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ABSTRACT

In this paper, we study the automatic hypothesis generation (HG) problem, focusing
on explainability. Given pairs of biomedical terms, we focus on link prediction to
explain how the prediction was made. This more transparent process encourages
trust in the biomedical community for automatic hypothesis generation systems. We
use a reinforcement learning strategy to formulate the HG problem as a guided node
pair embedding-based link prediction problem via a directed graph walk. Given
nodes in a node pair, the model starts a graph walk, simultaneously aggregating
information from the visited nodes and their neighbors for an improved node pair
representation. Then at the end of the walk, it infers the probability of a link from
the gathered information. This guided walk framework allows for explainability via
the walk trajectory information. By evaluating our model on predicting the links
between millions of biomedical terms in both transductive and inductive settings,
we verified the effectiveness of our proposed model on obtaining higher prediction
accuracy than baselines and understanding the reason for a link prediction.

1 INTRODUCTION

The exponential growth in the number of scientific research publications (Björk et al., 2008; Larsen &
Von Ins, 2010) has made the manual process of extracting the connection between biomedical terms
(e.g., diseases, chemicals, drugs, and genes) a laborious task. For an increased efficiency, computers
have been introduced to the hypothesis generation pipeline for scientific research and have gained
popularity in the last decade (Baek et al., 2017; Akujuobi et al., 2020b; Jha et al., 2019; Xun et al.,
2017; Spangler, 2015; Akujuobi et al., 2020a). With the increasing interest in automatic hypothesis
generation (HG), several systems have been proposed. Smalheiser & Swanson (1998); Swanson &
Smalheiser (1997); Hristovski et al. (2006) utilize a simple A-B-C approach based on a closed graph
triad principle for inferring connections between two terms. Although a logical and straightforward
approach, it fails to capture complex relationships between terms. To mitigate the limitations of the
A-B-C approach, several studies have applied machine learning techniques for automatic HG. These
techniques include text mining (Spangler et al., 2014; Spangler, 2015), association rules (Hristovski
et al., 2006; Gopalakrishnan et al., 2016; Weissenborn et al., 2015), classification and clustering
(Sybrandt & Safro, 2018; Srihari et al., 2007; Baek et al., 2017), and others (Jha et al., 2019; Xun
et al., 2017; Shi et al., 2015; Akujuobi et al., 2020b).

However, with the growing discussion on the trustworthiness of machine learning models (Chatz-
imparmpas et al., 2020; Varshney, 2019; Toreini et al., 2020; Samek et al., 2020), especially in the
biomedical field (Yuan et al., 2021; Michael et al., 2018), it is not enough to only predict yes or no
about the connectivity of term pairs. There is a need for transparent and explainable models that
also can provide insights on how the prediction was made. Understanding what drives a prediction
is essential for determining targeted practical study (Lundberg et al., 2017). To the best of our
knowledge, we are the first to focus on the study of explainable automatic hypothesis generation.
Definition 1. Walk-based explainable hypothesis generation: Given an unlinked pair of nodes
< u, v > and a graph G = {V,E}, the target is to infer the probability of a link between u and v
(a hypothesis is generated between these nodes) via a guided graph walk, such that the trajectories
explains the link prediction.

Our proposed approach is named Walk-based Explainable Hypothesis Generation (WEHG). To infer
the connectivity of the terms {u, v}, WEHG initializes a graph walk of length T on the graph G
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starting from u and v respectively. At each step t; t = 1 · · ·T of the walk, WEHG learns an embedding
that integrates together the information obtained from previous walk steps, the current node attribute,
and node attributes of neighboring nodes at time t. If well-guided rather than walking randomly,
WEHG moves purposefully from one node to another to better understand the meaning of the starting
node u or v. At the terminal step, WEHG embeds its understanding of the nodes by a vector hTu,v for
link prediction. To make an accurate prediction, WEHG is expected to have an appropriate policy to
determine the walk sequence, which provides a semantically meaningful embedding vector for the
node pair and explains the prediction of a link. We design WEHG as a decision-making agent whose
policy is learned by a reinforcement learning-based attention mechanism.

In summary, our contributions are:
1.) We structure the hypothesis generation task as a node pair embedding task via graph walk on

attributed graphs. This framework facilitates the direct encoding of the intrinsic information from the
nodes’ neighborhood, thereby leading to improved predictive performance and explanation.

