks.
For brevity, in the main text, we only included the best performing baselines and those which are
most comparable to GVCL, which consisted of HAT, PathNet, Online EWC and VCL.
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J.1 EASY-CHASY ADDITIONAL RESULTS

Metric ACC (%) BWT (%) FWT (%) NET (%)

GVCL-F 90.9 ± 0.3 0.2 ± 0.1 0.4± 0.3 0.6 ± 0.3
GVCL 88.9± 0.6 −0.8± 0.4 −0.6± 0.5 −1.4± 0.6

HAT 82.6± 0.9 −1.6± 0.6 0.4± 1.4 −1.3± 0.9
PathNet 82.4± 0.9 0.0± 0.0 −1.5± 0.9 −1.5± 0.9
VCL 78.4± 1.0 −4.1± 1.2 −7.9± 0.8 −11.9± 1.0
VCL-F 79.9± 1.0 −6.1± 0.9 −4.3± 0.3 −10.4± 1.0
Online EWC 73.4± 3.4 −8.9± 2.9 −1.5± 0.5 −10.5± 3.4
Online EWC-F 76.0± 1.5 −6.9± 1.6 −1.0± 0.3 −7.9± 1.5
Progressive 82.6± 0.6 0.0± 0.0 −1.3± 0.6 −1.3± 0.6
IMM-mean 42.3± 1.0 −1.1± 0.6 −40.6± 1.1 −41.6± 1.0
imm-mode 74.8± 1.0 −11.2± 0.1 2.1± 0.9 −9.1± 1.0
LWF 75.1± 2.4 −12.9± 1.9 4.1 ± 0.6 −8.8± 2.4
SGD 75.3± 1.8 −11.1± 0.9 2.5± 1.0 −8.6± 1.8
SGD-Frozen 81.2± 0.8 0.0± 0.0 −2.7± 0.8 −2.7± 0.8

Separate (MAP) 88.4± 0.8 - - 0.0± 0.0
Separate (β-VI) 90.3± 0.1 - - 0.0± 0.0

Joint (MAP) 88.6± 0.7 - - 4.7± 0.7
Joint (β-VI + FiLM) 91.9± 0.1 - - 1.6± 0.1

Table 4: Performance metrics of GVCL-F, GVCL and various baseline algorithms on Easy-CHASY.
Separate and joint training results for both MAP and β-VI models are also presented

Figure 14: Mean accuracy of individual tasks after training for all approaches on Easy-CHASY
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Figure 15: Mean accuracy of individual tasks after training for the top 5 performing approaches on
Easy-CHASY

Figure 16: Running average accuracy of individual tasks after training for the all approaches on
Easy-CHASY
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Figure 17: Running average accuracy of individual tasks after training for the top 5 approaches on
Easy-CHASY
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J.2 HARD-CHASY ADDITIONAL RESULTS

Metric ACC (%) BWT (%) FWT (%) NET (%)

GVCL-F 69.5 ± 0.6 −0.1± 0.1 −1.6± 0.7 −1.7± 0.6
GVCL 64.4± 0.6 −0.6± 0.2 −6.3± 0.6 −6.8± 0.6

HAT 62.5± 5.4 −0.8± 0.4 −3.7± 5.5 −4.5± 5.4
PathNet 64.8± 0.8 0.0± 0.0 −2.2± 0.8 −2.2± 0.8
VCL 45.8± 1.4 −11.9± 1.6 −13.5± 2.2 −25.4± 1.4
VCL-F 65.0± 0.8 −2.7± 0.8 −3.4± 0.6 −6.1± 0.8
Online EWC 56.4± 1.7 −7.1± 1.7 −3.4± 1.3 −10.5± 1.7
Online EWC-F 56.7± 6.4 −8.8± 5.9 −1.4± 0.9 −10.2± 6.4
Progressive 65.2± 1.6 0.0± 0.0 −1.8± 1.6 −1.8± 1.6
IMM-mean 35.5± 0.8 −1.0± 0.8 −30.5± 1.2 −31.5± 0.8
imm-mode 44.3± 4.3 −22.2± 5.4 −0.5± 1.1 −22.7± 4.3
LWF 46.4± 2.5 −23.0± 2.8 2.4± 1.0 −20.6± 2.5
SGD 47.1± 2.2 −21.0± 2.7 1.2± 0.7 −19.8± 2.2
SGD-Frozen 61.6± 1.4 0.0± 0.0 −5.3± 1.4 −5.3± 1.4

