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ABSTRACT

The mean-field Langevin dynamics is characterized by a stochastic differential
equation that arises from (noisy) gradient descent on an infinite-width two-layer
neural network, which can be viewed as an interacting particle system. In this
work, we establish a quantitative weak propagation of chaos result for the system,
with a finite-particle discretization error of O(1/N) uniformly over time, where
N is the width of the neural network. This allows us to directly transfer the learn-
ing guarantee for infinite-width networks to practical finite-width models without
excessive overparameterization. On the technical side, our analysis differs from
most existing studies on similar mean field dynamics in that we do not require the
interaction between particles to be sufficiently weak to obtain a uniform propa-
gation of chaos, because such assumptions may not be satisfied in neural network
optimization. Instead, we make use of a logarithmic Sobolev-type condition which
can be verified in appropriate regularized risk minimization settings.

1 INTRODUCTION

Mean-field neural networks. We consider the optimization of a two-layer neural network in the
mean-field regime, which is represented as an average over N neurons:

fX(z) =
1

N

N∑
i=1

hz(xi),

where given the input z ∈ Rd′
, each neuron computes a nonlinear transformation based on trainable

parameters x ∈ Rd; for example, we may set hz(x) = tanh(w⊤z + b) for x = (w, b) ∈ Rd′+1.

Importantly, the mean-field parameterization allows for the parameters to move away from initial-
ization during gradient descent and hence learn informative features (Yang and Hu, 2020) even
when the network width is large (N → ∞), in contrast to the Neural Tangent Kernel (NTK) pa-
rameterization (Jacot et al., 2018) (corresponding to a 1/

√
N prefactor), which freezes the model

at initialization under overparameterization. This feature learning ability enables mean-field neural
networks to outperform the NTK counterpart (or linear estimators in general) in learning a wide
range of target functions (Ghorbani et al., 2019; Li et al., 2020; Abbe et al., 2022; Ba et al., 2022).

Optimization guarantees for mean-field neural networks are typically obtained by lifting the finite-
width model to the infinite-dimensional space of parameter distributions and then exploiting convex-
ity of the objective function. Using this viewpoint, convergence of gradient flow on infinite-width
neural networks to the global optimal solution can be shown under appropriate conditions (Nitanda
and Suzuki, 2017; Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018;
Sirignano and Spiliopoulos, 2020). However, most existing results are qualitative in nature, in that
they do not characterize the rate of convergence and the finite-particle discretization error.
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Mean-field Langevin dynamics. An often-studied optimization method for mean-field neural net-
works is the noisy particle gradient descent (NPGD) algorithm (Mei et al., 2018; Hu et al., 2019;
Chen et al., 2020b), where Gaussian noise is injected to the gradient to encourage “exploration” and
enable global optimality to be shown under milder conditions than the noiseless case. The large
particle and vanishing step size limit is termed the mean-field Langevin dynamics (Hu et al., 2019),
which globally minimizes an entropy-regularized convex functional in the space of measures.

Recently, Nitanda et al. (2022); Chizat (2022) established exponential convergence for the mean-
field Langevin dynamics under certain logarithmic Sobolev inequalities which can be easily verified
in regularized risk minimization problems using two-layer neural networks (1). This represents a
significant step towards a quantitative optimization analysis of neural networks in the presence of
feature learning, yet the limitation is also clear: these results are obtained from directly analyzing the
large particle limit (i.e., the limiting McKean-Vlasov stochastic differential equation), and cannot be
easily transferred to practical finite-width networks. In fact, naively applying the quantitative results
in Mei et al. (2018; 2019) leads to discretization error bounds that blow up exponentially in time,
rendering the guarantee vacuous beyond the very early stages of gradient descent learning. There-
fore, for the purpose of characterizing the optimization behavior of finite-width neural networks, it
is important to derive a finite-particle discretization error bound that holds uniformly over time, that
is, the error remains stable even when t is large.

1.1 OUR CONTRIBUTIONS
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Figure 1: Training error of two-layer
NNs optimized by NPGD. Solid curve:
mean over 100 runs. Translucent curve:
individual runs. Dashed black line:
global optimum approximated by the
PDA algorithm (Nitanda et al., 2021).

In this paper, we establish finite-particle guarantees for the
mean-field Langevin dynamics via a propagation of chaos
calculation (Sznitman, 1991) which controls the weak error
between the empirical distribution of the interacting particle
system and the corresponding infinite particle limit along the
optimization trajectory. This allows us to bound the differ-
ence in the function value between the finite-width neural net-
work optimized by NPGD and the infinite-width counterpart.
In particular, starting from N initialized particles X0

i.i.d∼ µ0,
if we denote the finite-particle model at time t of optimiza-
tion as fXt , and its corresponding infinite-particle limit as
fµt , then our propagation of chaos result is the following.

Theorem (informal). Under suitable regularity conditions,
E
[
(fXt

(z)−fµt
(z))

2]
=O (1/N) for any t>0 and z∈Rd′

.

We make the following remarks on the main theorem:

• To our knowledge, we provide the first rigorous uniform-in-time propagation of chaos result in the
context of mean-field neural networks. This is in contrast to prior works where the discretization
error typically increases as optimization proceeds (e.g., |fXt

−fµt
| = O(exp(t)·N−1/2) as in Mei

et al. (2018, Theorem 3)). The theorem implies that as the width N becomes larger, the difference
between the finite-width and infinite-width model output diminishes rapidly, as shown in Figure 1.

• Our analysis assumes a modified Log-Sobolev condition which is satisfied in regularized risk
minimization problems using neural network when the convex regularizer on the parameters has
super-quadratic tail. Noticeably, we do not impose any constraint on the strength of regularization
and interaction; this differs from many existing results where uniform propagation of chaos is only
achieved under weak interaction or large noise (Eberle et al., 2019; Delarue and Tse, 2021).

Due to the space constraint, we defer discussions on additional related works to Appendix A.

2 PRELIMINARIES

In this section, we formulate the problem setting and introduce some useful notations for the fol-
lowing sections. We optimize a two-layer neural network by minimizing the empirical or expected
risk in a supervised learning setting, where the input is included in a set Z ⊂ Rd′

and the output is
in a bounded set Y ⊂ R. As defined in the Introduction, h(·)(x) : z ∈ Z 7→ hz(x) ∈ Y represents
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one neuron (particle) with parameters x ∈ Rd, and the mean-field neural network is written as the
average over N neurons: fX(z) = 1

N

∑N
i=1 hz(xi), where X = (xi)

N
i=1 ⊂ Rd denotes the col-

lection of parameters and z ∈ Z . The continuous limit of the neural network is obtained by taking
N →∞, and in analogy to the law of large numbers, fX converges to the following integral form:

fµ(z) =

∫
hz(x)dµ(x),

where µ is a probability measure on (Rd,B(Rd)) representing the weight of each parameter. Let
P be the set of probability measures on (Rd,B(Rd)), and Pp be those with a finite p-th moment
(p ≥ 1). As typical for the mean-field analysis, we aim to optimize the density function µ so that
the neural network fµ accurately predicts the output y ∈ Y from the input z ∈ Z .

In the following, we take (regularized) empirical risk minimization as a concrete example, and we
note that the exact same analysis applies to the minimization of expected risk. Let ℓ(z, y) : Y×Y →
R be a convex loss function, such as the squared loss ℓ(z, y) = (z − y)2/2 for regression, or the
logistic loss ℓ(z, y) = log(1 + exp(−yz)) for classification. For each (zi, yi) in the given training
data (zi, yi)

n
i=1 ⊂ Z × Y , we use the notation hi(x) and ℓi(f) to indicate hzi(x) and ℓ(f(zi), yi)

respectively. Our goal is to find an approximate minimizer of the following objective over P:

F (µ) :=
1

n

n∑
i=1

ℓi(fµ) + λ1

∫
r(x)dµ(x), (1)

where λ1 > 0 is the regularization strength and r(·) is a convex regularizer. More specifically, we
will analyze the mean-field Langevin dynamics which solves an entropy-regularized version of (1).
It is worth noting that this entropy-regularized objective can also be globally optimized by the re-
cently proposed particle gradient-type methods in Nitanda et al. (2021); Oko et al. (2022), for which
finite-width convergence rates have been provided. However, those methods employ an intricate
double-loop structure which does not mirror the commonly-used gradient descent algorithm. There-
fore, an important question to be addressed is whether noisy gradient descent also enjoys similar
quantitative convergence guarantee — this is precisely the motivation of the current paper.

3 MEAN-FIELD GRADIENT LANGEVIN DYNAMICS

Derivation of the continuous dynamics. The basic idea of the mean-field Langevin dynamics is
to optimize the aforementioned objective via Wasserstein gradient flow over a set of measures P . To
define the gradient with respect to the measure, we introduce the first-variation δG

δµ of a functional
G : P2 → R at µ ∈ Pq (for a given q ≥ 1) as a continuous functional Pq × Rd → R that satisfies

lim
ϵ→0

G(ϵν + (1− ϵ)µ)
ϵ

=

∫
δG

δµ
(µ)(x)d(ν − µ),

for any ν ∈ Pq . If there exists such a functional δG
δµ , we sayG admits a first-variation at µ, or simply

G is differentiable at µ. To avoid the ambiguity of δG
δµ up to constant shift, we follow the convention

of imposing
∫

δG
δµ (µ)dµ = 0. In our setting, the first-variation of the objective F is given by

δF

δµ
(µ)(x) =

1

n

n∑
j=1

ℓ′j(fµ)hj(x) + λ1r(x).

We track F (µt) along a trajectory of measures (µt)t in P2 following a continuity equation:

∂tµt = ∇ · (µtvt),

where vt : Rd → Rd is a vector field included in L2(µt), and the time-derivative and the divergence
operator are defined in a weak sense, that is, for any continuously differentiable function ϕ with a
compact support,

∫
ϕdµt −

∫
ϕdµs = −

∫ t

s

∫
∇ϕ · vτdµτdτ . Then, the time-derivative of G(µt)

can be written as
∂tG(µt) =

∫
vt · ∇ δ

δµG(µt)dµt. (2)

We refer readers to Villani (2009); Ambrosio et al. (2005); Bakry et al. (2014) for more details. In
this sense, ∇ δ

δµF (µt) can be seen as a gradient direction in the measure space (endowed with a

3



Published as a conference paper at ICLR 2023

Wasserstein metric). The mean-field Langevin dynamics approximately minimizes the objective F
based on the Wasserstein gradient flow. Specifically, define the nonlinear drift term:

b(x, µ) = ∇δF
δµ

(µ)(x) =
1

n

n∑
j=1

ℓ′j(fµ)∇hj(x) + λ1∇r(x),

the mean-field Langevin dynamics is then given by the following stochastic differential equation:

dXt = −b(Xt, µt)dt+
√
2λdWt, (3a)

µt = Law(Xt), (3b)

for X0 ∼ µ0, where Law(X) denotes the distribution (probability law) of the random variable X ,
and (Wt)t≥0 is the d-dimensional standard Brownian motion. The existence and uniqueness of the
solution are ensured by Theorem 3.3 of Huang et al. (2021) (see also Corollary 3 for more details).

For concise presentation in the subsequent analysis, we follow the notation in (Delarue and Tse,
2021) and denote the law µt in the mean-field Langevin dynamics with the initial condition µ0 as
µt = m(t, µ0). It is known that µt satisfies the following nonlinear Fokker-Planck equation:

∂tm(t, µ0) = λ∆m(t, µ0) +∇ · [m(t, µ0)b(·,m(t, µ0))], (4)

with m(0, µ0) = µ0 (this is again defined in a weak sense, that is,
∫
ϕd(m(t, µ0) −m(s, µ0)) =∫ t

s

∫
(λ∆ϕ − b(·,m(τ, µ0))

⊤∇ϕ)dm(τ, µ0)dτ for smooth test function f with compact support).
This dynamics is an example of distribution dependent SDEs originating from the study of interact-
ing particle systems which dates back to 1950s (Kahn and Harris, 1951; Kac, 1956; 1959; McKean,
1966; 1967). A fundamental characterization of the mean-field Langevin dynamics is that it is a
Wasserstein gradient flow that minimizes the following objective (Mei et al., 2018; Hu et al., 2019):

L(µ) = F (µ) + λEnt(µ), (5)

where Ent(µ) = −
∫
log(dµ(z)/dz)dµ(z) is the negative entropy of µ. Indeed, it is known that

∇ δL(µ)
δµ = ∇ δF

δµ +λ∇ log(µ) = λ∇ log(µ)+b(·, µt) (e.g, Theorem 4.16 of Ambrosio et al. (2005))
and the continuity equation corresponding to µt can be rewritten as ∂tµt = ∇ · [(λ∇ log(µt) +

b(·, µt))µt] = ∇ · (∇ δL(µ)
δµ µt), which, in combination with the identity (2), yields that

d

dt
L(µt) = −

∫ ∥∥∥∥∇δL(µ)δµ

∥∥∥∥2 dµt.

We therefore see that µt decreases L(µt) unless δL(µ)
δµ = 0, which is a crucial property that guaran-

tees the convergence of µt to the global optimal solution (Lemma 1). This can be seen as a nonlinear
extension of the usual gradient Langevin dynamics (e.g., see Bakry et al. (2014)), where F (µ) is a
linear functional in the form of F (µ) =

∫
L(x)dµ with some objective function L.