2.) We design WEHG to learn the graph walk policy in a reinforcement learning-based attention
mechanism. WEHG is flexible to be used for any edge (node pair) embedding task on attributed
graphs, although we apply it for hypothesis generation in this work. Meanwhile, WEHG has an
advantage to be usable in both inductive and transductive settings.

2 RELATED WORK

2.1 HYPOTHESIS GENERATION

Ideas, research results, and knowledge are often presented to the public in scientific literature. To
identify unnoticed but discoverable connections via automated systems, Smalheiser & Swanson (1998)
proposed the A-B-C model based on closed entity linkages for knowledge discovery. This strategy
has been further developed by Hristovski et al. (2006); Weissenborn et al. (2015); Gopalakrishnan
et al. (2016) to mitigate the limitations of the simple A-B-C model such as it’s high dependence on
just the entity connections. Machine learning techniques such as Latent Dirichlet Allocation (LDA),
clustering, and text mining have also been introduced to the process of building automatic hypothesis
generation systems (Sybrandt & Safro, 2018; Srihari et al., 2007; Akujuobi et al., 2020b;a; Jha et al.,
2019; Xun et al., 2017; Srinivasan & Libbus, 2004; Spangler et al., 2014). In this paper, we take a
different approach in the automated HG problem formulation using guided walks on graphs. We
focus on introducing flexibility and explainability in the framework by exploring the information
space to better capture essential information for node pair relationships in transductive and inductive
settings.

2.2 NETWORK EMBEDDING

The area of network embedding has gained significant attention in the recent decade. Several Graph
Neural Networks (GNN) have been proposed for node/graph embedding (Kipf & Welling, 2016;
Perozzi et al., 2014; Grover & Leskovec, 2016; Yang et al., 2016; Hamilton et al., 2017). Graph-based
hypothesis generation task can be formulated as an edge (node pair) embedding task. A simple
solution would be joining the embedding of two nodes linked by one edge (Perozzi et al., 2014;
Grover & Leskovec, 2016). However, its simplicity has a disadvantage as it fails to simultaneously
capture complex information from its structural and semantic attributes. Hence its performance is
dependent on the quality of the separately learned attributes. Some other complex models embed
node pairs and their context in the same space (Zhao et al., 2016), or learn node and edge embedding
vectors jointly (Gao et al., 2019). This node pair embedding problem can also be reduced to a
knowledge graph task of jointly learning the embedding of a (relation) edge joining a pair of nodes
(head and tail) (Lin et al., 2015; Ji et al., 2016; Shi & Weninger, 2017; Wang et al., 2014; Bordes
et al., 2013). However, these methods focus on independent node representation learning and lack
explainability of the model’s predictive performance.

Recent works have structured graph problems as reinforcement learning tasks. Lee et al. (2018)
proposed using a graph walk for multi-class graph classification, through attention on the graph
structural composition. This proposed method (GAM) is based on recurrent walks with random
restarts and assumes that the nodes are tagged (attached labels), hence evaluates graph label prediction
per step iteration. The assumptions and learning method are not feasible in our problem setting as we

2



Under review as a conference paper at ICLR 2022

G

RS 

RS RS RS

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

  

 

RS RS RS

Figure 1: Pipeline of our WEHG method. The example graph given in G shows the walking process
for inferring the relationship between {v0, v3}. The red arrows indicate the walking v0 → v1 →
v3 → v1, while the blue arrows show the walking v3 → v1 → v2 → v0.

do not have such information and differ in task. The aforementioned method also lacks explainability
as it focus on an uninterpretable latent semantic vector space. Reinforcement learning has also found
application in explainable systems especially in explainable recommendation (Xian et al., 2020;
2019; Fu et al., 2020), explainable conversation systems (Yang et al., 2020; Moon et al., 2019) and
explainable KG reasoning (Bhowmik & de Melo, 2020). However, these works are specifically
tailored to their respective task and not applicable to node pair(/edge) embedding problems.