Separate (MAP) 54.1± 1.2 - - 0.0± 0.0
Separate (β-VI) 71.2± 0.5 - - 0.0± 0.0

Joint (MAP) 66.4± 0.6 - - −0.6± 0.6
Joint (β-VI + FiLM) 70.4± 0.8 - - −0.8± 0.8

Table 5: Performance metrics of GVCL-F, GVCL and various baseline algorithms on Hard-CHASY.
Separate and joint training results for both MAP and β-VI models are also presented

Figure 18: Mean accuracy of individual tasks after training for all approaches on Hard-CHASY
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Figure 19: Mean accuracy of individual tasks after training for the top 5 performing approaches on
Hard-CHASY

Figure 20: Running average accuracy of individual tasks after training for the all approaches on
Hard-CHASY
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Figure 21: Running average accuracy of individual tasks after training for the top 5 approaches on
Hard-CHASY
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J.3 Split-MNIST ADDITIONAL RESULTS

Metric ACC (%) BWT (%) FWT (%) NET (%)

GVCL-F 98.6 ± 0.1 0.0± 0.0 −0.1± 0.1 −0.0 ± 0.1
GVCL 94.6± 0.7 −4.0± 0.7 −0.0± 0.0 −4.1± 0.7

HAT 98.3± 0.1 −0.2± 0.0 −0.1± 0.1 −0.3± 0.1
PathNet 95.2± 1.8 0.0± 0.0 −3.3± 1.8 −3.3± 1.8
VCL 92.4± 1.2 −5.5± 1.1 −0.8± 0.1 −6.3± 1.2
VCL-F 94.8± 0.9 −3.3± 0.9 −0.6± 0.1 −3.9± 0.9
Online EWC 94.0± 1.4 −3.8± 1.4 −0.8± 0.1 −4.6± 1.4
Online EWC-F 94.1± 0.7 −0.3± 0.6 −4.1± 0.3 −4.4± 0.7
Progressive 98.4± 0.0 0.0± 0.0 −0.2± 0.0 −0.2± 0.0
IMM-mean 90.5± 1.1 0.5 ± 0.1 −8.5± 1.2 −8.0± 1.1
imm-mode 95.4± 0.2 −1.7± 0.3 −1.5± 0.1 −3.1± 0.2
LWF 97.4± 0.2 −1.1± 0.1 −0.1± 0.1 −1.2± 0.2
SGD 76.2± 1.7 −22.4± 1.7 0.0± 0.1 −22.4± 1.7
SGD-Frozen 91.7± 0.2 0.0± 0.0 −6.9± 0.2 −6.9± 0.2

Separate (MAP) 98.6± 0.0 - - 0.0± 0.0
Separate (β-VI) 98.7± 0.0 - - 0.0± 0.0

Joint (MAP) 98.7± 0.0 - - 0.1± 0.0
Joint (β-VI + FiLM) 98.8± 0.0 - - 0.1± 0.0

Table 6: Performance metrics of GVCL-F, GVCL and various baseline algorithms on Split-MNIST.
Separate and joint training results for both MAP and β-VI models are also presented

Figure 22: Mean accuracy of individual tasks after training for all approaches on Split-MNIST
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Figure 23: Mean accuracy of individual tasks after training for the top 5 performing approaches on
Split-MNIST

Figure 24: Running average accuracy of individual tasks after training for the all approaches on
Split-MNIST
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Figure 25: Running average accuracy of individual tasks after training for the top 5 approaches on
Split-MNIST
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J.4 Split-CIFAR ADDITIONAL RESULTS

Metric ACC (%) BWT (%) FWT (%) NET (%)

