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Abstract

State-of-the-art Graph Neural Networks (GNNs) have limited scalability with re-
spect to the graph and model sizes. On large graphs, increasing the model depth
often means exponential expansion of the scope (i.e., receptive field). Beyond just
a few layers, two fundamental challenges emerge: 1. degraded expressivity due to
oversmoothing, and 2. expensive computation due to neighborhood explosion. We
propose a design principle to decouple the depth and scope of GNNs – to generate
representation of a target entity (i.e., a node or an edge), we first extract a localized
subgraph as the bounded-size scope, and then apply a GNN of arbitrary depth on
top of the subgraph. A properly extracted subgraph consists of a small number
of critical neighbors, while excluding irrelevant ones. The GNN, no matter how
deep it is, smooths the local neighborhood into informative representation rather
than oversmoothing the global graph into “white noise”. Theoretically, decoupling
improves the GNN expressive power from the perspectives of graph signal pro-
cessing (GCN), function approximation (GraphSAGE) and topological learning
(GIN). Empirically, on seven graphs (with up to 110M nodes) and six backbone
GNN architectures, our design achieves significant accuracy improvement with
orders of magnitude reduction in computation and hardware cost.

1 Introduction

Graph Neural Networks (GNNs) have now become the state-of-the-art models for graph mining [48,
13, 58], facilitating applications such as social recommendation [35, 52, 37], knowledge understanding
[40, 38, 59] and drug discovery [43, 32]. With the numerous architectures proposed [22, 12, 44, 49],
it still remains an open question how to effectively scale up GNNs with respect to both the model size
and graph size. There are two fundamental obstacles when we increase the number of GNN layers:

• Expressivity challenge (i.e., oversmoothing [30, 36, 39, 17]): iterative mixing of neighbor
features collapses embedding vectors of different nodes into a fixed, low-dimensional subspace.
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• Scalability challenge (i.e., neighbor explosion [7, 8, 9, 55]): recursive expansion of multi-hop
neighborhood results in exponentially growing receptive field size (and thus computation cost).

To address the expressivity challenge, most remedies focus on neural architecture exploration:
[44, 12, 49, 29] propose more expressive aggregation functions when propagating neighbor features.
[50, 28, 18, 34, 1, 33, 31] use residue-style design components to construct flexible and dynamic
receptive fields. Among them, [50, 28, 18] use skip-connection across multiple GNN layers, and
[34, 1, 33, 31] encourage multi-hop message passing within each single layer. As for the scalability
challenge, sampling methods have been explored to improve the training speed and efficiency.
Importance based layer-wise sampling [8, 7, 61] and subgraph-based sampling [54, 9, 55] alleviate
neighbor explosion, while preserving training accuracy. Unfortunately, such sampling methods
cannot be naturally generalized to inference without accuracy loss (see also Section 4).

The above lines of research have only guided us to partial solutions. Yet what is the root cause of
both the expressivity and scalability challenges? Setting aside the design of GNN architectures or
sampling schemes, we provide an alternative perspective by interpretting the data in a different way.

Two views on the graph. Given an input graph G with node set V , the most straightforward way
to understand G is by viewing it as a single global graph. So any two nodes u and v belong to the
same G, and if u and v lie in the same connected component, they will ultimately see each other in
their own neighborhood no matter how far away u and v are. Alternative to the above global view,
we can take a local view on G. For each node v, there is a latent G[v] surrounding it which captures
the characteristics of just v itself. The full G is observed (by the data collection process) as the union
of all such G[v]. Consequently, V[v] rather than V defines v’s neighborhood: if u 6∈ V[v], v will never
consider u as a neighbor. Our “decoupling” design is based on the local view.

Scope of GNNs. Both the expressivity and scalability challenges are closely related to the en-
largement of the GNN’s scope (i.e., receptive field). More importantly, how we define the scope is
determined by how we view G. With the global view above, an L-layer GNN has the scope of the
full L-hop neighborhood. With the local view, the GNN scope is simply V[v] regardless of the GNN
depth. The two existing lines of research, one on architectural exploration and the other on sampling,
both take the global view. Consequently, the depth (i.e., number of layers) and scope of such GNNs
are tightly coupled. Such coupling significantly limits the design space exploration of GNNs with
various depths [53]. Consider the example of ogbn-products, a medium-scale graph in Open Graph
Benchmark [16]. The average number of 4-hop neighbors is around 0.6M, corresponding to 25% of
the full graph size. To generate representation of a single target node, a 4-layer coupled GNN needs
to propagate features from the 0.6M neighbors. Such propagation can be inefficient or even harmful
since most nodes in the huge neighborhood would be barely relevant to the target node.

Decoupling the GNN depth and scope. Taking the local view on G, we propose a general design
principle to decouple the GNN depth and scope. To generate the representation of the target node v,
we first extract from G a small subgraph G[v] surrounding v. On top of G[v], we apply a GNN whose
number of layers and message passing functions can be flexibly chosen. “Decoupling” means we treat
the scope extraction function and GNN depth as two independently tuned parameters – effectively
we introduce a new dimension in the GNN design space. We intuitively illustrate the benefits of
decoupling by an example GNN construction, where the scope is the L-hop neighborhood and depth
is L′ (L′ > L). When we use more layers (L′) than hops (L), each pair of subgraph nodes may
exchange messages multiple times. The extra message passing helps the GNN better absorb and
embed the information within scope, and thus leads to higher expressivity. We further justify the
above intuition with multifaceted theoretical analysis. From the graph signal processing perspective,
we prove that decoupled-GCN performs local-smoothing rather than oversmoothing, as long as the
scopes of different target nodes are different. From the function approximation perspective, we
construct a linear target function on neighbor features and show that decoupling the GraphSAGE
model reduces the function approximation error. From the topological learning perspective, we apply
deep GIN-style message passing to differentiate non-regular subgraphs of a regular graph. As a result,
our model is more powerful than the 1-dimensional Weisfeiler-Lehman test [41].