3 METHODOLOGY

3.1 MODEL OVERVIEW

The proposed model makes node pair relationship predictions based on information aggregated from
walks on a given graph. In this framework, information is modeled as a sequential process of moving
from one graph node to another, and the choice of which node to visit is determined with the goal
to efficiently explore the neighborhood to provide essential information for the node pair relation
prediction. Specifically, given a node pair Su,v = {u, v}, the model starts a walk from each node in
the pair (i.e., u and v) respectively. At each step of the walk, the model decides which node from
the observed neighborhood to move to next. We define the observed neighborhood as a sample of
one-hop neighbors of the current node vt. At the end of the graph walk process, the final context
representation hTu,v is then used to conduct node pair connectivity prediction. The pipeline of the
walking process in WEHG is illustrated in Fig. 1, and the inference process is given in Algo. 1.

WEHG is a recurrent model composed of three main neural network blocks. Two networks in the
recurrent step (RS) section are fh(.; θh) for updating the learned context during the graph walks and
fr(.; θr) for recurrently estimating the relevance of the node neighbors during the sequential graph
walks. At the end of the graph walk, the prediction network fc(.; θc) is used to infer the node pair
connection. An example of the graph G snippet presented in Fig. 1 is explained as follows: Given a
node pair {u = v0, v = v3}, the model runs a simultaneous graph walk for both nodes in the pair.
At step t, the agent decides the next node to visit at time t+ 1 by evaluating the importance of the
nodes in the observed neighborhood at step t using the relevance network fr(.; θr). This process
takes as input the previous aggregated information ht−1

u,v = f(ht−1
u , ht−1

v ), the node attribute xtv,
and the attributes of the immediate node neighbors xtn and edges xte. f is an aggregation function.
The relevance network then generates a score for each observed node neighbor in the range of 0
to 1. Since the score indicates the relevance of a node neighbor to the given node, the next node
vt+1 to visit is sampled from its neighbors in proportion to their relevance scores. Along with the
previous walk context representation ht−1

u,v , the current node embedding xtv and the relevance scores
from fr(.; θr) are also used in the updating of context representation in the form of the weighted
neighborhood aggregation ktn (see section 3.2 for more details). The context representation htv is
updated until t = T , for v0 following the walk sequence v0 → v1 → v3 → v1, and for v3 following
the walk sequence v3 → v1 → v2 → v0.
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The final node pair representation vector hTv,u summarizing the respective information obtained from
the graph walk is obtained as hTu,v = fs(h

T
u , h

T
v ), where fs(.) can be a simple linear aggregation

function (such as addition) or a more complex neural network function. The aggregated graph walk
information hTu,v is then passed to the classification network fc(.; θc) modeled as a single-layer neural
network, to predict the node pair connection. It is worth mentioning that WEHG is also applicable in
an inductive setting, where node pair relationships can be predicted among new nodes.

3.2 FORMULATION AS MARKOV DECISION PROCESS

As discussed in section 3.1, WEHG aggregates information from walks on the graph. At each step,
the model updates the aggregated information and decides on the next graph step. The sequential
process in WEHG can be framed as a Markov Decision Process (MDP), which provides a coherently
appropriate solution to the sequential decision-making problem by providing the most beneficial
actions for potential gains in the future based on a current environment observation at time t. However,
the sampled one-hop neighborhood observation at each graph walk step presents a barrier in a direct
MDP setup. This barrier is due to the introduced noise in the sampled one-hop observation and
the inability of the observation to capture the complete topological environment in a large graph.
Partially Observable MDP (POMDP) provides a medium to sidestep the limitations mentioned above
for partially observable environments. Hence, our problem formulation fits a POMDP setup.

To address the incompleteness of observations, we augment the current observation by integrating the
information from the previous steps in the walk trajectory. This information is encoded recurrently
by Gated Recurrent Unit (GRU) (Cho et al., 2014) to capture the recurrent dependency in the graph
walk path on the graph. For v at step t, we update htv by htv = fh(h

t−1
u,v , x

t
v, k

t
n; θh), which has GRU

at its core and is formulated as :

zt = σg(W
z[xtv ++ ktn] + Uzht−1

u,v + bz),

rt = σg(W
r[xtv ++ ktn] + Urht−1

u,v + br),

ĥt = σĥ(W [xtv ++ ktn] + rt ◦ Uht−1
u,v + b),

htv = zt ◦ ĥt + (1− zt) ◦ ht−1
u,v . (1)

where xtv is the current node attribute of node v, ktn is the weighted aggregate of the current one-hop
node neighbor of v (see Eq. (2)), ◦ and ++ denote element-wise multiplication and addition, respec-
tively. The parameters W z , W r, W , Uz , Ur, and U are learnable weights, which are all presented as
θh, including the bias vectors bz, br, b as well. This framework allows for message passing between
the simultaneous graph walks for u and v via memory sharing between the simultaneous graph walks.