GVCL-F 80.0 ± 0.5 −0.3± 0.2 8.8± 0.5 8.5 ± 0.5
GVCL 70.6± 1.7 −2.3± 1.4 1.3± 1.0 −1.0± 1.7

HAT 77.3± 0.3 −0.1± 0.1 6.8± 0.2 6.7± 0.3
PathNet 68.7± 0.8 0.0± 0.0 −1.9± 0.8 −1.9± 0.8
VCL 44.2± 14.2 −23.9± 12.2 −3.5± 2.1 −27.4± 14.2
VCL-F 56.2± 2.8 −19.5± 3.2 4.1± 0.8 −15.4± 2.8
Online EWC 77.1± 0.2 −0.5± 0.3 6.9± 0.3 6.4± 0.2
Online EWC-F 77.1± 0.2 −0.4± 0.2 6.9± 0.3 6.5± 0.2
Progressive 70.7± 0.8 0.0± 0.0 0.1± 0.8 0.1± 0.8
IMM-mean 67.6± 0.6 −0.2± 0.3 −2.9± 0.8 −3.1± 0.6
imm-mode 74.9± 0.3 −6.2± 0.3 10.5± 0.4 4.3± 0.3
LWF 73.8± 0.9 −8.0± 0.8 11.2 ± 0.2 3.2± 0.9
SGD 74.7± 0.4 −6.5± 0.4 10.6 ± 0.8 4.1± 0.4
SGD-Frozen 70.3± 0.4 0.0± 0.0 −0.3± 0.4 −0.3± 0.4

Separate (MAP) 70.6± 0.6 - - 0.0± 0.0
Separate (β-VI) 71.6± 0.2 - - 0.0± 0.0

Joint (MAP) 80.9± 0.3 - - 10.2± 0.3
Joint (β-VI + FiLM) 79.8± 1.0 - - 8.2± 1.0

Table 7: Performance metrics of GVCL-F, GVCL and various baseline algorithms on Split-CIFAR.
Separate and joint training results for both MAP and β-VI models are also presented

Figure 26: Mean accuracy of individual tasks after training for all approaches on Split-CIFAR
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Figure 27: Mean accuracy of individual tasks after training for the top 5 performing approaches on
Split-CIFAR

Figure 28: Running average accuracy of individual tasks after training for the all approaches on
Split-CIFAR
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Figure 29: Running average accuracy of individual tasks after training for the top 5 approaches on
Split-CIFAR
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J.5 MIXED VISION TASKS ADDITIONAL RESULTS

Metric ACC (%) BWT (%) FWT (%) NET (%)

GVCL-F 80.0 ± 1.2 −0.9± 1.3 −4.8± 1.6 −5.6 ± 1.2
GVCL 49.0± 2.8 −13.1± 1.6 −23.5± 3.4 −36.7± 2.8

HAT 80.3 ± 1.0 −0.1± 0.1 −5.8± 1.0 −5.9 ± 1.0
PathNet 76.8± 2.0 0.0± 0.0 −9.5± 2.0 −9.5± 2.0
VCL 26.9± 2.1 −35.0± 5.6 −23.7± 3.8 −58.8± 2.1
VCL-F 55.5± 2.0 −18.2± 2.1 −11.9± 2.4 −30.1± 2.0
Online EWC 62.8± 5.2 −18.7± 5.8 −4.8± 0.7 −23.4± 5.2
Online EWC-F 70.5± 4.0 −11.8± 4.3 −3.9± 0.5 −15.7± 4.0
Progressive 77.6± 0.4 0.0± 0.0 −8.6± 0.4 −8.6± 0.4
IMM-mean 53.8± 2.0 −4.4± 1.7 −28.0± 3.3 −32.4± 2.0
imm-mode 36.6± 18.7 −9.1± 7.0 −40.5± 11.9 −49.6± 18.7
LWF 25.8± 4.3 −57.3± 4.5 −3.1± 0.6 −60.4± 4.3
SGD 35.4± 3.9 −50.5± 3.9 −0.4 ± 0.0 −50.9± 3.9
SGD-Frozen 52.9± 3.9 0.0± 0.0 −33.3± 3.9 −33.3± 3.9

Separate (MAP) 86.3± 0.1 - - 0.0± 0.0
Separate (β-VI) 85.7± 0.1 - - 0.0± 0.0

Joint (MAP) 84.3± 0.1 - - −2.0± 0.1
Joint (β-VI + FiLM) 83.8± 0.2 - - −1.8± 0.2

Table 8: Performance metrics of GVCL-F, GVCL and various baseline algorithms on Mixed Vision
tasks. Separate and joint training results for both MAP and β-VI models are also presented