Practical implementation: SHADOW-GNN. The decoupling principle leads to a practical im-
plementation, SHADOW-GNN: Decoupled GNN on a shallow subgraph. In SHADOW-GNN, the
scope is a shallow yet informative subgraph, only containing a fraction of the 2- or 3-hop neighbors
of G (see Section 5). On the other hand, the model of SHADOW-GNN is deeper (e.g., L′ = 5).
To efficiently construct the shallow scope on commodity hardware, we propose various subgraph
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extraction functions. To better utilize the subgraph node embeddings after deep message pass-
ing, we propose neural architecture extensions such as pooling and ensemble. Empirically, our
“decoupling” design improves both the accuracy and scalability. On seven benchmarks (includ-
ing the largest ogbn-papers100M graph with 111M nodes) and across two graph learning tasks,
SHADOW-GNNs achieve significant accuracy gains compared to the original models. Meanwhile,
the computation and hardware costs are reduced by orders of magnitude. Our code is available at
https://github.com/facebookresearch/shaDow_GNN

2 Preliminaries

Let G (V, E ,X) be an undirected graph, with node set V , edge set E ⊆ V×V and node feature matrix
X ∈ R|V|×d. LetNv denote the set of v’s direct neighbors in G. The uth row ofX corresponds to the
length-d feature of node u. LetA be the adjacency matrix of G where Au,v = 1 if edge (u, v) ∈ E
and Au,v = 0 otherwise. Let D be the diagonal degree matrix of A. Denote Ã = D

− 1
2
∗ A∗D

− 1
2
∗

as the adjacency matrix after symmetric normalization (“∗” means augmented with self-edges), and
Â = D−1A (or D−1∗ A∗) as the one after random walk normalization. Let subscript “[u]” mark
the quantities corresponding to a subgraph surrounding node u. For example, the subgraph itself
is G[u]. Subgraph matrices X[v] and A[v] have the same dimension as the original X and A. Yet,
row vector

[
X[v]

]
u

= 0 for u 6∈ V[v]. Element
[
A[v]

]
u,w

= 0 if either u 6∈ V[v] or w 6∈ V[v].
For an L-layer GNN, let superscript “(`)” denote the layer-` quantities. Let d(`) be the number of
channels for layer `; H(`−1) ∈ R|V|×d(`−1)

and H(`) ∈ R|V|×d(`) be the input and output features.
So H(0) = X and d(0) = d. Further, let σ be the activation and W (`) be the learnable weight.
For example, a GCN layer performs H(`) = σ

(
ÃH(`−1)W (`)

)
. A GraphSAGE layer performs

H(`) = σ
(
H(`−1)W

(`)
1 + ÂH(`−1)W

(`)
2

)
.

Our analysis in Section 3 mostly focuses on the node classification task. Yet our design can be
generalized to the link prediction task, as demonstrated by our experiments in Section 5.
Definition 2.1. (Depth of subgraph) Assume the subgraph G[v] is connected. The depth of G[v] is
defined as maxu∈V[v]

d (u, v), where d (u, v) denotes the shortest path distance from u to v.

The above definition enables us to make comparison such as “the GNN is deeper than the subgraph”.
For “decoupling the depth and scope”, we refer to the model depth rather than the subgraph depth.

3 Decoupling the Depth and Scope of GNNs

“Decoupling the depth and scope of GNNs” is a design principle to improve the expressivity and
scalability of GNNs without modifying the layer architecture. We name a GNN after decoupling
a SHADOW-GNN (see Section 3.6 for explanation of the name). Compared with a normal GNN,
SHADOW-GNN contains an additional component: the subgraph extractor EXTRACT. To generate
embedding of a target node v, SHADOW-GNN proceeds as follows: 1. We use EXTRACT (v,G) to
return a connected G[v], where G[v] is a subgraph containing v, and the depth of G[v] is L. 2. We build
an L′-layer GNN on G[v] by treating G[v] as the new full graph and by ignoring all nodes / edges not
in G[v]. So G[v] is the scope of SHADOW-GNN. The key point reflecting “decoupling” is that L′ > L.

A normal GNN is closely related to a SHADOW-GNN. Under the normal setup, an L-layer GNN
operates on the full G and propagates the influence from all the neighbors up to L hops away from v.
Such a GNN is equivalent to a model where EXTRACT returns the full L-hop subgraph and L′ = L.

We theoretical demonstrate how SHADOW-GNN improves expressivity from three different angles.
On SHADOW-GCN (Section 3.1), we come from the graph signal processing perspective. The GCN
propagation can be interpreted as applying filtering on the node signals [47]. Deep models correspond
to high-pass filters. Filtering the local graph G[v] preserves richer information than the global G. On
SHADOW-SAGE (Section 3.2), we view the GNN as a function approximator. We construct a target
function and study how decoupling reduces the approximation error. On SHADOW-GIN (Section
3.3), we focus on learning topological information. We show that decoupling helps capture local
graph structure which the 1D Weisfeiler-Lehman test fails to capture.
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3.1 Expressivity Analysis on SHADOW-GCN: Graph Signal Processing Perspective

GCNs [22] suffer from “oversmoothing” [30] – Each GCN layer smooths the features of the direct
(i.e., 1-hop) neighbors, and many GCN layers smooths the features of the full graph. Eventually,
such repeated smoothing process propagates to any target node just the averaged feature of all V .
“Oversmoothing” thus incurs significant information loss by wiping out all local information.