At the end of each walk (t = T ), fh(.; θh) produces the embedding of the full trajectory started
from each node in the node pair: hTu and hTv respectively. To predict the node pair connectivity, the
node pair is represented as an aggregation hTu,v = fs(h

T
u , h

T
v ). Then hTu,v is given to the prediction

network fc(.; θc) for link prediction.
Actions to take in walking. At each step t, we model the move to the next node as an action at

based on the output of the relevance network, ϕtv = fr(h
t−1
u,v , x

t
v, x

t
e, x

t
n; θr), where given a node v

in a node pair, u denotes the other node in the pair. The relevance score ϕtv expresses the relevancy of
the one-hop neighbor nodes to the current node vt. It is thus used for the next-node selection and also
for the recurrent neighborhood aggregation update. We model the relevance network using a sigmoid
activation function which places the values of ϕt between 0 and 1 for each neighboring node. For
the sake of better exploration, a stochastic policy π is adopted to make the choice of the next node
vt+1 to visit via sampling under the categorical distribution P = Cat(.|ϕt).Based on the relevance
weighting, the aggregation of relevant neighboring nodes is conducted as:

ktn =
∑
v

xv × ϕtv v ∈ N(vt), (2)

where N(vt) is the set of sampled nodes in the one-hop neighborhood of the current node vt. The
aggregation of neighbors in Eq.(2) is a weighted sum of the neighbors according to their relevance.

Rewards to the actions. We adopt a delayed reward system, where the agent receives a reward
only at the end of the graph walk. Specifically, for a labeled pair, the agent gets a reward rt = 1 at
the last step T , if the link prediction between the nodes in the pair at the end (t = T ) is correct and
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rt = −1 otherwise. The agent gets no reward or penalty (rt = 0) for unlabeled pairs. This reward
framework allows freedom in the unlabeled node pairs’ inference, as an unlabeled pair can be positive
or negative.

3.2.1 POLICY TRAINING

Algorithm 1: Calculate the probability of connection
between nodes in node pair Su,v = {u, v}. u denotes the
opposite node (i.e., u = vj if v = vi and vice versa)
Input: Graph G, a node pair Su,v = {u, v}, initial vector for

each node h0
u and h0

v (vectors of zeros), node and edge
embeddings {x, xe}

Result: pi,j : the connectivity probability score for the node
pair Si,j

1 for t← 1· · ·T do
2 for each node v ∈ Su,v do
3 Obtain the embeddings xtv of the current node vt; xte

for edges connecting to vt; and xtn for neighboring
nodes;

4 Calculate the relevance score to each neighbor
ϕt

v = fr(h
t−1
u,v , x

t
v, x

t
e, x

t
n; θr);

5 Sample next node vt+1 to visit from a categorical
distribution Cat(.|ϕt) over the relevant neighbors;

6 Extract the relevant neighbor information ktn;
7 update the history vector

ht
v = fh(h

t−1
v , ht−1

u , xtv, k
t
n; θh) ;

8 end
9 end

10 Aggregate the learned embeddings hT
u,v = fs(h

T
u , h

T
v );

11 Return pu,v = fc(h
T
u,v; θc)

The eventual outcome of reinforce-
ment learning is the policy mapping
from the observation space to the ac-
tion space, π(at|β1:t; θ). In our set-
ting, the variable β1:t represents the
partial observations along the walk
trajectory until step t, and is mod-
eled as the augmented observation
{ht−1

u,v , x
t
n, x

t
v, x

v
n}. Parameters θr

and θh are both policy relevant, be-
cause fh(.; θh) provides fr(.; θr) with
the context embedding ht−1

u,v to de-
termine the next action, and fr(.; θr)
sends ktn to fh(.; θr) updating htv with
the relevant neighbors. The parame-
ters θ = {θr, θh} are thus updated
in training jointly to maximize the re-
ward accumulation.