Figure 30: Mean accuracy of individual tasks after training for all approaches on mixed vision tasks
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Figure 31: Mean accuracy of individual tasks after training for the top 5 performing approaches on
mixed vision tasks

CIFAR10 CIFAR100 MNIST SVHN F-MNIST TrafficSigns Facescrub NotMNIST Average

GVCL-F 0.79% 0.01% 0.04% 0.73% 0.25% 0.10% 0.11% 0.53% 0.32%
HAT 0.12% 0.40% 0.13% 2.55% 0.94% 0.42% 5.05% 3.88% 1.69%

Table 9: ECE of all 8 mixed vision tasks for a model trained continually using GVCL-F or HAT.
F-MNIST stands for FashionMNIST.
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Figure 32: Clusters of symbols found by performing K-means clustering with K = 20 based on the
embedding layer of a model trained with variational inference on a 200-way classification task on
the 200 most common symbols in the HASYv2 dataset. Easy-CHASY is made by taking the first
symbol from each cluster as the first task, then the second, and so on, up to 10 tasks. Hard-CHASY
is made by taking the clusters with the most classes in order (clusters 1-10).

K CLUSTERED HASYV2 (CHASY)

The HASYv2 dataset is a dataset consisting over 32x32 black/white handwritten Latex characters.
There are a total of 369 classes, and over 150 000 total samples (Thoma, 2017).

We constructed 10 classification tasks, each with a varying number of classes ranging from 20 to
11. To construct these tasks, we first trained a mean-field Bayesian neural network on a 200-way
classification task on the 200 classes with the most total samples. To get an embedding for each
class, we use the activations of the second-last layer. Then, we performed K-means clustering with
20 clusters on the means of the embedding generated by each class when the samples of the classes
were input into the network. Doing this yielded the classes shown in figure 32. Now, within each
cluster are classes which are deemed “similar” by the network. To make the 10 classification tasks,
we then took classes from each cluster sequentially (in order of the class whose mean was closest
to the cluster’s mean), so that each task contains at most 1 symbol from each cluster. Doing this
ensures that tasks are similar to one another, since each task consists of classes which are different
in similar ways. With the classes selected, the training set is made by selecting 16 samples of each
classes, and using the remaining as the test set. This procedure was used to generate the “easy” set
of tasks, which should have the maximum amount of similarity between tasks. We also constructed
a second set of tasks, the “hard” set, in which each task is individually difficult. This was done by
selecting each task to be classification within each cluster, selecting clusters with the most number of
symbols first. This corresponds to clusters 1-10 in figure 32. With the classes for each task selected,
16 samples from each class are used in the training set, and the remainder are used as the test set.
Excess samples are discarded so that the test set class distribution is also uniform within each task.

It was necessary to perform this clustering procedure as we found it difficult to produce sizable
transfer gains if we simply constructed tasks by taking the classes with the most samples. While
we were able to have gains of up to 3% from joint training on 10 20-way classification tasks with
the tasks chosen by class sample count, these gains were significantly diminished when performing
MAP estimation as opposed to MLE estimation, and reduced even further when performing VI.
Because one of our benchmark continual learning methods is VCL, showing transfer when trained
using VI is necessary.
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(a) Average relative performance
(b) Individual task relative performances

Figure 33: Relative test-set accuracy of models trained jointly on the easy set of tasks relative
to individual training for MAP estimation. Figure 33a shows the means aggregated over all tasks
while figure 33b shows the performance differences for individual tasks. Performance increases near
monotonically as more tasks are added, achieving an average of around 4.7% gain with 10 tasks

(a)
(b)

(c)

Figure 34: Relative performance of models trained jointly on the easy set of tasks relative to indi-
vidual training for variational inference with various KL-reweighting coefficients β. Performance
gains reach around 2.0% with 10 tasks in the worst case, which is less than with MAP training but
still significant

Figures 33a and 34 show the performance gains of joint training over separate training on this new
dataset, for both MAP, and KL-reweighted VI, respectively. Figure 33b shows how relative test set
accuracy varies for each specific task for these training procedures.
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