Formally, suppose the original featuresX reside in a high-dimensional space R|V|×d. Oversmoothing
pushes X towards a low-dimensional subspace R|V|×d′ , where d′ < d. Corresponding analysis
comes from two perspectives: oversmoothing by a deep GCN, and oversmoothing by repeated GCN-
style propagation. The former considers the full neural network with non-linear activation, weight
and bias. The later characterizes the aggregation matrixM = limL→∞ Ã

LX . It is shown that even
with the vanilla architecture, a deep GCN with bias parameters does not oversmooth [17]. In addition,
various tricks [60, 39, 34] can prevent oversmoothing from the neural network perspective. However,
a deep GCN still suffers from accuracy drop, indicating that the GCN-style propagation (rather than
other GCN components like activation and bias) may be the fundamental reason causing difficulty in
learning. Therefore, we study the asymptotic behavior of the aggregation matrixM under the normal
and SHADOW design. In other words, here in Section 3.1, we ignore the non-linear activation and
bias parameters. Such setup is consistent with many existing literature such as [30, 33, 34, 60].

Proposition 3.1. ∞ number of feature propagation by SHADOW-GCN leads to

m[v] =
[
e[v]
]
v
·
(
eT[v]X[v]

)
(1)

where e[v] is defined by
[
e[v]
]
u

=

√
δ[v](u)∑

w∈V[v]
δ[v](w) ; δ[v] (u) returns the degree of u in G[v] plus 1.

Oversmoothing by normal GCN propagation. With a large enough L, the full L-hop neighbor-
hood becomes V (assuming connected G). So ∀ u, v, we have G[u] = G[v] = G, implying e[u] = e[v]
andX[u] = X[v] = X . From Proposition 3.1, the aggregation converges to a point where no feature
and little structural information of the target is preserved. The only information inm[v] is v’s degree.

Local-smoothing by SHADOW-GCN propagation. With a fixed subgraph, no matter how many
times we aggregate using Ã[v], the layers will not include the faraway irrelevant nodes. From
Proposition 3.1,m[v] is a linear combination of the neighbor featuresX[v]. Increasing the number of
layers only pushes the coefficients of each neighbor features to the stationary values. The domainX[v]

of such linear transformation is solely determined by EXTRACT and is independent of the model depth.
Intuitively, if EXTRACT picks non-identical subgraphs for two nodes u and v, the aggregations should
be different due to the different domains of the linear transformation. Therefore, SHADOW-GCN
preserves local feature information whereas normal GCN preserves none. For structural information
in m[v], note that e[v] is a normalized degree distribution of the subgraph around v, and

[
e[v]
]
v

indicates the role of the target node in the subgraph. By simply letting EXTRACT return the 1-hop
subgraph,

[
e[v]
]
v

alone already contains all the information preserved by a normal GCN, which is v’s
degree in G. For the general EXTRACT, e[v] additionally reflects v’s ego-net structure. Thus, a deep
SHADOW-GCN preserves more structural information than a deep GCN.

Theorem 3.2. Let m[v] = φG (v) ·m[v] where φG is any non-zero function only depending on
the structural property of v. LetM = {m[v] | v ∈ V}. Given G, EXTRACT and some continuous
probability distribution in R|V|×d to generateX , thenm[v] 6= m[u] if V[u] 6= V[v], almost surely.

Corollary 3.2.1. Consider EXTRACT1, where ∀v ∈ V,
∣∣V[v]∣∣ ≤ n. Then |M| ≥

⌈
|V|
n

⌉
a.s.

Corollary 3.2.2. Consider EXTRACT2, where ∀ u, v ∈ V, V[v] 6= V[u]. Then |M| = |V| a.s.

Theorem 3.2 proves SHADOW-GCN does not oversmooth: 1. A normal GCN pushes the aggregation
of same-degree nodes to the same point, while SHADOW-GCN with EXTRACT2 ensures any two
nodes (even with the same degree) have different aggregation. 2. A normal GCN wipes out all
information inX after many times of aggregation, while SHADOW-GCN always preserves feature
information. Particularly, with φG (v) =

(
δ[v](v)

)−1/2
, a normal GCN generates only one unique

value ofm for all v. By contrast, SHADOW-GNN generates |V| different values for any φG function.
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3.2 Expressivity Analysis on SHADOW-SAGE: Function Approximation Perspective

We compare the expressivity by showing 1. SHADOW-SAGE can express all functions GraphSAGE
can, and 2. SHADOW-SAGE can express some function GraphSAGE cannot. Recall, a GraphSAGE

layer performs the following: h(`)
v = σ

((
W

(`)
1

)T
h
(`−1)
v +

(
W

(`)
2

)T (
1
|Nv|

∑
u∈Nv

h
(`−1)
u

))
.

We can prove Point 1 by making an L′-layer SHADOW-SAGE identical to an L-layer GraphSAGE
with the following steps: 1. let EXTRACT return the full L-hop neighborhood, and 2. setW (`)

1 = I ,
W

(`)
2 = 0 for L + 1 ≤ ` ≤ L′. For point 2, we consider a target function: τ

(
X,G[v]

)
=

C ·
∑
u∈V[v]

δ[v] (u) · xu for some neighborhood G[v], scaling constant C and δ[v] (u) as defined in
Proposition 3.1. An expressive model should be able to learn well this simple linear function τ .