However, computing the policy ob-
jective: LR(θ) = E(π;θ)

[∑T
t=1 rt

]
is hard in practice (Lee et al., 2018)
due to the difficulty of calculating the
expectation over joint probability dis-
tribution of walk paths. Hence, using
the trick of log derivative to change the gradient of the expectation to the expectation of the gradient,
the REINFORCE algorithm for POMDP Williams (1992) could take gradients of the objective as
following:

∇θLR =

T∑
t=1

Ep(β1:T ;θ)[∇θ log π(at|β1:T ; θ)R]

≈ 1

M

M∑
i=1

T−1∑
t=1

∇θ log π(ait|βi1:t; θ)γT−tRi. (3)

The variable γ ∈ (0, 1] is a discount factor giving more preference to actions performed closer to
the last step (i.e., t = T ). The roll-out sequences βi’s are obtained from running the agent πθ for
i = 1, ...,M episodes; and Ri is the reward to go of the episode i.

The gradient estimate of reward observation and action can be obtained by sampling several roll-outs,
each running the agent for T walk steps. This is made possible by breaking down the joint distribution
of the trajectory. This process provides feedback to the policy and guides for an enriched and better
parameter space exploration.

The differentiable relevance network fr and recurrent network fh, represented as neural networks,
are updated based on the backpropagated policy gradient information. Hence, any policy gradients
corresponding to high rewards are higher weighted, making roll-outs with higher rewards more
likely. However, high variance from sampling still exists, though the estimate is an unbiased one.
The reward setup alleviates this problem in sampled trajectories by reducing the reward collected
at the intermediate steps of roll-outs. It may, however, suffer from high variance due to sampling
and may cause the policy to be unstable. A baseline could be used to reduce the magnitude of
the estimate, resulting in reduced variance and an unbiased estimate. The classification network is
trained in supervised using a binary cross-entropy loss while the relevance network is trained using
REINFORCE. The whole model is trained end-to-end.
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Table 1: Statistics of evaluation node pairs. The positive pairs are those with confirmed true
connections, while the unknown pairs are those without confirmed true connections.

#Nodes Inductive Transductive Unfiltered
#Positive pairs #Unknown pairs #Positive pairs #Unknown pairs #Positive pairs #Unknown pairs

Virology 42,870 35,363 729,256 488,711 3,167,809 524,074 3,897,065
COVID-19 65,275 174,708 2,232,254 3,132,283 3,703,709 3,306,991 5,935,963
Cancer 64,083 44,901 822,196 893,556 5,005,188 938,437 5,827,384

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENTAL SETUP

We construct evaluation graph datasets from the title and abstract of papers published in the biomedical
fields from 1949 to early 2021. The nodes of the graphs correspond to the scientific terms found
in the papers, while the edges linking two nodes indicate the co-occurrence in a sentence or title.
Our study focuses only on the co-occurrence relation and leaves the relationships’ multi-dimensional
properties for future study. The three graph datasets in evaluation are constructed from papers in
popular biomedical research areas, namely COVID-19, Cancer, and Virology.

To set up the training and testing data, we split the graph by publication year. The connections made
in papers published till 2015 are used for training, while the model is tested on connections made
in papers published from 2016 to 2021. Therefore in testing, the positive pairs, i.e., those linked in
papers published in the time window [2016 - 2021] can exist as links : 1) between nodes already
existing in the training graph G, i.e., {vi, vj}; vi ∈ G, vj ∈ G; 2) between a new term and an existing
term, i.e., {vi, vj}; vi 6∈ G, vj ∈ G; or 3) between two new nodes {vi, vj}; vi 6∈ G, vj 6∈ G. Unlinked
node pairs in G are considered as unlabeled. The statistics of the datasets used for evaluation are
shown in Table 1.

The experiments were conducted on Amazon AWS Linux system using Python1. We extract term
descriptions and convert them to a 200-dimensional feature vector by applying the latent semantic
indexing (LSI) method to obtain the node feature vector xtv . The sentences where two terms co-occur
are used as the edge attributes. The edge feature vectors are also obtained using the LSI technique.
Our method is implemented using the Tensorflow library. Each GPU-based experiment was conducted
on a single NVIDIA T4 Tensor Core GPU. For evaluations reported in this paper, proposed models
are trained for 5 epochs with a parameter set (d = 128, T = 5,M = 3, lr = 5e−3). Parameter search
was performed for the proposed model and baseline methods. We assume the graph to be undirected.