It is easy to see that the objective L can be reformulated as the following objective (up to constant)
that employs the KL divergence from a distribution characterized by the regularization term r:

L(µ) = 1

n

n∑
i=1

ℓi(fµ) + λKL(µ, νr), (6)

where νr is a distribution with density proportional to exp(−λ1r/λ) and KL(·, ·) is the KL diver-
gence (relative entropy) defined as KL(µ, ν) :=

∫
log(dµ/dν)dµ.

Particle discretization. One of the main difficulties to simulate the mean-field Langevin dynamics
is that we cannot access the exact information of µt in the practical setting. Instead, we approximate
this infinite-dimensional objective by a finite set of particles, which yields the following SDE:

dX̂i
t = −b(X̂i

t , µ
N
t )dt+

√
2λdW i

t , µN
t =

1

N

N∑
i=1

δX̂i
t
, (7)

and X̂i
0 ∼ µ0. Our goal is to quantify the finite-particle approximation error due to replacing µt

with µN
t . The main mechanism of this approximation is the propagation of chaos (Sznitman, 1991),
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which roughly refers to the phenomenon that as the number of particles N → ∞, the correlation
between particles vanishes and µN

t → µt. However, it is far from trivial to establish a quantitative
estimate of such approximation that provides a meaningful guarantee for the finite-particle system.
In the following sections, we will show that under appropriate conditions, the finite-particle error
can be (weakly) controlled uniformly over time, which allows us to transfer learning guarantees in
the mean-field limit to finite-width neural networks that are not excessively overparameterized.

4 MAIN ASSUMPTIONS AND LOGARITHMIC SOBOLEV INEQUALITY

In this section we present our main theoretical result – the quantitative propagation of chaos. First,
we introduce the main assumption in our analysis.
Assumption 1. We assume hi, ℓi, r ∈ C∞ and satisfy the following conditions:

1. Convexity of loss: ℓi is a convex function.

2. Boundedness and smoothness: There exists B > 0 such that ∥hi∥∞ ≤ B, ∥∇hi∥∞ ≤ B,
∥∇∇⊤hi∥∞ ≤ B, max{|ℓj(fµ)|, |ℓ′j(fµ)|, |ℓ′′j (fµ)|} ≤ B uniformly over P .

3. Regularity of r: The regularization term r is a convex function satisfying cr∥x∥2+δ ≤ r(x) ≤
Cr(1 + ∥x∥2+δ)1, ∇r(x) · x ≥ cr∥x∥2+δ and 0 ⪯ ∇∇⊤r(x) ⪯ Cr(1 + ∥x∥δ)I for constants
0 < δ and cr, Cr > 0.

We make the following remarks on the assumptions.

• The loss convexity is a standard assumption to ensure that the objective L is convex with respect to
µ (note that this does not imply convexity with respect to the parameters {xi}Ni=1 of the network).

• The second assumption is satisfied for standard two-layer models under the following conditions:
(i) ∥z∥ ≤ C; (ii) smooth loss function, such as the squared loss and logistic loss. For example,
we may set hz(x) = tanh(rσ(w⊤z)) with smooth activation function σ and x = (r, w), or
hz(x) = σ(w⊤z + b) with smooth and bounded activation and x = (w, b).

• The constraint on r(·) requires the regularization term to have a super-quadratic tail, which is
satisfied, for example, by r(x) = ∥x∥4. While this does not cover the standard weight decay, we
note that such regularizers with stronger tail growth have been employed in the theoretical analysis
of neural networks (Chen et al., 2020a; Allen-Zhu and Li, 2022). The purpose of this assumption
is to ensure good isoperimetry of µt along the trajectory (see Corollary 1).

• The infinite differentiability condition is imposed only for the simplicity of our analysis.

Proximal Gibbs distribution. An important quantity in the convergence analysis is the proximal
Gibbs distribution: for µ ∈ P , we define the proximal density function as

pµ(x) =
1

Z(µ)
exp

(
− 1

λ

δF (µ)

δµ
(x)

)
,

where Z(µ) is the normalization constant. One may check that this corresponds to the minimizer
of the linearized potential: minν∈P

∫ δF (µ)
δµ dν + λEnt(ν). For a given µt, we denote by µ̃t its

proximal Gibbs measure, that is, the probability measure with the density pµt
. Then, we have the

following characterization of the minimizer of L.
Proposition 1. Under Assumption 1, the functional L has a unique minimizer in P that is absolutely
continuous with respect to the Lebesgue measure. Moreover, µ∗ ∈ P2+δ is the optimal solution if
and only if µ∗ is absolutely continuous and its density function is given by pµ∗ .

This proposition can be shown in the same manner as Proposition 2.5 of Hu et al. (2019). We remark
that although this prior result assumed r to have at most quadratic growth, its proof does not require
such growth condition but requires only the integrability of νr and νr(x) log(νr(x)).

Many convergence properties of the mean-field Langevin dynamics can be characterized by prop-
erties of µ∗ and the proximal Gibbs distribution µ̃t. We first introduce the logarithmic Sobolev
inequality (LSI) which will be very useful in the subsequent analysis.

1This condition can be easily relaxed to cr∥x∥2+δ ≤ r(x) ≤ Cr(1 + ∥x∥2+δ′) with δ ̸= δ′ > 0. Here we
consider δ = δ′ just for simplicity of presentation.
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Definition 1 (Logarithmic Sobolev inequality). Let p(θ) be a smooth probability density function on
Rd. p(θ) (or its corresponding probability measure on (R,B(Rd))) satisfies the LSI with constant
α′ > 0 if and only if, for any smooth function ϕ : Rd → R with Ep[∥ϕ∥2] <∞, it holds that

Ep[ϕ
2 log(ϕ2)]− Ep[ϕ

2] log(Ep[ϕ
2]) ≤ 2

α′Ep[∥∇ϕ∥22].

We can verify that in our setting, the proximal Gibbs measure satisfies the LSI condition.
Proposition 2. Under Assumption 1, pµ satisfies the log-Sobolev inequality with a constant α that
depends on d, cr, B, λ, δ. If additionally∇∇⊤r ⪰ I , then the LSI holds with α = 2λ1

λ exp
(
− 4B

λ

)
.

The proof is given in Corollary 5 in the Appendix. Note what similar characterization was obtained
in Nitanda et al. (2022); Chizat (2022) under a quadratic regularizer r(x) = ∥x∥2, via the standard
Bakry–Emery and Holley–Stroock arguments (Bakry and Émery, 1985; Holley and Stroock, 1987)
(see also Corollary 5.7.2 and 5.1.7 of Bakry et al. (2014)). However, our Assumption 1 does not
entail ∇∇⊤r ⪰ I and thus our proof follows a different strategy. This LSI condition is crucial to
the geometric ergodicity of the mean-field Langevin dynamics described in Theorem 1 below.

5 CONVERGENCE GUARANTEE FOR FINITE-WIDTH NEURAL NETWORKS

To present our (weak) convergence result, we first introduce an objective function in the form of

U(t, µ) := Φ(m(t, µ)),

where Φ : P → R is assumed to be sufficiently smooth, that is, Φ is twice differentiable with respect
to µ and x, and the derivatives are bounded as supx1,...,xk∈Rd |∂j1x1

. . . ∂jkxk

δkΦ(µ)
δµk (x1, . . . , xk)| < C

for k = 0, 1, 2 and ji = 0, 1, 2 uniformly over all µ ∈ P with some constant C (see Delarue and
Tse (2021) for related definition).
Example 1. Under Assumption 1, we allow for the following objective functions.

(i) Neural network function value: Φ(µ) =
∫
hz(x)dµ(x) with a fixed z ∈ Z .

(ii) Training and test error: Φ(µ) = E(Z,Y )∼P [ℓ(fµ(Z), Y )] where P is a distribution on Z × Y .
For a smooth loss ℓ, Φ satisfies the smoothness condition. If P = 1

n

∑n
i=1 δ(zi,yi), then Φ is the

training loss, and if P is the test distribution, it is the test loss.

We proceed by bounding the the weak difference between the finite-particle system at time t and the
optimal µ∗ (see Proposition 1): E[Φ(µN

t )]− Φ(µ∗). We utilize the following decomposition:

E[Φ(µN
t )]− Φ(µ∗) = E[U(t, µN

0 )− Φ(µ∗)]︸ ︷︷ ︸
(I), ergodicity term

+ E[U(0, µN
t )− U(t, µN

0 )]︸ ︷︷ ︸
(II), propagation of chaos term

, (8)

where the ergodicity term (I) monitors the convergence of the infinite-particle dynamics (3) (starting
from µN

0 ) to the optimal solution µ∗, and the propagation of chaos term (II) controls the fluctu-
ation due to the finite-particle update (4). The two terms are bounded separately in the ensuing
subsections. Note that while we focus on two-layer neural networks under Assumption 1, the same
computation can be performed under certain isoperimetric conditions on the trajectory. In particular,

• Analysis of the ergodicity term (I) only requires the proximal Gibbs measure µ̃t to satisfy the
LSI. This condition can be easily verified for both quadratic regularizer as in (Nitanda et al., 2022;
Chizat, 2022) and super-quadratic regularizers as shown in Proposition 2.

• To control the propagation of chaos term (II), we require an LSI condition on µt along the
trajectory. Similar assumption also appeared in Lacker and Flem (2022) to obtain a uniform-in-
time evaluation, and is very challenging to establish in the mean-field neural network setting. We
prove this assumption by transferring the LSI constant from µ̃t to µt via a super LSI condition,
which is verified under the super-quadratic regularization in Assumption 1 (see Lemma 2).

5.1 BOUNDING THE ERGODICITY TERM (I)

Let Wp(µ, ν) denote the p-Wasserstein distance between µ, ν ∈ Pp. We first show that m(t, µN
0 )

converges to µ∗ in an exponential order (geometric ergodicity) in the following sense.
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Lemma 1. Under Assumption 1, for µt = m(t, µN
0 ), it holds that L(µt) <∞ for any t > 0, and

L(µt)− L(µ∗) ≤ exp(−2αλ(t− τ0))λψ2(τ0)W2(µ0, µ
∗)2,

KL(µt, µ
∗) ≤ exp(−2αλ(t− τ0))ψ2(τ0)W2(µ0, µ

∗)2,

for any t > τ0 where τ0 > 0 is arbitrary, ψ2(t) =
1
2λ

(
B2

1−exp(−B2t) +
tB2 exp(4B2t)

2

)
, and α is the

LSI constant of µ̃t given in Proposition 2.

The proof can be found in Corollary 4 in the Appendix. This is an extension of the “entropy sand-
wich” argument in Nitanda et al. (2022); Chizat (2022), in which the right hand side of the bound
is given by KL(µ0, µ

∗) instead of the Wasserstein distance. However, in our setting, µ0 = µN
0 is a

discrete distribution and thus the KL divergence from µ∗ is not finite. To resolve this issue, our anal-
ysis shows an upper bound of the KL divergence at t > τ0 via the Wasserstein distance W2(µ0, µ

∗)
(see Corollary 3). Then, we obtain the following theorem on the convergence of term (I).
Theorem 1 (Geometric ergodicity). Under Assumption 1, the term (I) converges as

E[U(t, µN
0 )]− Φ(µ∗) ≤ C

√
2α−1ψ2(τ0) exp(−αλ(t− τ0))E[W2(µ

N
0 , µ

∗)],

for any t > τ0 where τ0 > 0 is an arbitrary positive real number.

Proof. By Otto-Villani’s theorem (Otto and Villani, 2000), LSI implies Talagrand’s inequality:

W2(µ, µ
∗) ≤

√
2
αKL(µ, µ∗). Also, the smoothness of Φ entails Φ(µ) − Φ(µ∗) ≤ CW2(µ, µ

∗)

(see Lemma 10). The assertion is obtained by combining Lemma 1 and Talagrand’s inequality.

5.2 BOUNDING THE PROPAGATION OF CHAOS TERM (II)

Bounding the second term (II) is much more involved. We utilize the following evaluation adapted
from Delarue and Tse (2021) (see Arnaudon and Del Moral (2020) for similar calculation):

E[U(0, µN
t )− U(t, µN

0 )] =
1

N

d∑
i=1

∫ t

0

E
[∫ (

∂(x1)i∂(x2)i

δ2U
δµ2

(t− s, µN
s )(x, x)

)
µN
s (dx)

]
ds.

Intuitively, the integrand on the right hand side approximately represents E[U(0, µN
s+ϵ)−U(t, µN

s )]
for small ϵ, that is, how a small time difference between the finite particle and continuous limit
propagates to the terminal time t. Here, for a linear operator q acting on a function f : Rd → R, we
write f(q) := q(f). Then from Delarue and Tse (2021) (see also Appendix C.2, C.3) it holds that

∂(x1)i∂(x2)i

δ2U
δµ2

(t, µ0)(x1, x2)

=
δ2Φ

δµ2
(µt)(d

(1)
i (t;µ0, ξ, x1), d

(1)
i (t;µ0, ξ, x2)) +

δΦ

δµ
(µt)(d

(2)
i,i (t;µ0, x1, x2)),

where d(1)i and d(2)i,j are linear operators defined by

d
(1)
i (t;µ0, ξ, x1)(ϕ) = ∂(x1)i

δ
δµ (m(t; ·)(ϕ))|µ0(x1),

d
(2)
i,j (t;µ0, x1, x2)(ϕ) = ∂(x1)i∂(x2)j

δ2

δµ2 (m(t; ·)(ϕ))|µ0(x1, x2),

for a smooth test function ϕ : Rd → R, where m(t, µ)(ϕ) =
∫
ϕ(x)dm(t, µ)(x) (we will also

use the same notation for a general measure µ). The dynamics of these operators is characterized
by Proposition 6 in Appendix C.1, which is adapted from Delarue and Tse (2021). To obtain a
uniform-in-time evaluation of term (II), we aim to show a rapid decay of d(1)i and d(2)i,j .