GraphSAGE cannot learn τ accurately, while SHADOW-SAGE can. We first show the GraphSAGE
case. Let the depth of G[v] be L. Firstly, we need GraphSAGE to perform message passing for exactly
L times (where such a model can be implemented by, e.g., L layers or L′ layers with W2 = 0 for
L′ − L layers). Otherwise, the extra L′ − L message passings will propagate influence from nodes
v′ 6∈ V[v], violating the condition that τ is independent of v′. Next, suppose GraphSAGE can learn a

function ζ such that on some G′[v], we have ζ
(
G′[v]
)

= τ
(
G′[v]
)

. We construct another G′′[v] by adding
an extra edge e connecting two depth-L nodes in G′[v]. Edge e changes the degree distribution δ[v] (·),

and thus τ
(
G′[v]
)
6= τ

(
G′′[v]
)

. On the other hand, there is no way for GraphSAGE to propagate the
influence of edge e to the target v, unless the model performs at least L+ 1 message passings. So
ζ
(
G′[v]
)

= ζ
(
G′′[v]
)

regardless of the activation function and weight parameters. Therefore, ζ 6= τ .

For SHADOW-SAGE, let EXTRACT return G[v]. Then the model can output ζ ′ =
[
ÂL′

[v]X
]
v,:

after

we 1. set W (`)
1 = 0 and W (`)

2 = I for all layers, and 2. either remove the non-linear activation or
bypass ReLU by shifting X with bias. With known results in Markov chain convergence theorem
[27], we derive the following theorem by analyzing the convergence of ÂL′

[v] when L′ →∞.

Theorem 3.3. SHADOW-SAGE can approximate τ with error decaying exponentially with depth.

We have the following conclusions from above: 1. SHADOW-SAGE is more expressive than Graph-
SAGE. 2. appropriate EXTRACT function improves SHADOW-GNN expressivity, 3. There exists cases
where it may be desirable to set the SHADOW-GNN depth much larger than the subgraph depth.

3.3 Expressivity Analysis on SHADOW-GIN: Topological Learning Perspective

While GCN and GraphSAGE are popular architectures in practice, they are not the theoretically most
discriminative ones. The work in [49] establishes the relation in discriminativeness between GNNs
and 1-dimensional Weisfeiler-Lehman test (i.e., 1-WL). And GIN [49] is an example architecture
achieving the same discriminativeness as 1-WL. We show that applying the decoupling principle can
further improve the discriminativeness of such GNNs, making them more powerful than 1-WL.

uv

G

u

G1[u]G1[v]

v

Figure 1: Example 3-regular graph and the 1-hop
subgraphs of the target nodes u and v.

1-WL is a graph isomorphism test aiming at
distinguishing graphs of different structures. A
GNN as expressive as 1-WL thus well captures
the topological property of the target node. While
1-WL is already very powerful, it may still fail
in some cases. e.g., it cannot distinguish certain
non-isomorphic, regular graphs. To understand
why SHADOW-GNN works, we first need to un-
derstand why 1-WL fails. In a regular graph, all nodes have the same degree, and thus the “regular”
property describes a global topological symmetry among nodes. Unfortunately, 1-WL (and the
corresponding normal GNN) also operates globally on G. Intuitively, on two different regular graphs,
there is no way for 1-WL (and the normal GNN) to assign different labels by breaking such symmetry.

On the other hand, SHADOW-GNN can break such symmetry by applying decoupling. In Section 1,
we have discussed how SHADOW-GNN is built from the local perspective on the full graph. The
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key property benefiting SHADOW-GNN is that a subgraph of a regular graph may not be regular.
Thus, SHADOW-GNN can distinguish nodes in a regular graph with the non-regular subgraphs as
the scope. We illustrate the intuition with the example in Figure 1. The graph G is 3-regular and
we assume all nodes have identical features. Our goal is to discriminate nodes u and v since their
neighborhood structures are different. No matter how many iterations 1-WL runs, or how many layers
the normal GNN has, they cannot distinguish u and v. On the other hand, a SHADOW-GNN with
1-hop EXTRACT and at least 2 layers can discriminate u and v.
Theorem 3.4. Consider GNNs whose layer function is defined by

h(`)
v = f

(`)
1

(
h(`−1)
v ,

∑
u∈Nv

f
(`)
2

(
h(`−1)
v ,h(`−1)

u

))
, (2)

where f (`)1 and f (`)2 are the update and message functions of layer-`, implemented as MLPs. Then,
such SHADOW-GNN is more discriminative than the 1-dimensional Weisfeiler-Lehman test.

The theorem also implies that SHADOW-GIN is more discriminative than a normal GIN due to the
correspondence between GIN and 1-WL. See Appendix A for the proof of all theorems in Section 3.

3.4 Subgraph Extraction Algorithms

Our decoupling principle does not rely on specific subgraph extraction algorithms. Appropriate
EXTRACT can be customized given the characteristic of G, and different EXTRACT leads to different
implementation of our decoupling principle. In general, we summarize three approaches to design
EXTRACT: 1. heuristic based, where we pick graph metrics that reflect neighbor importance and then
design EXTRACT by such metrics; 2. model based, where we assume a generation process on G and set
EXTRACT as the reverse process, and 3. learning based, where we integrate the design of EXTRACT as
part of the GNN training. In the following, we present several examples on heuristic based EXTRACT,
which we also empirically evaluate in Section 5. We leave detailed evaluation on the model based
and learning based EXTRACT as future work. See also Appendix C for details.

Example heuristic based EXTRACT. The algorithm is derived from the selected graph metrics. For
example, with the metric being shortest path distance, we design a L-hop extractor. i.e., EXTRACT
returns the full set or randomly selected subset of the target node’s L-hop neighbors in G. Picking
the random walk landing probability as the metric, we can design a PPR-based extractor. i.e., we
first run the Personalized PageRank (PPR) algorithm on G to derive the PPR score of other nodes
relative to the target node. Then EXTRACT define V[v] by picking the top-K nodes with the highest
PPR scores. The subgraph G[v] is the node-induced subgraph1 of G from V[v]. One can easily extend
this approach by using other metrics such as Katz index [20], SimRank [19] and feature similarity.