4.2 QUANTITATIVE STUDY

4.2.1 COMPARISON METHODS

To evaluate the performance of our proposed model, we compare it against several state-of-the-art
(SOTA) methods, which have publicly available implementation codes, to avoid unfair evaluations
due to potential faulty implementation. These baseline methods include:

Embedding Based Methods. This group of methods extract node embedding from models trained
in unsupervised ways: text embedding (using LSI), Node2Vec, and GraphSAGE. For the TextGraph
feature, we concatenate the text and Node2Vec features. The node embeddings in each pair are then
concatenated and fed through a logistic regression layer (a single layer perceptron) for link prediction.

Signed Networks. These are SOTA methods for link prediction using signed networks. We mark the
observed pairs with positive edges and the non-observed pairs with negative edges in this setup. The
methods evaluated are nSNE (Song et al., 2018) and SGCN (Derr et al., 2018).

tNodeEmbed (Singer et al., 2019). Leverages the temporal information in graphs to create rich
node representations. We modified the original model to handle unseen nodes in inductive learning.

TransR (Lin et al., 2015), TransH (Wang et al., 2014), TransE (Bordes et al., 2013). These
are knowledge graph completion methods, which are modified for this task by conducting triplet
{head,tail,relationship} classification.

1The implementation codes and all datasets will be available in public.
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Table 2: Evaluation results showing the precision-recall AUC performance on the COVID-19,
Virology and Cancer datasets, respectively

Virology Cancer COVID-19
Inductive Transductive Unfiltered Inductive Transductive Unfiltered Inductive Transductive Unfiltered

Text 0.10 0.37 0.34 0.13 0.42 0.40 0.15 0.73 0.68
GraphSAGE 0.15 0.58 0.55 0.15 0.60 0.58 0.18 0.83 0.81
Node2Vec 0.77 0.73 0.84 0.81 0.92 0.9
TextGraph 0.78 0.73 0.84 0.81 0.93 0.90
tNodeEmbed 0.65 0.61 0.72 0.69 0.86 0.81
TRANSE 0.62 0.61 0.81 0.81 0.72 0.65
TRANSR 0.67 0.64 0.80 0.79 0.69 0.64
TRANSH 0.44 0.44 0.75 0.65 0.67 0.61
SGCN 0.14 0.45 0.42 0.17 0.48 0.46 0.19 0.79 0.75
nSNE 0.44* 0.82 0.78 0.67 0.88 0.86 0.56 0.94 0.92
WEHG (I) 0.54 0.85 0.83* 0.69* 0.90 0.89* 0.57 0.96* 0.94
WEHG (RW) 0.42 0.87* 0.83* 0.63 0.91* 0.89* 0.59* 0.96* 0.95*
WEHG 0.54 0.88 0.86 0.70 0.92 0.91 0.65 0.97 0.96

4.2.2 RESULTS

We evaluate WEHG’s performance quantitatively on three dataset setups: transductive, inductive, and
unfiltered. WEHG (I) denotes the proposed model without the memory sharing. We also show the
performance of a random walk version WEHG (RW) by replacing the RL strategy with a random
selection strategy. We evaluate link prediction on node pairs with both nodes available in the training
graph in the transductive setting. For the inductive setting, we perform a quantitative evaluation only
on the node pairs in which at least a node in the node pair is not in the training graph. The unfiltered
setup applies no prefiltering on the node pair nodes, hence covering all node pairs setup combinations.
Considering the unbalanced nature of the data, we evaluate the performance using the precision-recall
AUC (PR-AUC).