Isoperimetry of µt via super LSI. Our strategy is to establish the boundedness of the integral∫ t

0
E
[∫

∂(x1)i∂(x2)i
δ2U
δµ2 (t− s, µN

s )(x, x)µN
s (dx)

]
ds by proving the exponential convergence of

∂(x1)i∂(x2)i
δ2U
δµ2 (t − s, µN

s )(x, x). However, this requires a local evaluation around m(t − s;µN
s ),

for which we cannot exploit “global” properties such as the log-Sobolev condition of the optimal

7
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solution µ∗. Instead, our current analysis requires m(t − s;µN
s ) to also satisfy the LSI condition,

which is technically demanding to establish. To our knowledge, similar condition has only been
recently verified in Guillin et al. (2021); Lacker and Flem (2022) for a limited class of interaction
potentials which cannot cover the case of mean-field neural networks.

To overcome this difficulty, we impose a stronger-than-quadratic tail growth condition on the regu-
larizer, i.e., r(x) = Ω(∥x∥2+δ) (see third point in Assumption 1). Under this assumption, we can
show that the proximal Gibbs measure µ̃τ associated with µτ = m(τ + s;µN

s ) satisfies the super
logarithmic Sobolev inequality defined below.
Definition 2 (super logarithmic Sobolev inequality (super LSI)). We say that a probability measure
µ satisfies super log-Sobolev inequality if there exists a monotonically non-increasing function β :
(0,∞)→ R such that for any ϕ satisfying Eµ[ϕ

2] = 1 and Eµ[∥∇ϕ∥2] <∞, it holds that

µ(ϕ2 log ϕ2) ≤ r
∫
∥∇ϕ∥2dµ+ β(r) (∀r > 0).

It is known that super LSI implies LSI if there exists r > 0 such that β(r) = 0.
Lemma 2. For any µ ∈ P , the probability measure µ̃ corresponding to the proximal Gibbs density
pµ satisfies the super log-Sobolev inequality with β(r) = C ′ − 4+2δ

δ log(r/2) with a constant
C ′ > 0. Furthermore, it satisfies the log-Sobolev inequality with LSI constant α̃ = exp(− δC′

4+2δ ).

The proof is given in Appendix B.3. An important consequence of this lemma is that µt and µ̃t have
a bounded density ratio when t is sufficiently large. This implies that many properties of µ̃t are also
inherited by µt. Crucially, the bound on density ratio is strong enough for the LSI condition to be
transferred from µ̃t to µt, which allows us to establish the exponential convergence of d(1)i and d(2)i,j .

Corollary 1. Under Assumption 1, there exists some T0 > 0 depending on d,B, δ, α, λ, cr, Cr and
Q̃0 depending on W2(µ0, µ

∗) such that for all t ≥ T0 + Q̃0 we have

1√
2
≤
∣∣∣∣dµt

dµ̃t
(x)

∣∣∣∣ ≤ √2 (∀x ∈ Rd),

∥∥∥∥dµt

dµ̃t
− 1

∥∥∥∥
∞
≤ C ′ exp(−αλ(t− T0)),

where C ′ is some positive constant. Moreover, for t ≥ T0 + Q̃0, µt satisfies (α/2)-LSI.

Uniform-in-time propagation of chaos. Equipped with the LSI condition on µt, we can now
control term (II) in the error decomposition by proving exponential convergence of d(1)i and d(2)i,j .
In particular, LSI implies the Poincaré inequality which then roughly ensures the KL-divergence
behaves like a strongly convex function around µt. Therefore, a small perturbation from µt expo-
nentially converges to 0 as t grows, which entails the fast convergence of d(1)i and d(2)i,j because these
quantities represent infinitesimal displacement of µt.
Theorem 2 (Uniform Propagation of Chaos). Suppose that the support of µ0 is bounded. Then for
any 0 < s < t and 1 ≤ i ≤ d, it holds that

E
[∫ (

∂(x1)i∂(x2)i

δ2U
δµ2

(t− s, µN
s )(x, x)

)
µN
s (dx)

]
= O(exp(−λα(t− s− T0)/2)),

with some constant T0 > 0. This implies that

E[U(0, µN
t )− U(t, µN

0 )] = O
(
N−1

)
.

The proof of this theorem can be found in Appendix C.6. In addition, note that the informal theorem
stated in Section 1 is a direct consequence of the above theorem (see Corollary 7 for details).

5.3 PUTTING THINGS TOGETHER

By combining the previous calculations, we arrive at the following characterization on the difference
between the finite-width neural network and the optimal (infinite-width) solution µ∗.
Corollary 2. Under Assumption 1, if the initial distribution µ0 has bounded support, then we have

E[U(0, µN
t )]− Φ(µ∗) ≤ C1N

−1 + C2

√
2α−1ψ2(τ0) exp(−αλ(t− τ0)),

for some constants C1, C2 and any τ0 > 0.

8
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Noticeably, since both Theorem 1 and Theorem 2 do not require sufficiently large regularizations,
our finite-particle guarantee holds for any choice of regularization strength λ, λ1; in contrast, prior
works on uniform propagation of chaos typically assume weak interaction or large noise, which
limits the applicability to the optimization of neural networks in the mean-field regime.

As an important consequence of our general convergence guarantee, we know that the finite particle
dynamics also exhibits a similar decay of the training and test losses compared to the continuous
limit up to a O(1/N) discretization error; this can be straightforwardly checked by considering the
special setting where Φ(µ) = E(Z,Y )∼P [ℓ(fµ(Z), Y )] (see Example 1).

Remark 1. Our current convergence result holds in expectation. To obtain a high probability state-
ment, as discussed in Arnaudon and Del Moral (2020), one may apply a martingale concentra-
tion inequality (e.g., see Lemma 3.2 of Nishiyama (1997)) to obtain a guarantee in the form of
U(0, µN

t )− U(t, µN
0 )− E[U(0, µN

t )− U(t, µN
0 )] = c

√
log(ϵ−1)/N with probability 1− ϵ.

6 NUMERICAL EXPERIMENTS

100 101 102 103

number of steps

10 2

4 × 10 3

6 × 10 3

2 × 10 2

te
st

 e
rro

r

M = 16
M = 2048

*  (PDA)

Figure 2: Test error of NNs optimized
by NPGD (r(x) = ∥x∥2). Solid curve:
mean over 100 runs. Translucent curve:
individual runs.

We provide empirical support for our propagation of chaos
result in a synthetic student-teacher setting. We consider
the empirical risk minimization problem, where the training
labels are generated by a teacher model which is a Gaus-
sian function defined as f∗(z) = exp

(
−∥z−a∥2

2d

)
. We set

n = 2000, d = 20. The loss is chosen to be the squared
error, and for the regularization term we set r(x) = ∥x∥2
or r(x) = ∥x∥4, and the regularization strength λ1 =
λ = 10−2. The student model is a two-layer neural net-
work with tanh activation, and the width N is taken to
be {16, 32, 64, 128, 256, 512, 1024, 2048}. We optimize the
student model using NPGD with step size η = 10−2. The
global optimal solution µ∗ is approximated via the particle
dual averaging (PDA) algorithm (Nitanda et al., 2021): we
set the model width N = 2048 and number of outer loop steps T = 250; we scale the number of
inner loop steps Tt with t, and the step size ηt with 1/

√
t, where t is the outer loop iteration.

For the figures, we report the training or test error without the regularization terms. In Figure 1 in
the Introduction, we plot the training error for r(x) = ∥x∥4; whereas in Figure 2, we plot the test
error for r(x) = ∥x∥2. Observe that even though our current theoretical analysis does not cover the
latter setting, the empirical trends are almost identical: as the width N increases, the performance
of the finite-width network improves and approaches that of the (approximate) optimal solution µ∗.

7 CONCLUSION

In this paper, we established the first uniform-in-time propagation of chaos for the mean-field
Langevin dynamics in the context of neural network optimization. In contrast to most existing
works, our analysis gives a quantitative discretization error and does not blow up through time, and
we do not impose the commonly-assumed weak interaction condition. This is achieved by utilizing
a super logarithmic Sobolev inequality that is satisfied by a regularization term with super-quadratic
tail. This condition then enables us to establish good isoperimetry of the intermediate solution µt,
which gives an exponential convergence of the error propagation.

Limitations and future directions. Our current analysis requires a super-quadratic tail of the
regularization term, which does not cover the commonly-used ℓ2 regularization (weight decay). We
note that after our initial submission, Chen et al. (2022a) developed a different proof technique based
on the tensorization of LSI which handles the case of quadratic regularization. Another important
future direction is to extend the analysis discrete-time dynamics. Finally, the mean-field Langevin
dynamics has found applications beyond neural network optimization (Chizat et al., 2022); hence
we are optimistic that our technique can provide finite-particle guarantee for interacting particle
algorithms in other applications.
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M. Arnaudon and P. Del Moral. A second order analysis of Mckean–Vlasov semigroups. The Annals
of Applied Probability, 30(6):2613–2664, 2020.

J. Ba, M. A. Erdogdu, T. Suzuki, Z. Wang, D. Wu, and G. Yang. High-dimensional asymptotics
of feature learning: How one gradient step improves the representation. In Advances in Neural
Information Processing Systems, 2022.
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—————————— Appendix ——————————

A ADDITIONAL RELATED WORKS

A.1 OPTIMIZATION OF MEAN-FIELD NEURAL NETWORKS

Mean-field analysis of two-layer neural networks describes the optimization dynamics as a partial
differential equation (PDE) of the parameter distribution, from which convergence to the global op-
timal solution can be shown (Nitanda and Suzuki, 2017; Chizat and Bach, 2018; Mei et al., 2018;
Rotskoff and Vanden-Eijnden, 2018). However, quantitative convergence results usually requires
additional assumptions on the learning problem (Chizat, 2019; Akiyama and Suzuki, 2021; Chen
et al., 2022b), or modification of the dynamics (Rotskoff et al., 2019; Wei et al., 2019). For the
entropy-regularized objective (5), efficient optimization algorithms have been proposed in Nitanda
et al. (2021); Oko et al. (2022); Nishikawa et al.; noticeably, the quantitative convergence rate guar-
antees for these particle-based methods remain valid in both finite-width and discrete-time settings.

If we restrict ourselves the standard gradient descent-based methods, then fluctuation around the
mean-field limit has been studied in Rotskoff and Vanden-Eijnden (2018); Sirignano and Spiliopou-
los (2020); Pham and Nguyen (2021). Closely related to our work are the quantitative propagation
of chaos results for two-layer neural network from De Bortoli et al. (2020); Chen et al. (2020c).
In particular, De Bortoli et al. (2020) studied the impact of learning rate in the stochastic gradient
descent update, but did not provide a convergence rate or uniform control of the discretization error
over time (due to the lack of regularization). Chen et al. (2020c) showed that the long-time fluctua-
tion induced by finite width can be controlled assuming that the mean-field dynamics converges at
a specific rate, but such condition is very challenging to establish in their setting. In contrast, our
result provides a uniform-in-time bound on the finite-width discretization error under conditions that
can be verified for regularized risk minimization problems.

A.2 INTERACTING PARTICLE SYSTEMS AND PROPAGATION OF CHAOS

Propagation of chaos has been analyzed mainly in the context of McKean-Vlasov equations whose
drift term has the form of b(x, µ) = ∇V (x) − ∇

∫
W (·, y)dµ(y)|x. Generally, neural network

optimization is not included in this class, but techniques to analyze such equations can be applied to
the neural network setting. Many existing works analyze the discretization error in a bounded time
horizon (see Lacker (2021) and references therein). That is, for a fixed time horizon T , it has been
shown that supt∈[0,T ] |Ψ(µN

t )−Ψ(µt)| ≤ CT /N . However, the constant CT depends on T and the
dependency is often exponential.

To obtain a uniform in time control, there are roughly two approaches: (i) the uniform log-Sobolev
(or Poincaré) inequality approach, and (ii) the local Taylor expansion approach. The first approach
(i) directly derives the LSI constant of the N -particle dynamics (X = (Xi

t)
N
i=1) and show that the

constant can be bounded from below uniformly over all N . For example, Guillin et al. (2022) (see
also references therein) established a uniform LSI constant under a weak interaction assumption.
Ren and Wang (2021); Delgadino et al. (2021) showed geometric ergodicity based on a similar
evaluation. Salem (2018) considered a uniform WJ-inequality instead of the log-Sobolev inequality
also based on weak interaction conditions. The second approach (ii) is what we employed; in
particular, we follow the framework developed in Arnaudon and Del Moral (2020); Delarue and
Tse (2021). In addition, Durmus et al. (2020) devised a different technique using a sophisticated
coupling argument. We note that these prior results all assume weak interaction between particles
to establish a uniform-in-time evaluation, and thus cannot be applied to the neural network setting.