3.5 Architecture

Subgraph pooling. For a normal GNN performing node classification, the multi-layer message
passing follows a “tree structure”. The nodes at level L of the tree correspond to the L-hop neighbor-
hood. And the tree root outputs the final embedding of the target node. Thus, there is no way to apply
subgraph pooling or READOUT on the final layer output, since the “pool” only contains a single
vector. For a SHADOW-GNN, since we decouple the Lth layer from the L-hop neighborhood, it is
natural to let each layer (including the final layer) output embeddings for all subgraph nodes. This
leads to the design to READOUT all the subgraph node embeddings as the target node embedding.

We can understand the pooling for SHADOW-GNN from another perspective. In a normal GNN,
the target node at the final layer receives messages from all neighbors, but two neighbor nodes may
not have a chance to exchange any message to each other (e.g., two nodes L-hop away from the
target may be 2L-hop away from each other). In our design, a SHADOW-GNN can pass messages
between any pair of neighbors when the model depth is large enough. Therefore, all the subgraph
node embeddings at the final layer capture meaningful information of the neighborhood.

In summary, the power of the decoupling principle lies in that it establishes the connection between
the node- / link-level task and the graph-level task. e.g., to classify a node is seen as to classify

1Unlike other PPR-based models [23, 6] which rewire the graph by treating top PPR nodes as direct neighbors,
our PPR neighborhood preserves the original multi-hop topology by returning node-induced subgraph.
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the subgraph surrounding the node. From the neural architecture perspective, we can apply any
subgraph pooling / READOUT operation originally designed for graph classification (e.g., [57, 24, 4])
to enhance the node classification / link prediction of SHADOW-GNN. In particular, in the vanilla
SHADOW-GNN, we can implement a trivial READOUT as “discarding all neighbor embeddings”,
corresponding to performing center pooling. See Appendix D and F.3 for algorithm and experiments.

Subgraph ensemble. It may be challenging in practice to design a single EXTRACT capturing all
meaningful characteristics of the neighborhood. We can use multiple EXTRACT to jointly define
the receptive field, and then ensemble multiple SHADOW-GNN at the subgraph level. Consider R
candidates {EXTRACTi}, each returning Gi[v]. To generate v’s embedding, we first use R branches of
L′-layer GNN to obtain intermediate embeddings for each Giv , and then aggregate the R embeddings
by some learnable function g. In practice, we design g as an attention based aggregation function (see
Appendix D.2). Subgraph ensemble is useful both when {EXTRACTi} consists of different algorithms
and when each EXTRACTi performs the same algorithm under different parameters.

CASE STUDY Consider PPR-based EXTRACTi with different threshold θi on the neighbor PPR score.
A SHADOW-GNN-ensemble can approximate PPRGo [6]. PPRGo generates embedding as: ξv =∑

u∈V[v]
πuhv , where πu is u’s PPR score and hv = MLP (xv). We can partition V[v] =

⋃R
i=1 Vi[v] s.t.

nodes in Vi[v] have similar PPR scores denoted by π̃i, and π̃i ≤ π̃i+1. So ξv =
∑R
i=1 ρi

(∑
u∈V′i

hu

)
,

where ρi = π̃i −
∑
j<i π̃j and V ′i =

⋃R
k=i Vk[v]. Now for each branch of SHADOW-GNN-ensemble,

let parameter θi = π̃i so that EXTRACTi returns V ′i . The GNN on V ′i can then learn
∑
u∈V′i

hu (e.g.,
by a simple “mean” READOUT). Finally, set the ensemble weight as ρi. SHADOW-GNN-ensemble
learns ξv . As EXTRACT also preserves graph topology, our model can be more expressive than PPRGo.

3.6 Practical Design: SHADOW-GNN

We now discuss the practical implementation of decoupled GNN – SHADOW-GNN. As the name
suggests, in SHADOW-GNN, the scope is a shallow subgraph (i.e., with depth often set to 2 or 3).

In many realistic scenarios (e.g., citation networks, social networks, product recommendation graphs),
a shallow neighborhood is both necessary and sufficient for the GNN to learn well. On “sufficiency”,
we consider the social network example: the friend of a friend of a friend may share little commonality
with you, and close friends may be at most 2 hops away. Formally, by the γ-decaying theorem [56], a
shallow neighborhood is sufficient to accurately estimate various graph metrics. On “necessity”, since
the neighborhood size may grow exponentially with hops, a deep neighborhood would be dominated
by nodes irrelevant to the target. The corresponding GNN would first need to differentiate the many
useless nodes from the very few useful ones, before it can extract meaningful features from the useful
nodes. Finally, a shallow subgraph ensures scalability by avoiding “neighborhood explosion”.

Remark on decoupling. So far we have defined a decoupled model as having the model depth L′
larger than the subgraph depth L. Strictly speaking, a decoupled model also admits L′ = L. For
example, suppose in the full L-hop neighborhood, there are 70% nodes L hops away. Applying
decoupling, the EXTRACT excludes most of the L-hop neighbors, and the resulting subgraph G[v]
contains only 20% nodes L hops away. Then it is reasonable to consider an L-layer model on such
a depth-L subgraph as also a decouple model. Compared with an L-layer model on the full L-hop
neighborhood, an L-layer model on such a depth-L G[v] propagates much less information from nodes
L hops away. So the L message passings are indeed decoupled from the full L-hop neighborhood.