The result presented in Table 2 shows that the proposed model outperforms the baseline models
across the three datasets. Some baselines can not be evaluated in the inductive setup as these methods
are not directly built to handle new unseen data samples. nSNE, and SGCN were modified for
inductive setting. Table 2 shows that combing text features and Node2Vec features (results in the
row of TextGraph) did not significantly improve the performance compared to Node2Vec. This
underscores the importance of terms’ usage (cooccurrence relationship) information extracted from
scientific literature in hypothesis generation, as using just the terms’ description does not contain
enough information in analyzing possible relationships. WEHG non-linearly incorporates the textual
and structural information via an attentive graph walk, capturing information from both sources
simultaneously and leading to better performance.
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Figure 2: Pair embedding visualization. The blue
color denotes the true positive samples, the red
points are unobserved negative, the green points
are unobserved positive, and the yellow points are
false negatives.

SGCN and nSNE are designed for signed net-
works; hence we incorporate the signs given to
the edges to create the node representations. We
set the positive-negative signs based on node
pair link existence. In a cooccurrence biomed-
ical graph, all edges show a kind of relationship.
Hence the task becomes to efficiently estimate
the neighborhood nodes’ relevancy at each walk
step given a node pair. Therefore, aggregating
information from all neighboring nodes at each
recurrent step will outperform a similar method
with a less efficient relevance estimation. This
can be seen in the performance of WEHG (RW)
and WEHG (I), as WEHG (RW) assigns equal
weight to all neighboring nodes. The result also
shows that memory sharing across the simulta-
neous graph walk leads to better representation
in the embedding layer and also the relevace
estimation for the RL graph walk process, as seen in the performance of WEHG against WEHG
(RW).
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Table 4: Walk trajectories of node pairs. The trajectories show the nodes visited in the graph walk for
each node in the node pairs.

Term pairs Terms Walk Trajectory

Infection Control and Job-related Stress Infection Control Fascitides → Air → Spinal Cord Injury → Occupational Therapies
→ Diet

Job-related Stress School → Nursing Faculty → Nursing Personnel
→ Durable Medical Equipment → Health

Death and Cerebral Concussion Death Treatment Delays → Sex → Ganglionic Cyst → False Aneurysm
→ Tear

Cerebral Concussion Trauma → Major Depressive Disorder → Risk Factor → Knowledge
→ Grouping, Blood

Capillary and SARS COV2 Capillary Infectivity → Class II Major Histocompatibility Molecules
→ CD4 Receptors → Re infection → Cholangitides

SARS COV2
Transmission → Breathing → Angioneurotic Edemas

→ Operative Surgical Procedure → HEPES 3

Herbal Medicine and SARS COV2 Medicine Affects → sodium sulphite → Muriatic Acid
→ Pneumogastric Nerves → High Blood Pressures

SARS COV2 Pandemi → Pharmaceutic → Blossom → Protein Binding
→ Endrofloxicin

Pair Embedding Visualization. To further understand the model performance, We sample and
visualize the embeddings of pairs from the COVID-19 data using the t-SNE method Maaten & Hinton
(2008). We randomly sample 800 pairs for clear visibility and visualize the learned embeddings in
Figure 2. We denote with colors the true label in comparison to the predicted labels. We observe that
the true negatives (red) are further apart from the other groups. In contrast, the false positives (green)
and false negatives (yellow) are both closer to the true positives (blue). This observation keeps with
the theory that the unobserved links are a mixture of positive and negative pairs as although we can
say with certainty that observed pairs are connected, we can not say that unobserved nodes should
not be connected with similar certainty for real-world data. In real-world biomedical data, several
factors such as missing data, lack of sufficient studies, or human mistakes can affect the observation
of node pair connections.

4.3 QUANLITATIVE ANALYSIS

Table 3: Case analysis of preselected test
cases with scores (from WEHG and nSNE)
showing whether the terms should be linked
to COVID-19.

Diseases Prediction Score
WEHG nSNE

Cytokine 0.93 0.79
Consumption Coagulopathies 0.58 0.23
Cancer of Lung 0.79 0.68
Cancer of the Breast 0.80 0.68
Obesity 0.91 0.66
Soreness, Muscle 0.36 0.32
Insomnias 0.50 0.26
Pink Eyes 0.24 0.40
Hypercytokinemias 0.13 0.24
Smell Loss 0.68 0.13
Taste Loss 0.57 0.13

To evaluate the proposed model’s performance on
new diseases, we first manually gathered a list of in-
vestigated diseases linked to the COVID-19. We then
check if the model was able to predict the existence
of these links. We also note that the COVID-19 in-
fection node object was not available in the training
graph. Hence the model sees the COVID-19 virus as
a new term and tries to predict its relationship with the
terms shown in Table 3. We compare the prediction
score of WEHG to the second-best method (nSNE).
We observe that although the nSNE could predict the
relationship between COVID-19 infection and most
of the terms, WEHG gave higher probability scores
showing more confidence in the existence of a link.
We delved further into the result to understand the
low probability score for the terms with lower scores.
The mean score of the true negatives for the nSNE
model is 0.11, more than twice that of WEHG, which
is 0.04.