B BASIC PROPERTIES OF THE SOLUTION

B.1 BOUNDEDNESS AND UNIQUENESS OF THE SOLUTION

Proposition 3 (Theorem 2.1 and Corollary 4.3 of Wang (2018), adapted). Suppose that there exist
K1,K2,K3 ∈ C([0,∞); (0,∞)) such that
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• −2⟨b(x, µ)−b(y, ν), x−y⟩ ≤ K1(t)∥x−y∥2+K2(t)W2(µ, ν)∥x−y∥ for any x, y ∈ Rd,
t ≥ 0 and µ, ν ∈ P2,

• ∥b(0, µ)∥2 ≤ K3(t){1 + µ(∥ · ∥2)} for any µ ∈ P2 and t ≥ 0.

Then, the mean-filed Langevin dynamics (3) has a unique strong solution.

Moreover, for two different solutions X(1)
t and X(2)

t with different initial distributions µ(1)
0 , µ

(2)
0 ∈

P2, the corresponding laws µ(k)
t = Law(X

(k)
t ) (k = 1, 2) are equivalent for t > 0 and satisfy the

following contraction property:

W2(µ
(1)
t , µ

(2)
t )2 ≤ ψ1(t)W2(µ

(1)
0 , µ

(2)
0 )2, KL(µ

(1)
t , µ

(2)
t ) ≤ ψ2(t)W2(µ

(1)
0 , µ

(2)
0 )2, (9)

for t > 0, where ψj : (0,∞) → [0,∞) (j = 1, 2) depends only on K1,K2,K3, λ and is an
increasing function.

Note that it is possible that limt→0 ψ2(t) =∞. Indeed, ψ2(t) is given as

ψ2(t) =
1

2λ

(
K1(t)

1− e−K1(t)t
+
tK2(t) exp(2t(K1(t) +K2(t))))

2

)
.

As a consequence of this proposition, we obtain the following corollary.
Corollary 3. Under Assumption 1, the mean-filed Langevin dynamics (3) has a unique strong solu-
tion. Moreover, the two distributions µ(1)

t and µ(2)
t corresponding to different initial distributions in

P2 are equivalent and satisfy the contraction property (9).

In particular, µt is equivalent to µ∗ and hence is equivalent to the Lebesgue measure. Therefore,
µt has a density that is positive for all x ∈ Rd, and if µ0 ∈ P2, then the density of µt satisfies
(t, x) 7→ dµt

dx (x) ∈ C1,∞((0,∞)× Rd,R).

Proof. Let H(x, µ) = 1
n

∑n
j=1 ℓ

′
j(fµ)hj(x). We just need to check the two conditions in Proposi-

tion 3. The first condition can be checked as follows: by noticing the convexity of r, we have

− 2⟨b(x, µ)− b(y, ν), x− y⟩
= −2⟨∇H(x, µ)−∇H(y, ν), x− y⟩ − 2λ1⟨∇r(x)−∇r(y), x− y⟩
= −2⟨∇H(x, µ)−∇H(y, µ), x− y⟩ − 2⟨∇H(y, µ)−∇H(y, ν), x− y⟩
− 2λ1⟨∇r(x)−∇r(y), x− y⟩
≤ 2B2∥x− y∥2 + 2B2∥fµ − fν∥∞∥x− y∥ (∵ Assumption 1 and convexity of r)

≤ 2B2∥x− y∥2 + 2B3W2(µ, ν)∥x− y∥,
which yields the first condition. Next, the second condition can be guaranteed as

∥b(0, µ)∥ ≤ ∥∇H(0, µ)∥+ λ1∥∇r(0)∥ ≤ B2 + λCr.

Therefore, applying Proposition 3, we obtain the first assertion.

As for the second assertion, we first note that µ∗ is an invariant measure of the mean-field Langevin
dynamics. Hence, if µ0 = µ∗, then µt = µ∗ for any t > 0. Moreover, recall that pµ∗ = µ∗

by Proposition 1. Combining these relations, we have µ∗ = pµ∗ = µt (t > 0) when the initial
distribution satisfies µ0 = µ∗. Therefore, µt with a general initial distribution is equivalent to µ∗

by Proposition 3. Finally, (t, x) 7→ dµt

dx (x) ∈ C1,∞((0,∞) × Rd,R) follows from Theorem 5.1 of
Jordan et al. (1998).

In the subsequent analysis, it is important to ensure the boundedness of the moments of Xt. Indeed,
we have the following estimate.
Lemma 3. Under Assumption 1, for any p ≥ 2, E[∥X0∥p] <∞ implies

E

[
sup

t∈[0,T ]

∥Xt∥p
]
<∞

for any T > 0.
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This is a direct consequence of Theorem 2.1 of Wang (2018). Therefore, we have that µt ∈ Pp as
long as µ0 ∈ Pp. Indeed, we are interested in a situation where µ0 = µN

s = 1
N

∑N
i=1 X̂

i
s, and hence

µt ∈ Pp for any p ≥ 2 because a discrete measure has a finite moment for any p ≥ 2.

If p = 2 or p = 2 + δ, we have a sharper uniform bound as follows.
Lemma 4. Under Assumption 1, we have the following uniform boundedness of the moments:

sup
t>0

E[∥Xt∥2] ≤ max

{
1

λ1c(1 + δ/2)

[
B4

λ1c(1 + δ/2)
+ λ1cδ + 2λd

]
,E[∥X0∥2]

}
,

sup
t>0

E[r(Xt)] ≤ max

{
E[r(X0)],

Cr(2+δ)
λ1c2r(1+δ)

[
1

2 + δ

(B2Cr)
2+δ

(λ1cr/2)1+δ
+

(1 + 2δ)λ1cr
2 + δ

+ λCr +
2

2 + δ
(λCr)

(2+δ)/2
(

δ
λcr(1+δ)

)δ/2]}
.

The same bounds also hold with respect to E[∥X̂i
t∥2] and E[r(X̂i

t)].

Proof. Let Ht(x) =
1
n

∑n
j=1 ℓ

′
j(fµt

)hj(x). By the formula of the infinitesimal generator, we have

d

dt
E[∥Xt∥2] = E[−2X⊤

t b(Xt, µt)] + 2λd.

By Young’s inequality, the right hand side can be bounded as

− 2E
[
X⊤

t (∇Ht(Xt) + λ1∇r(Xt))
]
+ 2λd

≤ 2B2E[∥Xt∥]− 2λ1cE[∥Xt∥2+δ] + 2λd

≤ 4B4

4λ1c(1 + δ/2)
+

2λ1c(1 + δ/2)E[∥Xt∥2]
2

+ 2λ1c

{
δ

2
− (1 + δ

2 )E[∥Xt∥2]
}
+ 2λd

≤ B4

λ1c(1 + δ/2)
+ λ1cδ + 2λd− λ1c(1 + δ

2 )E[∥Xt∥2].

Hence, we obtain that

E[∥Xt∥2] ≤
1

λ1c(1 + δ/2)

[
B4

λ1c(1 + δ/2)
+ λ1cδ + 2λd

]
∨ E[∥X0∥2].

In the same vein, we can show the bound for r(Xt) as follows. First note that
d

dt
E[r(Xt)] = E[−∇⊤r(Xt)b(Xt, µt)] + λE[Tr[∇∇⊤r(Xt)]].

By Young’s inequality, the right hand side can be bounded as

− E
[
∇⊤r(Xt) (∇Ht(Xt) + λ1∇r(Xt))

]
+ λCr(1 + E[∥Xt∥δ])

≤ B2E[∥∇r(Xt)∥]− λ1E[∥∇r(Xt)∥2] + λCr(1 + E[∥Xt∥δ])
≤ B2CrE[∥Xt∥1+δ]− λ1crE[∥Xt∥2(1+δ)] + λCr(1 + E[∥Xt∥δ])

≤ 1

2 + δ

(B2Cr)
2+δ

(λ1cr/2)1+δ
+
λ1cr(1 + δ)

2(2 + δ)
E[∥Xt∥2+δ]− λ1cr

{
2(1 + δ)

2 + δ
E[∥Xt∥2+δ]− δ

2 + δ

}
+ λCr +

2

2 + δ
(λCr)

(2+δ)/2

(
δ

λcr(1 + δ)

)δ/2

+
λ1cr(1 + δ)

2(2 + δ)
E[∥Xt∥2+δ]

≤ 1

2 + δ

(B2Cr)
2+δ

(λ1cr/2)1+δ
+
δλ1cr
2 + δ

+ λCr +
2

2 + δ
(λCr)

(2+δ)/2

(
δ

λcr(1 + δ)

)δ/2

− λ1cr(1 + δ)

2 + δ
E[∥Xt∥2+δ]︸ ︷︷ ︸

≥E[r(Xt)]/Cr−1

.

This gives the second bound.

The same argument can be applied to X̂i
t , which concludes the assertion.
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Lemma 5. Under Assumption 1, for µ0 ∈ Pp with p ≥ 2, it holds that

∇ log(µt)(x) = −
1

t
√
2λ

E
[∫ t

0

(I + s∇b(·, µs)|Xs
) · dWs|Xt = x

]
,

and, if p/δ ≥ 1, it also holds that

E[∥∇ log(µt)(Xt)∥p/δ] <∞,

for any t > 0.

Proof. First, note that µ0 ∈ Pp ensures differentiability of µt. The characterization of ∇ log(µt) is
given by the integration by parts formula investigated by Föllmer (1986) (see also Lemma 6.2 of Hu
et al. (2019), Wang (2014) and Theorem 5.1 of Wang (2018)).

As for the moment bound, first we note that

∥∇b(·, µ)|x∥ = O(1 + ∥x∥δ),

by the assumption. Then, by Jensen’s inequality and the moment inequality of stochastic integral
(Kim, 2013), we have that, for q = p/δ,

E[∥∇ log(µt)∥q] ≲
(

1

t
√
2λ

)q

Ct,qE
[∫ t

0

(1 + s∥∇b(·, µs)|Xs
∥)qds

]
≲

(
1

t
√
2λ

)q

Ct,qE
[∫ t

0

(1 + s(1 + ∥Xs∥δ))qds
]
<∞ (∵ Lemma 3),

where Ct,q =
(

q(q−1)
2

)q/2
t
q−2
2 .

According to Lemma 3 and the remark following the lemma, we have µt ∈ Pp for any p ≥ 2
in our situation where µ0 is a discrete measure like µ0 = µN

s . Hence, we may assume
E[∥∇ log(µt)(Xt)∥p] < ∞ for any p ≥ 2. In particular, the Fisher divergence I(µt||µ∗) is well-
defined for any t > 0 (but not defined for t = 0).

B.2 GEOMETRIC ERGODICITY

For µ, ν ∈ P where ν is absolutely continuous with respect to µ and thus can be written as dν =
fdµ, the Fisher divergence of ν with respect to µ is defined as

I(ν||µ) = 4

∫
∥∇
√
f∥2dµ =

∫
∥∇ log(f)∥2dν.

Proposition 4 (Geometric ergodicity of the mean-field Langevin dynamics (Nitanda et al., 2022;
Chizat, 2022)).

L(µt)− L(µ∗) ≤ exp(−2αλt)(L(µ0)− L(µ∗)).

λKL(µ||µ∗) ≤ L(µ)− L(µ∗) ≤ λKL(µ||pµ).

Although Nitanda et al. (2022); Chizat (2022) assumed r(x) = Θ(∥x∥2), we can adapt the same
argument also to our situation. Indeed, the quadraticity of the regularization term is used to ensure
the well-posedness of the solution, and in our setting this is ensured by Corollary 3, which yields
the assertion of the proposition.

Combining Corollary 3 and Propositions 4, we obtain the following corollary.
Corollary 4. Under Assumption 1, for any initial condition µ0 ∈ P with W2(µ0, µ

∗) <∞, it holds
that L(µt) <∞, and

L(µt)− L(µ∗) ≤ exp(−2αλ(t− τ0))λψ2(τ0)W2(µ0, µ
∗)2,

KL(µt, µ
∗) ≤ exp(−2αλ(t− τ0))ψ2(τ0)W2(µ0, µ

∗)2,

for any t > τ0 where τ0 > 0 can be arbitrary.
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Proof. We know that µ∗ = pµ∗ = µt (t > 0) when the initial distribution is µ0 = µ∗ from the proof
of Corollary 3. Plugging this relation into Corollary 3 and Propositions 4 gives the assertion.

As remarked in Section 5, in the convergence analysis we need to assume an LSI (or Poincaré
inequality) on µt instead of µ̃t. This is not generally ensured. However, we can verify this condition
if the semi-group satisfies the super log-Sobolev inequality. Indeed, the super log-Sobolev inequality
entails the ultra-contractivity yielding an L∞-convergence of the density ratio between µt and µ̃t.
This is remarkably useful to transfer the LSI property of µ̃t to µt.

B.3 SUPER LOGARITHMIC SOBOLEV INEQUALITY

Definition 3 (super log-Sobolev inequality (super LSI)). We say that a probability measure µ
satisfies super log-Sobolev inequality if there exits a monotonically non-increasing function β :
(0,∞)→ R such that

µ(f2 log f2) ≤ r
∫
∇f · ∇fdµ+ β(r) (∀r > 0, ∀f ∈ D(E), µ(f2) = 1).