Remark on neighborhood. The “sufficiency” and “necessity” in shallow neighborhood are not
universal. In many other applications, long-range dependencies can be critical, as studied in [2]. In
such cases, our practical implementation of SHADOW-GNN would incur accuracy loss. However, our
decoupling principle in general may still be beneficial – “shallow subgraph” is a practical guideline
rather than a theoretical requirement. We leave the study on such applications as future work.

4 Related Work

Deep GNNs. To improve the GNN performance while increasing the model depth, various
layer architectures have been proposed. AS-GCN [18], DeepGCN [28], JK-net [50], MixHop [1],
Snowball [33], DAGNN [31] and GCNII [34] all include some variants of residue connection, either
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across multiple layers or within a single layer. In principle, such architectures can also benefit
the feature propagation of a deep SHADOW-GNN, since their design does not rely on a specific
neighborhood (e.g., L-hop). In addition to architectures, DropEdge [39] and Bayesian-GDC [14]
propose regularization techniques by adapting dropout [42] to graphs. Such techniques are only
applied during training, and inference may still suffer from issues such as oversmoothing.

Sampling based methods. Neighbor or subgraph sampling techniques have been proposed to
improve training efficiency. FastGCN [8], VR-GCN [7], AS-GCN [18], LADIES [61] and MVS-
GNN [10] sample neighbor nodes per GNN layer. Cluster-GCN [9] and GraphSAINT [55] sample a
subgraph as the training minibatch. While sampling also changes the receptive field, all the above
methods are fundamentally different from ours. The training samplers aim at estimating the quantities
related to the full graph (e.g., the aggregation of the full L-hop neighborhood), and so the inference
model still operates on the full neighborhood to avoid accuracy loss. For SHADOW-GNN, since
the decoupling principle is derived from a local view on G, our EXTRACT does not estimate any
full neighborhood quantities. Consequently, the sampling based methods only improve the training
efficiency, while SHADOW-GNN addresses the computation challenge for both training and inference.

Re-defining the neighborhood. Various works reconstruct the original graph and apply the GNN
on the re-defined neighborhood. GDC [23] views the reconstructed adjacency matrix as the diffusion
matrix. SIGN [11] applies reconstruction for customized graph operators. AM-GCN [46] utilizes
the reconstruction to separate feature and structure information. The above work re-define the
neighborhood. However, they still have tightly coupled depth and scope. SHADOW-GNN can also
work with the reconstructed graph G′ by simply applying EXTRACT on G′.

5 Experiments

Setup. We evaluate SHADOW-GNN on seven graphs. Six of them are for the node classification
task: Flickr [55], Reddit [12], Yelp [55], ogbn-arxiv, ogbn-products and ogbn-papers100M
[16]. The remaining is for the link prediction task: ogbl-collab [16]. The sizes of the seven graphs
range from 9K nodes (Flickr) to 110M nodes (ogbn-papers100M). Flickr, Reddit and Yelp are
under the inductive setting. ogbn-arxiv, ogbn-products and ogbn-papers100M are transductive.
Consistent with the original papers, for the graphs on node classification, we measure “F1-micro”
score for Yelp and “accuracy” for the remaining five graphs. For the link prediction task, we use
“Hits@50” as the metric. See Appendix E.1 for details. We use W&B [5] for experiment tracking.

We construct SHADOW with six backbone models: GCN [22], GraphSAGE [12], GAT [44], JK-Net
[50], GIN [49], SGC [47]. The first five are representatives of the state-of-the-art GNN architectures,
jointly covering various message aggregation functions as well as the skip connection design. SGC
simplifies normal GCN by moving all the neighbor propagation to the pre-processing step. Therefore,
SGC is suitable for evaluating oversmoothing. The non-SHADOW models are trained with both
full-batch and GraphSAINT-minibatch [55]. Due to the massive size of the full L-hop neighborhood,
we need to perform sampling when training normal GNNs in order to make the computation time
tractable. GraphSAINT is suitable for our purpose since 1. it is the state-of-the-art minibatch method
which achieves high accuracy, and 2. it supports various GNN architectures and scales well to large
graphs. On the other hand, for SHADOW-GNN, both training and inference are always executed
in minibatches. One advantage of SHADOW-GNN is that the decoupling enables straightforward
minibatch construction: each target just independently extracts the small subgraph on its own.

We implement two EXTRACT described in Section 3.4: 1. “PPR”, where we set the node budget K as
{200, 400} for the largest ogbn-papers100M and K ≤ 200 for all other graphs; 2. “L-hop”, where
we set the depth as {1, 2}. We implement various subgraph pooling functions: “mean” and “max”
evaluated in this section and others evaluated in Appendix F.3. For the model depth, since L′ = 3 is
the standard setting in the literature (e.g., see the benchmarking in OGB [16]), we start from L′ = 3
and further evaluate a deeper model of L′ = 5. All accuracy are measured by 5 runs without fixing
random seeds. Hyperparameter tuning and architecture configurations are in Appendix E.4.

SHADOW-GNN neighborhood. For both normal and SHADOW GNNs, Figure 2 shows on
average how many neighbors are L hops away from the target. For a normal GNN, the size of the
neighborhood grows rapidly with respect to L, and the nodes 4 hops away dominate the neighborhood.
For SHADOW-GNN using the Table 1 EXTRACT, most neighbors concentrate within 2 hops. A small
number of nodes are 3 hops away. Almost no nodes are 4 or more hops away. Importantly, not
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only does the composition of the two kinds of neighborhood differ significantly, but also the size of
SHADOW-GNN scope is much smaller (see also Table 1). Such small subgraphs are essential to high
computation efficiency. Finally, we can ignore the very few distant neighbors (L ≥ 4), and regard the
(effective) depth of SHADOW-GNN subgraph as L = 2 (or at most 3). Under such practical value of
L, a model with L′ ≥ 3 is indeed a SHADOW-GNN (see “Remark on decoupling” in Section 3.6).