Prediction Explainability via graph walk. We propose that the analysis of the nodes visited
in the graph walk for both nodes can further explain the prediction. This ability is one of the key
advantages of the proposed model. We train a model using the COVID-19 dataset and extract the
walk trajectory in predicting the node pair relationships on the test data. We performed three case
studies to analyze the explainability performance of the proposed model. First, we analyze the nodes
visited in the walk trajectory of sampled true positive pairs from the test data. We present the visited

3N-(2-Hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid)
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node in the graph walk of four selected sampled pairs (based on interest in the community) in Table 4.
We observe that the nodes visited during the walk capture the relationship between the pairs from the
walk path analysis.

Analyzing the pair <Infection control and Job-related stress> we see the nodes visited in the walk
trajectory for infection Control are related to job-related Stress. For instance, good air quality, good
diet, and availability of occupational therapies can help control work-related stress. The nodes visited
in the trajectory of job-related stress include places where job-related stress can be prevalent and
need to be controlled (i.e., schools and medical facilities).

For the pair <Death and Cerebral concussion>, the nodes in the graph walk trajectory for death are
indirectly related to fatal cerebral concussions. For instance, treatment delays can cause the Death
of a patient with a cerebral concussion. Ganglionic cyst, false aneurysm, and tear can be a result
of trauma related to concussion. Most of the nodes visited in the walk trajectory for the cerebral
concussion walk are related to cerebral concussion causes or results.

Figure 3: Subgraph showing trajectories of walks
starting from each node in the node pair (yellow
nodes) and terminating at the nodes with the stick
figures.

The result’s explainability can also be seen in
the last two pairs where the nodes visited in
the trajectories provide hints on the relationship
between the two nodes in each pair. For the pair
<Capillary and SARS COV2>, the capillary (a
small blood vessel) is prone to be attacked by
infections. Cholangitides, where capillaries can
play a significant role, is related to SARS COV2
due to the effect of SARS COV2 on the lungs
(Praveen et al., 2020). For the pair <Medicine
and SARS COV 2>, pneumogastric Nerves (also
known as vagus nerves) are vital nerves as they
interface with the parasympathetic control of
the heart, lungs, and digestive tract. Due to its
functions, several works have been dedicated to
finding the effects of SARS COV2 on the nerves
(Selma, 2020; Asad et al., 2020).

Next, Figure 3 which shows the trajectory of the
graph walk agent on the graph for term pairs
<Lung cancer and SARS COV2>. We set a
walk length of 10 to show how the agent ex-
plores the graph. We see that the walk of SARS
COV2 intersects the trajectory of the Lung cancer walk at the node Lung cancer. From research, we
do know that the COVID-19 affects the lung (Praveen et al., 2020), with difficulty in breathing being
one of the symptoms. These trajectories show that the model can walk attentively on the graph using
the learned policy.

Furthermore, we sent a list of 100 correctly predicted term pairs to a team of domain experts to
evaluate the prediction insights and validity. With respect to the generated insights based on the
trajectories, the average percentage of correct insights was 0.73.

5 CONCLUSION

This paper studies the hypothesis generation problem and proposes WEHG - a node pair representation
learning method for attributed graphs based on guided graph walk via reinforcement learning. In
this framework, an agent chooses the most relevant nodes for information aggregation recurrently.
The walk decision is determined by considering the previous walk context, the current node content,
the node its one-hop neighborhood. The accumulated information from the nodes in the graph walk
sequence is finally aggregated and used to predict the probability of the nodes being connected. The
quantitative experiments and analyses show that WEHG outperforms several state-of-the-art methods
in both inductive and transductive settings. The qualitative analyses also show the effectiveness of
the proposed method.
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