Proposition 5. If a probability measure µ is given by µ = exp(−V ) where V (x) = λ1r(x)+H(x)
with a convex function r : Rd → R satisfying λ1∇r(x) · x ≥ c∥x∥2+δ for δ > 0 and h : Rd → R
satisfying ∥∇H∥∞ ≤ C < ∞, then µ satisfies the super log-Sobolev inequality with β(r) =
C ′− 4+2δ

δ log(r/2) where C ′ > 0 is a constant depending on d, c, C, δ. In particular, it satisfies the
log-Sobolev inequality with a constant α′ > 0 such that β(2/α′) = 0.

Proof. This can be proven by adapting Corollary 5.7.5 of Wang (2005). Let Pt be the semigroup
that corresponds to the generator L∗ϕ = ∆ϕ−∇V · ∇ϕ. Then, we have that

L∗∥x∥2 = d− (λ1∇r +∇H) · (2x)
≤ d− 2c∥x∥2+δ + 2∥∇H∥∞∥x∥

≤ d− 2c∥x∥2+δ + c∥x∥2+δ +
∥∇H∥

2+δ
δ∞

c
(∵ Young’s inequality)

= d+
C

2+δ
δ

c
− c∥x∥2+δ.

Corollary 5.7.5 of Wang (2005) implies that

∥Pt∥L2(µ)→L∞(µ) ≤ exp[c′t−(1+δ/2)/(δ/2)] = exp[c′t−(2+δ)/δ],

for a constant c′ > 0 depending on d, c, C. Indeed, (5.7.9) of Wang (2005) holds for c← d+ C
2+δ
δ

c

and γ(r)← cr1+δ/2 in their notations, which yields the bound.

Then, Theorem 5.1.7 of Wang (2005) states that the super log-Sobolev inequality holds for β(r) =
2 log ∥Pr/2∥L2(µ)→L∞(µ) ≤ 2 log(c′)− 2 2+δ

δ log(r/2). By resetting C ′ ← 2 log(c′), we obtain the
assertion.

Due to our assumption on the regularization term in Assumption 1, we know that the proximal Gibbs
measure satisfies the super LSI condition.
Corollary 5. µ̃t satisfies the super log-Sobolev inequality with β(r) = C ′ − 4+2δ

δ log(r/2). In
addition, it satisfies the log-Sobolev inequality with the LSI-constant α̃ = exp(− δC′

4+2δ ).

Let Ps,t (s < t) be the semigroup associated with Xt, i.e., (Ps,tf)(x) = E[f(Xt)|Xs = x] and
µsPs,tf = µtf .
Theorem 3. There exists t0 ∈ (0, 1] such that

∥Ps,s+t0∥L2(µ̃s+t0 )→L∞(µ̃s) ≤ exp

[∫ ∞

2

β (1/p)

p2
dp+ Ct0

]
for some constantC > 0. In particular, there existsC0 > 0 such that ∥Ps,s+t0∥L2(µ̃s+t0 )→L∞(µ̃s) ≤
C0 <∞ uniformly over s > 0.
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Proof. We first note that

µ̃t(f
p log(f)) ≤ −rµ̃t(f

p−1L∗
µt
f) + β

(
4(p− 1)r

p

)
p−1µ̃t(f

p) + µ̃t(f
p) log(∥f∥Lp(µ̃t)). (10)

for all f ∈ D(L∗
µt
) such that f ≥ 0 (which we denote as f ∈ D+), 2 < p <∞, r > 0 (by definition

the invariant measure corresponding to L∗
µt

is µ̃t, i.e., Lµt µ̃t = 0).

Let t0 :=
∫∞
2

γ(p)
p dp ≤ 1 for γ(p) = 1

2p . We define p(τ) and N(τ) as functions on [0, t) such that

p′(τ) =
p(τ)

γ ◦ p(τ)
, p(0) = 2,

N ′(τ) =
p′(τ)β

(
4(p(τ)−1)γ◦p(τ)

p(τ)

)
p(τ)2

, N(0) = 0.

Then, for f ∈ D+, if we rewrite s← s+ t0, one has

d

dτ
∥Ps−τ,sf∥Lp(τ)(µ̃s−τ )

=
µ̃s−τ (

d
dτ (Ps−τ,sf)

p(τ))

p(τ)∥Ps−τ,sf∥p(τ)−1
p(τ)

− p′(τ)

p(τ)
∥Ps−τ,sf∥Lp(τ)(µ̃s−τ ) log(∥Ps−τ,sf∥Lp(τ)(µ̃s−τ ))

+
1

p(τ)
∥Ps−τ,sf∥1−p(τ)

Lp(τ)(µ̃s−τ )

∫
|Ps−τ,sf |p(τ)

d

dτ
µ̃s−τdx. (11)

The last term of the right hand side can be bounded as

1

p(τ)
∥Ps−τ,sf∥1−p(τ)

Lp(τ)(µ̃s−τ )

∫
|Ps−τ,sf |p(τ)

d

dτ
µ̃s−τdx

≤ 1

p(τ)
∥Ps−τ,sf∥1−p(τ)

Lp(τ)(µ̃s−τ )

∫
|Ps−τ,sf |p(τ)

∣∣∣∣∣∣ 1n
n∑

j=1

ℓ′′j (fµs−τ
)hj(·)µs−τ (L

∗
µs−τ

hj)

∣∣∣∣∣∣ µ̃s−τdx

≤C 1

p(τ)
∥Ps−τ,sf∥1−p(τ)

Lp(τ)(µ̃s−τ )

∫
|Ps−τ,sf |p(τ)µ̃s−τdx = C

∥Ps−τ,sf∥Lp(τ)(µ̃s−τ )

p(τ)
. (12)

By the backward Kolmogorov equation, and combining these inequalities (11) and (12) with the
super log-Sobolev inequality (10), we have

d

dτ
(e−N(τ)∥Ps−τ,sf∥Lp(τ)(µ̃s−τ ))

=
p′(τ)e−N(s)

p(τ)∥Ps,s−τf∥p(τ)−1

Lp(τ)(µ̃s−τ )

{
µ̃s−τ ((Ps−τ,sf)

p(τ) logPs−τ,sf)

+
p(τ)

p′(τ)
µ̃s−τ ((Ps−τ,sf)

p(τ)−1L∗
µs−τ

Ps−τ,sf)

− N ′(τ)p(τ)

p′(τ)
µ̃s−τ ((Ps−τ,sf)

p(τ))− µ̃s−τ ((Ps−τ,sf)
p(τ)) log ∥Ps−τ,sf∥Lp(τ)(µ̃s−τ )

}
+ e−N(τ) 1

p(τ)
∥Ps−τ,sf∥1−p(τ)

Lp(τ)(µ̃s−τ )

∫
|Ps−τ,sf |p(τ)

d

dτ
µ̃s−τdx

≤ C 1

p(τ)
e−N(τ)∥Ps−τ,sf∥Lp(τ)(µ̃s−τ ).

Hence, we obtain that

∥Ps−τ,sf∥Lp(τ)(µ̃s−τ ) ≤ e
N(τ)+C

∫ τ
0

p(τ ′)−1dτ ′
∥f∥L2(µ̃s) ≤ e

N(τ)+Cτ∥f∥L2(µ̃s).

Here, notice that ∫ p(s−t0)

2

γ(p)

p
dp =

∫ t0

0

p′(τ)γ(p(τ))

p(τ)
dτ =

∫ t0

0

1dτ = t0.
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On the other hand, since we also have t0 =
∫∞
2

γ(p)
p dp by its definition, it must be the case that

limτ↗t0 p(τ) =∞ and hence

lim
τ↗t0

N(τ) =

∫ ∞

2

β
(

4(p−1)γ(p)
p

)
p2

dp ≤
∫ ∞

2

β (2γ(p))

p2
dp.

This yields the first assertion. By Corollary 5 we can see that
∫∞
2

β(2γ(p))
p2 dp =

∫∞
2

β(1/p)
p2 dp ≲∫∞

2
1+log(p)

p2 dp =: C0 <∞. This yields the second assertion.

Let p(t, x, y) be the density function of the distribution Xt conditioned by X0 = x ∈ supp(µ0)

with respect to µ̃t, i.e., p(t, x, y) =
dP∗

0,t(δx)

dµ̃t
(y). Then, we have that∣∣∣∣∫ (p(t+ t0, x, y)− 1)f(y)dµ̃t+t0(dy)

∣∣∣∣ ≤ |P0,t0 · Pt0,t+t0(f − µ̃t+t0f)(x)|

≤C0∥Pt0,t+t0f − µ̃t+t0f∥L2(µ̃t0 )
, (13)

where we used the bound ∥P0,t0∥L2(µ̃t0
)→L∞(µ̃0) ≤ C0 and the fact that the support of µ̃0 is the

whole space Rd. We will show that the right hand side converges to 0 in an exponential order by
taking its differentiation with respect to s:

∂s∥Ps,tf − µ̃tf∥2L2(µ̃s)
= 2

∫
∂s(Ps,tf − µ̃tf)(Ps,tf − µ̃tf)dµ̃s +

∫
(Ps,tf − µ̃tf)

2∂sµ̃sdx.

We evaluate each term as follows.

(i) The second term in the right hand side can be evaluated as∣∣∣∣∫ (Ps,tf − µ̃tf)
2∂sµ̃sdx

∣∣∣∣
≤

∣∣∣∣∣∣
∫
(Ps,tf − µ̃tf)

2

 1

n

n∑
j=1

ℓ′′j (fµs
)hj(·)∂sµs(hj)

 µ̃sdx

∣∣∣∣∣∣
≤ C

∫
(Ps,tf − µ̃tf)

2µ̃sdx ·
1

n

n∑
j=1

|∂sµs(hj)|

≤ C
∫
(Ps,tf − µ̃tf)

2µ̃sdx ·
1

n

n∑
j=1

∣∣∣∣∫ ∇hj(∇ log(µs)−∇ log(µ̃s))dµs

∣∣∣∣
≤ C2∥Ps,tf − µ̃tf∥2L2(µ̃s)

√
I(µs||µ̃s). (14)

(ii) Next, we evaluate the first term. By the Poincaré inequality (PI), we have that∫
∂s(Ps,tf − µ̃tf)(Ps,tf − µ̃tf)dµ̃s

= −
∫
L∗
µs
(Ps,tf)(Ps,tf − µ̃tf)dµ̃s

=

∫
λ∥∇Ps,tf∥2dµ̃s

≥ λα∥Ps,tf + µ̃s(Ps,tf)∥2L2(µ̃s)
= λα∥Ps,tf − µ̃tf + µ̃tf − µ̃s(Ps,tf)∥2L2(µ̃s)

= λα[∥Ps,tf − µ̃tf∥2L2(µ̃s)
+ 2µ̃s(Ps,tf − µ̃tf)(µ̃tf − µ̃s(Ps,tf)) + (µ̃tf − µ̃s(Ps,tf))

2]

= λα[∥Ps,tf − µ̃tf∥2L2(µ̃s)
− 2(µ̃s(Ps,tf)− µ̃tf)

2 + (µ̃tf − µ̃t(Ps,tf))
2]

= λα[∥Ps,tf − µ̃tf∥2L2(µ̃s)
− (µ̃s(Ps,tf)− µ̃tf)

2]

= λα∥Ps,tf − µ̃tf∥2L2(µ̃s)
− λα(µ̃s(Ps,tf)− µ̃tf)

2.
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Denote the total variation norm of two probability measures µ and ν by ∥µ− ν∥TV, we notice that,
if t− s ≥ t0, it holds that

|µ̃s(Ps,tf)− µ̃tf |
≤ |(P ∗

s,t−t0 µ̃s − µ̃t−t0)(Pt−t0,tf)− (µ̃t − P ∗
t−t0,tµ̃t−t0)f |

≤ ∥P ∗
s,t−t0 µ̃s − µ̃t−t0∥TV∥Pt−t0,tf∥L∞ + |(µ̃t − P ∗

t−t0,tµ̃t−t0)f |
≤ ∥P ∗

s,t−t0 µ̃s − µ̃t−t0∥TV∥Pt−t0,t∥L2(µ̃t)→L∞(µ̃t−t0
)∥f∥L2(µ̃t) + |(µ̃t − P ∗

t−t0,tµ̃t−t0)f |
≤ C0∥P ∗

s,t−t0 µ̃s − µ̃t−t0∥TV∥f∥L2(µ̃t) + |µ̃tf − µ̃t−t0(Pt−t0,tf)|, (15)

and, if t − s < t0, the same bound without the first term in the right hand side holds. By Pinsker’s
inequality ∥µ− ν∥TV ≤

√
KL(µ||ν)/2, we have that

∥µ̃s − µ∗∥TV ≤
√

KL(µ̃s||µ∗)/2

=
1√
2

[∫
λ−1

(
δF (µ∗)

δµ
(·)− δF (µs)

δµ
(·)
)
dµ̃s + log(Z(µ∗)/Z(µ̃s))

]1/2
≤ 1√

λ

√
sup
x
| δF (µ∗)

δµ (x)− δF (µs)
δµ (x)|

≤ C√
λ

√
∥fµs

− fµ∗∥∞ ≤ C ′ exp(−αλs)W2(µ0, µ
∗), (16)

where C ′ > 0 is a constant depending on τ0, α, λ. Moreover, if we let µ̂τ = P ∗
s,τ µ̃s, then

∂τKL(µ̂τ ||µ∗) =

∫
log(µ̂τ/µ

∗)∂τ µ̂τdx

=

∫
(λ∆− b⊤τ ∇) log(µ̂τ/µ

∗)µ̂τdx

=

∫
(−λ∇ log(µ̂τ )− bτ )∇ log(µ̂τ/µ

∗)µ̂τdx

= −λ
∫
∥∇ log(µ̂τ )−∇ log(µ∗)∥2dµ̂τ

− λ
∫
(∇ log(µ∗) + λ−1bτ )

⊤(∇ log(µ̂τ )−∇ log(µ∗))dµ̂τ

= −λ
∫
∥∇ log(µ̂τ )−∇ log(µ∗)∥2dµ̂τ

− λ
∫
(∇ log(µ∗)−∇ log(µ̃τ ))

⊤(∇ log(µ̂τ )−∇ log(µ∗))dµ̂τ

= −λ
2

∫
∥∇ log(µ̂τ )−∇ log(µ∗)∥2dµ̂τ +

λ

2

∫
∥∇ log(µ̃τ )−∇ log(µ∗)∥2dµ̂τ

≤ −λαKL(µ̂τ ||µ∗) + sup
x
∥∇ log(µ̃τ )(x)−∇ log(µ∗)(x)∥2

≤ −λαKL(µ̂τ ||µ∗) + C ′ exp(−2αλτ)W2(µ0, µ
∗)2,

where we used the same argument as Eq. (16) in the first inequality. This evaluation, together with
the bound of KL(µ̃s||µ∗) in Eq. (16), implies that

KL(µ̂τ ||µ∗) ≤ C ′ max{exp(−λα(τ − s))KL(µ̃s||µ∗), exp(−2αλτ)W2(µ0, µ
∗)2}

≤ C ′ exp(−αλ[(τ − s) + 2s])W2(µ0, µ
∗)2.