Table 1: Comparison on test accuracy / F1-micro score and inference cost (tuned with DropEdge)

Method Layers Flickr Reddit Yelp ogbn-arxiv ogbn-products

Accuracy Cost Accuracy Cost F1-micro Cost Accuracy Cost Accuracy Cost

GCN 3 0.5159±0.0017 2E0 0.9532±0.0003 6E1 0.4028±0.0019 2E1 0.7170±0.0026 1E1 0.7567±0.0018 5E0
5 0.5217±0.0016 2E2 0.9495±0.0012 1E3 OOM 1E3 0.7186±0.0017 1E3 OOM 9E2

GCN-SAINT 3 0.5155±0.0027 2E0 0.9523±0.0003 6E1 0.5110±0.0012 2E1 0.7093±0.0003 1E1 0.8003±0.0024 5E0
5 0.5165±0.0026 2E2 0.9523±0.0012 1E3 0.5012±0.0021 1E3 0.7039±0.0020 1E3 0.7992±0.0021 9E2

3 0.5234±0.0009 (1) 0.9576±0.0005 (1) 0.5291±0.0020 (1) 0.7180±0.0024 (1) 0.7742±0.0037 (1)SHADOW-GCN
(PPR) 5 0.5268±0.0008 1E0 0.9564±0.0004 1E0 0.5323±0.0020 2E0 0.7206±0.0025 2E0 0.7821±0.0043 2E0
+Pooling 3/5 0.5286±0.0013 1E0 0.9624±0.0002 1E0 0.5393±0.0036 2E0 0.7223±0.0018 2E0 0.7914±0.0044 2E0

GraphSAGE 3 0.5140±0.0014 3E0 0.9653±0.0002 5E1 0.6178±0.0033 2E1 0.7192±0.0027 1E1 0.7858±0.0013 4E0
5 0.5154±0.0052 2E2 0.9626±0.0004 1E3 OOM 2E3 0.7193±0.0037 1E3 OOM 1E3

SAGE-SAINT 3 0.5176±0.0032 3E0 0.9671±0.0003 5E1 0.6453±0.0011 2E1 0.7107±0.0003 1E1 0.7923±0.0023 4E0
5 0.5201±0.0032 2E2 0.9670±0.0010 1E3 0.6394±0.0003 2E3 0.7013±0.0021 1E3 0.7964±0.0022 1E3

3 0.5312±0.0019 1E0 0.9672±0.0003 1E0 0.6542±0.0002 1E0 0.7163±0.0028 1E0 0.7935±0.0031 1E0SHADOW-SAGE
(2-hop) 5 0.5335±0.0015 2E0 0.9675±0.0005 2E0 0.6525±0.0003 2E0 0.7180±0.0030 2E0 0.7995±0.0022 2E0

3 0.5356±0.0013 (1) 0.9688±0.0002 (1) 0.6538±0.0003 (1) 0.7227±0.0012 (1) 0.7905±0.0026 (1)SHADOW-SAGE
(PPR) 5 0.5417±0.0006 2E0 0.9692±0.0007 2E0 0.6518±0.0002 2E0 0.7238±0.0007 2E0 0.8005±0.0040 2E0
+Pooling 3/5 0.5395±0.0013 2E0 0.9703±0.0003 2E0 0.6564±0.0004 1E0 0.7258±0.0017 2E0 0.8067±0.0037 1E0

GAT 3 0.5070±0.0032 2E1 OOM 3E2 OOM 2E2 0.7201±0.0011 1E2 OOM 3E1
5 0.5164±0.0033 2E2 OOM 2E3 OOM 2E3 OOM 3E3 OOM 2E3

GAT-SAINT 3 0.5225±0.0053 2E1 0.9671±0.0003 3E2 0.6459±0.0002 2E2 0.6977±0.0003 1E2 0.8027±0.0028 3E1
5 0.5153±0.0034 2E2 0.9651±0.0024 2E3 0.6478±0.0012 2E3 0.6954±0.0013 3E3 0.7990±0.0072 2E3

3 0.5349±0.0023 (1) 0.9707±0.0004 (1) 0.6575±0.0004 (1) 0.7235±0.0020 (1) 0.8006±0.0014 (1)SHADOW-GAT
(PPR) 5 0.5352±0.0028 2E0 0.9713±0.0004 2E0 0.6559±0.0002 2E0 0.7274±0.0022 2E0 0.8071±0.0004 2E0
+Pooling 3/5 0.5364±0.0026 1E0 0.9710±0.0004 2E0 0.6566±0.0005 1E0 0.7265±0.0028 2E0 0.8142±0.0031 1E0

Comparison with baselines. Table 1 shows the performance comparison of SHADOW-GNN with
the normal GNNs. All models on all datasets have uniform hidden dimension of 256. We define the
metric “inference cost” as the average amount of computation to generate prediction for one test node.
Inference cost is a measure of computation complexity (see Appendix B for the calculation) and is
independent of hardware / implementation factors such as parallelization strategy, batch processing,
etc. For cost of SHADOW-GNN, we do not include the overhead on computing EXTRACT, since it
is hard to calculate such cost analytically. Empirically, subgraph extraction is much cheaper than
model computation (see Figure 8, 9 for time evaluation on CPU and GPU). During training, we apply
DropEdge [39] to both the baseline and SHADOW models. DropEdge helps improve the baseline
accuracy by alleviating oversmoothing, and benefits SHADOW-GNN due to its regularization effects.
See Appendix F.2 for results on other architectures including GIN and JK-Net.