Therefore,

∥P ∗
s,t−t0 µ̃s − µ̃t−t0∥TV ≤ ∥P ∗

s,t−t0 µ̃s − µ∗∥TV + ∥µ∗ − µ̃t−t0∥TV

≲ exp(−αλ[(t− t0 − s)/2 + s])W2(µ0, µ
∗).

Next, we evaluate the second term of the right hand side of Eq. (15), |µ̃tf − µ̃t−t0(Pt−t0,tf)|. We
notice that∣∣∣∣∂s ∫ (Ps,tf)µ̃sdx

∣∣∣∣ = ∣∣∣∣∫ [(λ∆− b⊤s ∇)(Ps,tf)]µ̃sdx+

∫
(Ps,tf)∂sµ̃sdx

∣∣∣∣
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=

∣∣∣∣∫ (−λ∇ log(µ̃s)− bs)⊤∇(Ps,tf)µ̃sdx+

∫
(Ps,tf)∂sµ̃sdx

∣∣∣∣
=

∣∣∣∣∫ (Ps,tf)∂sµ̃sdx

∣∣∣∣
≤ C

∫
|Ps,tf |µ̃sdx

√
I(µs||µ̃s) ≲ ∥f∥L2(µ̃s)

√
I(µs||µ̃s),

where the first inequality is obtained by the same argument as (14) and the last inequality is by
Theorem 3 and the fact that the density ratio between µ̃τ and µ̃τ ′ are bounded from above and below
for any τ, τ ′ because of the boundedness of δF

δµ . Hence, as in Eq. (22) and Eq. (23) below, we have

|µ̃t−t0(Pt−t0,tf)− µ̃tf |

≤ C
∫ t

t−t0

√
I(µs||µ̃s)ds∥f∥L2(µ̃t−t0

)

≤ C 1

λ

√
t0 exp(−αλ(t− t0 − τ0))(1 +

√
ψ2(τ0)W2(µ0, µ

∗))∥f∥L2(µ̃t−t0 )
.

Therefore, by applying these bounds to the right hand side of Eq. (15), we arrive at

(µ̃s(Ps,tf)− µ̃tf)
2 ≤ C exp(−λα(t− s+ 2s))(1 +W2(µ0, µ

∗))2∥f∥2L2(µ̃t)
.

(iii) Finally, by combining the bounds of (i) and (ii), we obtain that

∂s∥Ps,tf − µ̃tf∥2L2(µ̃s)

≥ 2λα∥Ps,tf − µ̃tf∥2L2(µ̃s)
− Cλα exp(−λα(t+ s))(1 +W2(µ0, µ

∗))2∥f∥2L2(µ̃t)

− C∥Ps,tf − µ̃tf∥2L2(µ̃s)

√
I(µs||µ̃s),

which yields that, by taking the differentiation with respect to s in the reverse direction,

∂s∥Pt−s,tf − µ̃tf∥2L2(µ̃t−s)

≤ −(2λα− C
√
I(µt−s||µ̃t−s))∥Pt−s,tf − µ̃tf∥2L2(µ̃t−s)

+ Cλα exp(−λα(t+ s))(1 +W2(µ0, µ
∗))2∥f∥2L2(µ̃t)

,

and thus, if we write Ct = C
∫ t

t0

√
I(µs||µ̃s)ds,

∥Pt0,t+t0f − µ̃t+2t0f∥2L2(µ̃t0
)

≤ exp(−2λαt+ Ct+t0)∥Pt+t0,t+t0f − µ̃t+t0f∥2L2(µ̃t+t0 )

+ λαC

∫ t+t0

t0

exp(−λα(t+ s))(1 +W2(µ0, µ
∗))2∥f∥2L2(µ̃t+t0

)e
−2λα(t−s)+Ct+t0−Csds

≤ exp(−2λαt)∥f∥2L2(µ̃t+t0
) exp(Ct+t0)[1 + C(1 +W2(µ0, µ

∗))2].

As in Eq. (23) below, the right hand side can be bounded by

C1 exp(−2λαt)∥f∥2L2(µ̃t+t0 )
(1 +W2(µ0, µ

∗)2) exp(C2(1 +W2(µ0, µ
∗)))

for constants C1 and C2. This is further bounded

C3 exp(−2λαt) exp(C4(1 +W2(µ0, µ
∗)))∥f∥2L2(µ̃t+t0 )

with constants C3 and C4. Therefore, we arrive at

∥Pt0,t+t0f − µ̃t+t0f∥L2(µ̃t0 )
≲ exp(−αλt) exp(C ′

4(1 +W2(µ0, µ
∗)))∥f∥L2(µ̃t+t0 )

,

where we used that the density ratio between µ̃τ and µ̃τ ′ are bounded from above and below for any
τ, τ ′ because of the boundedness of δF

δµ and C ′
4 = C4/2.

Therefore, by applying this bound to the right hand side of (13), we have that

sup
x,y
|p(t+ t0, x, y)− 1| ≤ C ′ exp(−αλt)Q̂0, (17)
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for a constantC ′ and Q̂0 = exp(C ′
4(1+W2(µ0, µ

∗))), which can be checked by noticing the density
of µt is smooth and taking f(x) = 1{∥x − x′∥ ≤ ϵ} for arbitrary x′ ∈ Rd and letting ϵ → 0. This
indicates that the density function of µt with respect to µ̃t satisfies∥∥∥∥dµt

dµ̃t
− 1

∥∥∥∥
∞
≤ C ′ exp(−αλ(t− t0))Q̂0.

Importantly, this observation indicates that µt satisfies the (α/2)-LSI for sufficiently large t such as
C ′ exp(−αλ(t− t0))Q̂0 ≤ min{

√
2− 1, 1− 1/

√
2} via the Holley-Stroock bounded perturbation

principle (e.g., Proposition 5.1.6 of Bakry et al. (2014)).
Corollary 6. Under Assumption 1, there exits T0 depending on d,B, δ, α, λ, cr, Cr such that µt

satisfies the (α/2)-LSI condition for t ≥ T0 + log(Q̂0)/αλ. Moreover,
1√
2
≤
∣∣∣∣dµt

dµ̃t
(x)

∣∣∣∣ ≤ √2, ∥∥∥∥dµt

dµ̃t
− 1

∥∥∥∥
∞
≤ C ′ exp(−αλ(t− T0))Q̂0,

for all t ≥ T0 + log(Q̂0)/αλ, where C ′ is a constant.

By setting Q̃0 = log(Q̂0)/αλ, we obtain Corollary 1 in the main text.

C COMPUTATION OF ERROR TERMS

C.1 DYNAMICS OF THE DERIVATIVE TERMS

Recall that d(1)i and d(2)i,j are linear operators defined by

d
(1)
i (t;µ0, ξ, x1)(ϕ) = ∂(x1)i

δ
δµ (m(t; ·)(ϕ))|µ0

(x1),

d
(2)
i,j (t;µ0, x1, x2)(ϕ) = ∂(x1)i∂(x2)j

δ2

δµ2 (m(t; ·)(ϕ))|µ0
(x1, x2),

for a smooth test function ϕ : Rd → R, where m(t, µ)(ϕ) =
∫
ϕ(x)dm(t, µ)(x).

Given a linear operator q, we introduce a differential operator Lµ as follows,

Lµq = λ∆q +∇ · (b(·, µ)q) +∇ ·
(
µ δb

δµ (·, µ)(q)
)
,

which is defined in a weak sense, i.e., (Lµq)(ϕ) = q(L∗
µϕ) = q(λ∆ϕ−b(·, µ) ·∇ϕ−

∫
δb
δµ (y, µ)(·) ·

∇ϕ(y)µ(dy)) for a test function ϕ : Rd → R with appropriate regularity condition. Following
Delarue and Tse (2021), we know that these operators obey the following dynamics.

Proposition 6. d(1)i and d(2)i,j follows the following differential equation: for t > 0,{
∂td

(1)
i (t;µ, x) = Lm(t,µ)d

(1)
i (t;µ, x),

d
(1)
i (0;µ, x) = (D′

x)i,

where (D′
x)i is defined by (D′

x)i(ϕ) = ∂xi
ϕ(x), and

∂td
(2)
i,j (t;µ, x1, x2) = Lm(t,µ)d

(2)
i,j (t;µ, x1, x2)

+∇ ·
(
d
(1)
j (t;µ, x2)

δb
δµ (·,m(t, µ))(d

(1)
i (t;µ, x1))

)
+∇ ·

(
d
(1)
i (t;µ, x1)

δb
δµ (·,m(t, µ))(d

(1)
j (t;µ, x2))

)
+∇ ·

(
m(t, µ), δ2b

δµ2 (·,m(t, µ))(d
(1)
i (t;µ, x1), d

(1)
j (t;µ, x2))

)
,

d
(2)
i,j (0;µ, x1, x2) = 0.

The above equations should be interpreted in a weak sense,i.e., when ∂tqt−Lm(t;µ)−rt = 0 means
that qt(ϕ(t, ·)) − qs(ϕ(s, ·)) =

∫ t

s
qτ (∂τϕ(τ, ·))dτ +

∫ t

s
qτ (L

∗
m(τ ;µ)ϕ(τ, ·))dτ +

∫ t

s
rτ (ϕ(τ, ·))dτ

for a smooth test function ϕ : [0,∞)× Rd → R.

The well-posedness of this differential equation is justified in Delarue and Tse (2021); Tse (2021)
for mean-field dynamics on the d-dimensional torus. Although our dynamics is defined on Rd and
the regularization term r has unbounded gradient, the arguments there can be applied because r is
convex and does not depend on the distribution. Here we omit the technical details.
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C.2 FIRST ORDER DIFFERENTIATION

Let Ht(x) = 1
n

∑n
j=1 ℓ

′
j(fµt

)hj(x). Here, we evaluate the first order derivative d(1)i (t;µ, x). For
that purpose, we define an operator d(1)(t;µ, ξ, x) where ξ ∈ Rd, x ∈ Rd, µ ∈ P as (we omit the
argument x if there is no confusion)

d(1)(t;µ, ξ, x)(ϕ) = ξ⊤∇ ∂

∂ϵ
m(t, ϵδx + (1− ϵ)µ)(ϕ)|ϵ=0

= ξ⊤∇ δ

δµ
m(t, µ)(ϕ)(x).

One may check that d(1)i (t;µ, x) = d(1)(t;µ, ei, x) where ei is the indicator vector that has 1 in its
i-th coordinate and 0 in other coordinates. In our case, we are interested in a setting

µ0 = µN
s =

1

N

N∑
i=1

X̂i
s,

which is a discrete measure with support consisting of N points. In that case, d(1)(t;µ0, ξ, x) can
be reformulated as the following gradient flow

Eµ0

[
ξ̃(X0)

⊤∇ δ

δµ
m(t, µ0)(ϕ)

]
=

1

N

N∑
i=1

ξ̃(X̂i
0)

⊤∇ δ

δµ
m(t, µ0)(ϕ).

where ξ̃(X0) = Nξ when X0 = x and ξ̃(X0) = 0 otherwise. Clearly, ξ̃ ∈ L2(µ0). Accordingly,
we define the following SDE:

dXϵ
t = −b(Xϵ

t , µ
ϵ
t)dt+

√
2λdWt,

µϵ
t = Law(Xϵ

t ), Xϵ
0 = X0 + ϵξ̃(X0).

Then, if we define ṽξt := limϵ→0
Xϵ

t−Xt

ϵ , it holds that

d(1)(t;µ0, ξ, x)(ϕ) = E[ṽξt · ∇ϕ(Xt)].

We can see that the infinitesimal displacement ṽξt follows the following differential equation:

dṽξt = −
[
ṽξt · ∇b(x, µt)|x=Xt +

δ

δµ
b(Xt, µt)(q̃t)

]
dt, (18)

from which we can derive moment bounds for ṽϵt . In particular, for p ≥ 1,

1

p

d∥ṽξt ∥p

dt
= −∥ṽξt ∥p−2

[
ṽξt · ∇b(x, µt)|x=Xt

· ṽξt +
δ

δµ
b(Xt, µt)(q̃t) · ṽξt

]
= −∥ṽξt ∥p−2

[
(ṽξt )

⊤∇∇⊤Ht(Xt)ṽ
ξ
t + λ(ṽξt )

⊤∇∇⊤r(Xt)ṽ
ξ
t +

δ

δµ
b(Xt, µt)(q̃t) · ṽξt

]
≤ B2∥ṽξt ∥p +B2∥ṽξt ∥p−1E[∥ṽξt ∥],

where we used Assumption 1 and convexity of r in the last inequality.

First, by taking expectation of both sides for p = 1, we know that E[∥ṽξ0∥] = ∥ξ∥ yields that
E[∥ṽξt ∥] ≤ exp(2B2t)E[∥ṽξ0∥] = exp(2B2t)∥ξ∥. Then, for p > 1, noticing that ṽξ0 = 0 for X0 ̸= x

and ∥ṽξt ∥p−1E[∥ṽξt ∥] ≤ (1− 1
p )∥ṽ

ξ
t ∥p + 1

pE[∥ṽ
ξ
t ∥]p, we have that, for x′ ̸= x,

E[∥ṽξt ∥p|X0 = x′] (19)

≤ exp((2p− 1)B2t)E[∥ṽξ0∥p|X0 = x′] +

∫ t

0

E[∥ṽξs∥]p exp[(2p− 1)B2(t− s)]ds

≤
∫ t

0

exp(2pB2s) exp[(2p− 1)B2(t− s)]dsE[∥ṽξ0∥]p
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≤ exp[(2p− 1)B2t][exp(B2t)− 1]B−2E[∥ṽξ0∥]p

≤ B−2 exp[(2p− 1)B2t][exp(B2t)− 1]∥ξ∥p

≤ B−2[exp(2pB2t)− 1]∥ξ∥p. (20)

In the same vein, when X0 = x, we have that

∥ṽξt ∥p = O(exp(2pB2t))Np∥ξ∥p (21)

for p ≥ 1 and t > 0.

By Corollary 3, m(t, ϵδx − (1 − ϵ)µ0) has a smooth density for t > 0, which we denote by µ(ϵ)
t .

Corollary 3 also asserts that µ(ϵ)
t (x) > 0 and is equivalent to µ∗ for any t > 0. Let

q
(1)
t,x(x

′) =
1

µt(x′)
ξ⊤∇ ∂

∂ϵ
µ
(ϵ)
t (x′)|ϵ=0.

For concise presentation, we introduce the abbreviated notation

q
(1)
t,x(ϕ) := Eµt

[q
(1)
t,xϕ].

Let µϵ
t|x′ be the distribution of Xϵ

t conditioned by Xϵ
0 = x′ + ϵξ̃(x′). We define the condi-

tional version of qt,x as q(1)t,x|x′(x
′′) := 1

µt|x′ (x′′)ξ
⊤∇ ∂

∂ϵµ
(ϵ)
t|x′(x

′′)|ϵ=0. Accordingly, we define

q
(1)
t,x|x′(ϕ) := Eµt|x′ [q

(1)
t,x|x′ϕ]. Then, we can see that q(1)t,x(ϕ) =

1
N

∑N
i=1 q

(1)

t,x|X̂i
s

(ϕ).

Lemma 6 (Bismut formula). Suppose Assumption 1 holds. Then for a bounded measurable function
f : Rd → R, µ0 ∈ P2 and t > 0, m(t, (I + ϵξ)♯µ0)(f) is differentiable with respect to ϵ at t = 0,
and we have

d

dϵ
m(t, (I + ϵξ)♯µ0)(f)|ϵ=0 = E[∇f(Xt) · ṽξt ] = E

[
f(Xt)

∫ t

0

ζξs · dWs

]
where

ζξs =
(
√
2λ)−1

t

(
ṽξs + s

δb

δµ
(Xs, µs)(q

(1)
t,x)

)
.

Also, q(1)t,x(x
′) = E[

∫ t

0
ζξs · dWs|Xt = x′], q(1)t,x|x′(x

′′) = E[
∫ t

0
ζξs · dWs|Xt = x′′, X0 = x′], and

E[(q(1)t,x|x(Xt))
2|X0 = x] < K(t)N2,

and E[(q(1)t,x|x′(Xt))
2|X0 = x′] ≤ K(t) for x′ ̸= x, where K(t) is a constant depending on t.

Proof. The first assertion is obtained by the Bismut formula with respect to the Lions derivative
by the initial distribution µ0 (Ren and Wang, 2019). In particular, Theorem 2.1 of Ren and Wang
(2019) yields the assertion by setting gs = s/t in their notation. We note that although they assumed
b(x, µ) and their derivatives are bounded, the same argument can be directly applied to our setting
because r(x) is a convex function that forces Xt to contract to origin instead of diverging.

As for the second assertion, we first observe that d
dϵE[f(Xt)] =

∫
f(x)∂ϵµt(x)

µt(x)
dµt =∫

f(x)∂ϵ logµt(x)dµt for all f (note that µt(x) > 0 for all x ∈ Rd by Corollary 3). This indi-
cates that ∂ϵ log(µt)(x) = E[

∫ t

0
ζξt · dWs|Xt = x] almost surely. In the same vein, we also have

the characterization of the conditional version q(1)t,x|x′(x
′′). Indeed, we may consider a dynamics of

X̌t = (Xt, X0) and apply the same argument on µt to the distribution of X̌t.

The moment bound can be ensured by noticing that

E[q(1)t,x|x(Xt)
2|X0 = x] = E

[
E
[∫ t

0

ζξs · dWs

∣∣∣Xt, X0 = x

]2
|X0 = x

]

≤ E

[(∫ t

0

ζξt · dWs

)2

|X0 = x

]
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≤ Ct,2

∫ t

0

E[∥ζξs∥2|X0 = x]ds

≲
Ct,2

t2

∫ t

0

(1 + s)2E[∥ṽξs∥2|X0 = x]ds

≲
Ct,2

t2
(1 + t)3N2∥ξ∥2 = O

(
Ct,2(1 + t)3

t2
N2

)
,

where the first inequality is due to Jensen’s inequality, the second inequality is by the moment
inequality of stochastic integral (Kim, 2013) (Ct,q = ( q(q−1)

2 )q/2t
q−2
2 ), and the last inequality is due

to Eq. (21) and Assumption 1. WhenX0 ̸= x, Eq. (20) gives E[∥ṽξs∥2|X0 = x′] = O(exp(2pB2t)),
which gives the bound for X0 ̸= x.

Let
L̂tϕ = λ∆ϕ− b⊤t ∇ϕ

for ϕ : Rd → R. Then, the derivative of q(1)t,x with respect to t can be evaluated as

d

dt
Eµt [q

(1)
t,xf ] =

∂

∂t

∂

∂ϵ
E[f(Xϵ

t )]|ϵ=0

=
∂

∂ϵ

∂

∂t
E[f(Xϵ

t )]|ϵ=0

=
∂

∂ϵ
E[(λ∆− b⊤t ∇)f(Xϵ

t )]|ϵ=0

=

∫
q
(1)
t,x(λ∆− b⊤t ∇)f −

δbt
δµ

(q
(1)
t,x)∇fdµt.

We can also see that
d

dt
Eµt|x′ [q

(1)
t,x|x′f ] =

∫
q
(1)
t,x|x′(λ∆− b⊤t ∇)f −

δbt
δµ

(q
(1)
t,x)∇fdµt|x′ ,

Note that the second term in the right hand side is δbt
δµ (q

(1)
t,x) instead of δbt

δµ (q
(1)
t,x|x′). We refer readers

to Tse (2021) for higher order regularity of the nonlinear PDEs induced by the derivative with
respect to the initial distribution in the torus setting. Therefore, by applying Theorem 4, we obtain
the following convergence bound.
Lemma 7. Under Assumption 1, it holds that, for any t > τ with sufficiently small τ > 0,

E[(q(1)t,x(Xt))
2] ≤ O(Λ̃µ0 exp(−λα(t− T0)/2)E[(q

(1)
0,x(X0))

2])

= O(Λ̃µ0 exp(−λα(t− T0)/2)N∥ξ∥2),

where Λ̃µ0 = exp(O(W2(µ0, µ
∗))).

Proof. We apply Theorem 4 in Appendix C.4. We first note that the conditions of Theorem 4 hold
for ϵt = C exp(−αλt)W2(µ0, µ

∗) by Corollary 4 and δt = 0. Moreover, by Corollary 6, we
can assume αt = α/2 for t ≥ T0 + log(Q̂t)/(λα) and αt = 0 otherwise. Next, we check the
integrability of

√
I(µt||µ̃t) with respect to t. According to Nitanda et al. (2022); Chizat (2022),

d

dt
(L(µt)− L(µ∗)) ≤ −λ2I(µt||µ̃t) ≤ 0,

which implies that∫ t

t′
I(µs||µ̃s)ds ≤

1

λ2
(L(µt′)− L(µ∗)− (L(µt)− L(µ∗))).

Hence, ∫ t

t′

√
I(µs||µ̃s)ds ≤

√
(t− t′)
λ2

(L(µt′)− L(µt))
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≤ O
(
1

λ

√
t− t′ exp(−λα(t′ − τ0))

√
L(µτ0)− L(µ∗)

)
. (22)

By taking t = k+ 1+ τ0 and t′ = k+ τ0 for k = 0, 1, . . . and taking summation over k, we obtain∫ ∞

τ0

√
I(µs||µ̃s)ds ≲ O

(√
L(µτ0)− L(µ∗)

)
= O(1 +

√
ψ2(τ0)W2(µ0, µ

∗)) = Op(1), (23)

where we omitted the dependence on λ, α in the order symbol. Therefore, Theorem 4 yields that

E[(q(1)t,x(Xt))
2] ≤ O(Λ̃µ0

exp(−λα(t− T0)(3/4))E[(q(1)t,x(Xτ ))
2]),

for sufficiently small τ > 0, where Λ̃µ0 = exp(O(W2(µ0, µ
∗))). Combining this evaluation and

Lemma 6 completes the proof.

However, observe that the bound in Lemma 7 has O(N) factor in the right hand side. We can
remove that factor by considering E[|q(1)t,x(Xt)|]2 instead of E[q(1)t,x(Xt)

2]. Recall that µ0 = µN
s =

1
N

∑N
i=1 X̂

i
s. Here we define µ0\x := 1

N−1

∑N
i=1:X̂i

s ̸=x X̂
i
s.

Lemma 8. Under Assumption 1, it holds that, for any t > τ with sufficiently small τ > 0,

E[|q(1)t,x(Xt)|]2 = O(Λµ0
exp(−λα(t− T0)/2)∥ξ∥2),

where Λµ0
= exp(O(W2(µ0, µ

∗) +W2(µ0\x, µ
∗))).

The proof of which can be found in Appendix C.5.

We finally remark that combining Eq. (21) and Lemma 8, we know that for any ϕ ∈ Cb(Rd) and
t > 0, it holds that

d(1)(t;µ0, ξ, x)(ϕ) ≤ O (Λµ0 exp(−λα(t− T0)/2)∥ξ∥∥ϕ∥∞,1) , (24)

where ∥ϕ∥∞,1 = max{∥ϕ∥∞, ∥∇ϕ∥∞}.

C.3 SECOND ORDER DIFFERENTIATION

Now we evaluate the second order derivatives. Let x1, x2 ∈ Rd fixed. For ϵ = (ϵ1, ϵ2) with ϵk ≥ 0
and ξ[1], ξ[2] ∈ Rd, we note that

ξ[1]⊤∇x1∇⊤
x2

δ2

δµ2
U(t, µ0)(x1, x2)ξ

[2]

=ξ[1]⊤∇x1
∇⊤

x2

∂2

∂ϵ1∂ϵ2
Φ(m(t, ϵ1δx1

+ ϵ2δx2
− (1− ϵ1 − ϵ2)µ0))|ϵ=(0,0)ξ

[2]

=ξ[2]⊤∇x2

∂

∂ϵ2

δ

δm
Φ(m(t, ϵ2δx2 + (1− ϵ2)µ0)(d

(1)(t; ϵ2δx2 + (1− ϵ2)µ0, ξ
[1]))

=
δ2

δm2
Φ(m(t, µ0))(d

(1)(t;µ0, ξ
[1]), d(1)(t;µ0, ξ

[2]))

+
δ

δm
Φ(m(t, µ0))(d

(2)(t;µ0, ξ
[1], ξ[2], x1, x2)),

where

d(2)(t;µ0, ξ
[1], ξ[2], x1, x2)(ϕ)

= ξ[1]∇x1
∇⊤

x2

∂2

∂ϵ1∂ϵ2
m(t, ϵ1δx1

+ ϵ2δx2
− (1− ϵ1 − ϵ2)µ0))(ϕ)|ϵ=(0,0)ξ

[2].