ACCURACY We aim at answering the following questions: 1. Can we improve accuracy by
decoupling a baseline model? 2. What architecture components can we tune to improve accuracy of a
decoupled model? 3. What EXTRACT can we tune to improve the accuracy of a decoupled model? To
answer Q1, we fix the backbone architecture and remove pooling. Then we inspect “3-layer normal
GNN vs. 3-layer SHADOW-GNN” and “5-layer normal GNN vs. 5-layer SHADOW-GNN”. Clearly,
SHADOW-GNNs (with scope size no more than 200) in general achieve significantly higher accuracy
than the normal GNNs. This indicates that a shallow neighborhood contains sufficient information,
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and customizing the scope can benefit accuracy even without architecture changes (from Figure 2, a
depth-3 G[v] differs significantly from the 3-hop neighborhood). To answer Q1, we focus on the PPR
EXTRACT and thus compare the rows in blue background. We use the 3-layer SHADOW-GNN without
pooling as the baseline and analyze the effects of 1. increasing the GNN depth without expanding
scope, and 2. adding subgraph pooling. Comparing among the rows in light blue background, we
observe that in many cases, simply increasing the depth from 3 to 5 leads to significant accuracy
gain. Comparing the ligh blue rows with the dark blue rows, we observe that sometimes pooling
can further improve the accuracy of a SHADOW-GNN. In conclusion, both types of architecture
tuning are effective ways of optimizing a SHADOW-GNN. Finally, to answer Q3, we compare the
light blue rows with the light yellow rows. In general, PPR EXTRACT leads to higher accuracy

than 2-hop EXTRACT, demonstrating the importance of designing a good EXTRACT.

INFERENCE COST Inference cost of SHADOW-GNN is orders of magnitude lower than the normal
GNNs (a 5-layer SHADOW-GNN is still much cheaper than a 3-layer normal GNN). The high cost of
the baselines is due to the “neighborhood explosion” with respect to more layers. SHADOW-GNN is
efficient and scalable as the cost only grows linearly with the model depth. Note that GraphSAINT
only improves efficiency during training since its inference operates on the full L-hop neighborhood.

Table 2: Leaderboard comparison on papers100M
Method Test accuracy Val accuracy Neigh size

GraphSAGE+incep 0.6706±0.0017 0.7032±0.0011 4E5
SIGN-XL 0.6606±0.0019 0.6984±0.0006 > 4E5
SGC 0.6329±0.0019 0.6648±0.0020 > 4E5

SHADOW-GAT200 0.6681±0.0016 0.7019±0.0011 2E2
SHADOW-GAT400 0.6708±0.0017 0.7073±0.0011 3E2

Scaling to 100 million nodes. We further
scale SHADOW-GNN to ogbn-papers100M,
one of the largest public dataset. Even through
the full graph size is at least two orders of mag-
nitude larger than the graphs in Table 1, the lo-
calized scope of SHADOW-GNN barely needs
to increase. Since SHADOW-GNN performs
minibatch computation, a low-end GPU with limited memory capacity can compute SHADOW-GNN
on ogbn-papers100M efficiently. We show in Appendix F.1 that we can train and inference our
model with as little as 4GB GPU memory consumption. This is infeasible using normal GNNs. Table
2 summarizes our comparison with the top leaderboard methods [45, 11, 47]. We only include those
methods that do not use node labels as the model input (i.e., the most standard setup). We achieve
at least 3 orders of magnitude reduction in neighborhood size without sacrificing accuracy. For
SIGN-XL and SGC, their neighborhood is too large to count the exact size. Also, their preprocessing
consumes 5× more CPU memory than SHADOW-GNN (Appendix F.1).

Table 3: Leaderboard comparison on collab
Method Test Hits@50 Val Hits@50

SEAL 0.5371±0.0047 0.6389±0.0049
DeeperGCN 0.5273±0.0047 0.6187±0.0045
LRGA+GCN 0.5221±0.0072 0.6088±0.0059

SHADOW-SAGE 0.5492±0.0022 0.6524±0.0017

Extending to link-level task. We further show that
SHADOW-GNN is general and can be extended to
the link prediction task. There are two settings of
ogbl-collab. We follow the one where validation
edges cannot be used in training updates. This is the
setting which most leaderboard methods follow. Table
3 shows the comparison with the top GNN models
under the same setting. SHADOW-SAGE outperforms the rank-1 model with significant margin.

Oversmoothing. To validate Theorem 3.2, we pick SGC as the backbone architecture. SGC with
power L is equivalent to L-layer GCN without activation. Performance comparison between SGC
and SHADOW-SGC thus reveals the effect of oversmoothing without introducing other factors due to
optimizing deep neural networks (e.g., vanishing gradients). In Figure 3, we vary the power of SGC
and SHADOW-SGC from 1 to 40 (see Appendix E.5 for details). While SGC gradually collapses
local information into global “white noise”, accuracy of SHADOW-SGC does not degrade. This
validates our theory that extracting local subgraphs prevents oversmoothing.

6 Conclusion

We have presented a design principle to decouple the depth and scope of GNNs. Applying such
a principle on various GNN architectures simultaneously improves expressivity and computation
scalability of the corresponding models. We have presented thorough theoretical analysis on expres-
sivity from three different perspectives, and also rich design components (e.g., subgraph extraction
functions, architecture extensions) to implement such design principle. Experiments show significant
performance improvement over a wide range of graphs, GNN architectures and learning tasks.
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