By Corollary 3, m(t, ϵ1δx1
+ ϵ2δx2

− (1 − ϵ1 − ϵ2)µ0) has a smooth density for t > 0, which is
denoted by µ(ϵ1,ϵ2)

t . Corollary 3 also asserts that µ(ϵ1,ϵ2)
t (x) > 0 and equivalent to µ∗ for any t > 0.

If we write

q
(2)
t,(x1,x2)

(x) =
1

µt(x)
ξ[1]⊤∇∇⊤ ∂2

∂ϵ1∂ϵ2
µ
(ϵ1,ϵ2)
t (x)ξ[2],
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then we can notice that d(2)(t;µ0, ξ
[1], ξ[2], x1, x2)(ϕ) = Eµt

[q
(2)
t,(x1,x2)

ϕ]. Here, we denote by

d
(1)
t,[k](ϕ) = d(1)(t;µ0, ξ

[k], xk)(ϕ) = ξ⊤∇x
∂
∂ϵm(t, ϵδxk

− (1− ϵ)µ0))(ϕ)|ϵ=0. Then, by taking the

derivative of d
dtd

(1)(t; ·) with respect to ϵ2, we know q
(2)
t (and d(2)) follows the following dynamics:

d

dt
d(2)(t;µ0, ξ

(1), ξ(2), x1, x2)(ϕ) =
d

dt
Eµt

[q
(2)
t,(x1,x2)

L̂t(ϕ)]

=Eµt [q
(2)
t,(x1,x2)

L̂t(ϕ)]−
∫
δbt
δµ

(d(2)(t;µ0, ξ
(1), ξ(2), x1, x2)) · ∇ϕdµt

− d(1)t,[1]

(
δbt
δµ

(d
(1)
t,[2]) · ∇ϕ

)
− d(1)t,[2]

(
δbt
δµ

(d
(1)
t,[1]) · ∇ϕ

)
− Eµt

[
δ2bt
δ2µ

(d
(1)
t,[1], d

(1)
t,[2]) · ∇ϕ

]
,

and also
q
(2)
0,(x1,x2)

(·) = 0.

Now, let

q
(2)
t =

1

N

N∑
i=1

qt,(X̂i
s,X̂

i
s)
,

and consider a situation where x1 = x2 ∈ {X̂i
0}Ni=1. We write q

(1)
t,[k],i to indicate q

(1)

t,X̂i
t

for

d(1)(t;µ0, ξ
[k], X̂i

0) when xk = X̂i
0. Then, we have that

d

dt
Eµt [q

(2)
t L̂t(ϕ)]

=Eµt
[q

(2)
t L̂t(ϕ)]−

∫
δbt
δµ

(q
(2)
t ) · ∇ϕdµt

− 1

N

N∑
i=1

Eµt

[
q
(1)
t,[1],i

δbt
δµ

(q
(1)
t,[2],i) · ∇ϕ

]
− 1

N

N∑
i=1

Eµt

[
q
(1)
t,[2],i

δbt
δµ

(q
(1)
t,[1],i) · ∇ϕ

]
− Eµt

[
δ2bt
δ2µ

(q
(1)
t,[1],i, q

(1)
t,[2],i) · ∇ϕ

]
.

By Eq. (24),

− 1

N

N∑
i=1

Eµt

[
q
(1)
t,[1],i

δbt
δµ

(q
(1)
t,[2],i) · ∇ϕ

]
≤ O

(
Λµ0

exp(−λα(t− T0)/2)∥ξ[1]∥
√

Eµt
[∥∇ϕ∥2]

)

− 1

N

N∑
i=1

Eµt

[
q
(1)
t,[2],i

δbt
δµ

(q
(1)
t,[1],i) · ∇ϕ

]
≤ O

(
Λµ0

exp(−λα(t− T0)/2)∥ξ[2]∥
√

Eµt
[∥∇ϕ∥2]

)
.

In the same vein, we also have

−Eµt

[
δ2bt
δ2µ

(q
(1)
t,[1],i, q

(1)
t,[2],i) · ∇ϕ

]
≤ O

(
Λ2
µ0

exp(−λα(t− T0))∥ξ[1]∥∥ξ[2]∥
√

Eµt [∥∇ϕ∥2]
)
.

Then applying Theorem 4, we obtain the following lemma.
Lemma 9. Under Assumption 1, it holds that

E[(q(2)t (Xt))
2] ≤ O(Λµ0 exp(−λα(t− T0)/2)∥ξ[1]∥∥ξ[2]∥).

where Λµ0
= exp(O(W2(µ0, µ

∗) +W2(µ0\x, µ
∗))).

Proof. From the argument above, the assumption in Theorem 4 guaranteed for δt = exp(−λt/2).
The other conditions are also satisfied as in the proof of Lemma 7. Hence, for arbitrary small positive
time τ ′0 > 0, we have that

E[(q(2)τ ′
0
(Xτ ′

0
))2] = O(1 + E[(q(2)0 (X0))

2]) = O(1),

due to Theorem 4-(i) and q(2)0 = 0.
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On the other hand, Corollary 4 yields that L(µt)− L(µ∗) ≤ λψ2(τ0)W2(µ0, µ
∗)2. Combining this

with the argument in Eq. (23), we see that∫ ∞

τ ′
0

√
I(µt, µ̃t)dt ≤ O

(
1 +

√
ψ2(τ ′0)W2(µ0, µ

∗)

)
.

Then, by the same argument as Lemma 7 and Theorem 4-(ii), we obtain the assertion.

C.4 GENERAL CONVERGENCE GUARANTEE

We can see that qt = q
(1)
t,x and qt = q

(2)
t satisfy

d

dt
Eµt [qtϕ] = E[qtL̂t(ϕ)]−

∫
δbt
δµ

(qt) · ∇ϕdµt + rt(ϕ), (25)

where |rt(ϕ)| ≤ C exp(−c0λαt)
√
Eµt

[∥∇ϕ∥2], and with slight abuse of notation we write qt(ϕ) :=
Eµt [qtϕ]. We define

D1(t) :=
1

n

n∑
j=1

Eµt
[qthj ]

2ℓ′′j,t, D2(t) :=

∫
q2t dµt,

where ℓ′′j,t = ℓ′′j (fµt).

In addition, recall the µ satisfies the Poincaré inequality (PI) with constant α if for all smooth
functions f : Rd → R, we have

Varµ(f) ≤ α−1Eµ[∥∇f∥2].
It is well-known that LSI implies PI with the same constant.

The following theorem provides an upper bound on D1 and D2 under the Poincaré inequality.
Theorem 4. Given Assumption 1 and suppose that | ddtℓ

′′
j,t| ≤ ϵt, qt satisfies Eq. (25) with rt(qt)

satisfying |rt(qt)| ≤ C
√
δtEµt

[∥∇qt∥2] with a sequence of 1/2 ≥ δt ≥ 0 and C ≥ 0, and µt

satisfies αt-PI for αt ≥ 0 (αt = 0 is also allowed in the case that µt does not satisfy the LSI), then
the following bounds hold:

(i)

D2(t) ≤ exp

[
t

(
B4

λ
+
C2

2λ

)](
D2(0) +

C2

2
(
B4

λ + C2

2λ

)) .
(ii)

d

dt
(D1(t) + λD2(t)) ≤− 2(1− δt)λαt(D1(t) + λD2(t))

+B2

(
2Bλ

√
I(µt||µ̃t) + ϵt + 2B2 δt

1− δt

)
D2(t) +

C2

2
δt.

In particular, it holds that, for 0 ≤ τ ≤ t,

D1(t) + λD2(t) ≤
∫ t

τ

C2

2
δse

At−Asds+ exp(At −Aτ )(D1(τ) + λD2(τ)),

where

As =

∫ s

0

−2(1− δs)λαs + C1

(
λ
√
I(µs||µ̃s) + ϵs +

δs
1− δs

)
ds,

and C1 = max{2B3, 1, 2B4}/λ.

Proof. By substituting ϕ← qt, it holds that

d

dt

∫
(qt)

2dµt =2Eµt
[qtL̂t(qt)]−

∫
q2t
∂

∂t
dµt − 2

∫
δbt
δµ

(qt) · ∇qtdµt + 2rt(qt).

30



Published as a conference paper at ICLR 2023

Here, the first two terms in the right hand side can be evaluated as

2Eµt
[qtL̂t(qt)]−

∫
(qt)

2 ∂

∂t
dµt

=2Eµt [qt(λ∆− b⊤t ∇)(qt)]−
∫
(λ∆− b⊤t ∇)(qt)2dµt

=2Eµt
[qt(λ∆− b⊤t ∇)(qt)]− 2Eµt

[λ(∆qt)qt + λ∥∇qt∥2 − b⊤t (∇qt)qt]
=− 2λEµt [∥∇qt∥2].

Part (i). By the assumption, the Cauchy-Schwarz inequality, and the arithmetic-geometric mean
inequality, we can see that

− 2

∫
δbt
δµ

(qt) · ∇qtdµt + 2rt(qt)

≤ B4

λ
Eµt

[q2t ] + λEµt
[∥∇qt∥2] +

C2

λ
δt + λEµt

[∥∇qt∥2]

= 2λEµt
[∥∇qt∥2] +

B4

λ
Eµt

[q2t ] +
C2

λ
δt.

Therefore,
d

dt
D2(t) ≤

B4

λ
D2(t) +

C2

λ
δt.

This yields that

D2(t) ≤ exp

(
t
B4

λ
+
C2

λ

∫ t

0

δsds

)
D2(0) +

C2

2

∫ t

0

δs exp

(
(t− s)B

4

λ
+
C2

λ

∫ t

s

δτdτ

)
ds

≤ exp

[
t

(
B4

λ
+
C2

2λ

)]
D2(0) +

C2

2
(
B4

λ + C2

2λ

) exp [t(B4

λ
+
C2

2λ

)]
.

This gives the first inequality.

Part (ii). Next, we evaluate the time differentiation of D1 as

n
d

dt
D1(t)

=
d

dt

n∑
j=1

(Eµt [qthj ])
2ℓ′′j,t

=

n∑
j=1

Eµt [qthj ]

{
2ℓ′′j,t

d

dt
Eµt [qthj ] + Emt [qthj ]

d

dt
ℓ′′j,t

}

= 2

n∑
j=1

Eµt
[qthj ]ℓ

′′
j,tEµt

[
qt(λ∆hj − b⊤t ∇hj)−

δb⊤t
δµ

(qt)∇hj
]
+B2nϵtD2(t)

= −2λ
n∑

j=1

Eµt
[qthj ]ℓ

′′
j,t

∫
∇qt · ∇hjdµt

+ λ

n∑
j=1

Eµt
[qthj ]ℓ

′′
j,t

∫
qt(b

⊤
t + λ∇ log(µt)) · ∇hjdµt

− 2

n
∥(ℓ′′i,tEµt

[qthj ])
n
j=1∥2Qt

+B2nϵtD2(t)

(
where (Qt)i,j :=

∫
∇hi · ∇hjdµt

)
.

Here, we notice that
n∑

j=1

Eµt
[qthj ]ℓ

′′
j,t

∫
qt(bt + λ∇ log(µt)) · ∇hjdµt

31



Published as a conference paper at ICLR 2023

≤ λ
n∑

j=1

√∫
q2t dµt

√∫
∥∇ log(µ̃t)−∇ log(µt)∥2dµt

√∫
q2t dµtℓ

′′
j,t∥∇hj∥∞∥hj∥∞

≤ λnB3
√
I(µt||µ̃t)Eµt

[q2t ] = λnB3
√
I(µt||µ̃t)D2(t).

In addition, note that

1

n

n∑
j=1

Eµt
[qthj ]ℓ

′′
j,t

∫
∇qt · ∇hjdx =

∫
∇qt ·

δbt
δµ

(qt)dx.

Therefore,

d

dt
(D1(t) + λD2(t))

≤− 2

n2
∥(ℓ′′i,tEµt

[qthj ])
n
j=1∥2Qt

− 4λ

∫
∇qt ·

δbt
δµ

(qt)dµt − 2λ2
∫
∥∇qt∥2dµt

+ 2B3λ
√
I(µt||µ̃t)D2(t) +B2ϵtD2(t) + 2λrt(qt)

≤− 2

n2
∥(ℓ′′i,tEµt [qthj ])

n
j=1∥2Qt

− 4λ

∫
∇qt ·

δbt
δµ

(qt)dµt − 2λ2
∫
∥∇qt∥2dµt

+ 2B3λ
√
I(µt||µ̃t)D2(t) +B2ϵtD2(t) + 2δtλ

2

∫
∥∇qt∥2dµt +

C2

2
δt

=− 2

∫ ∥∥∥∥ 1√
1− δt

δbt
δµ

(qt) +
√

1− δtλ∇qt
∥∥∥∥2 dµt + 2

(
1

1− δt
− 1

)∫ ∥∥∥∥δbtδµ (qt)

∥∥∥∥2 dµt

+B2(2Bλ
√
I(µt||µ̃t) + ϵt)D2(t) +

C2

2
δt

≤− 2

∫ ∥∥∥∥ 1√
1− δt

δbt
δµ

(qt) +
√

1− δtλ∇qt
∥∥∥∥2 dµt

+B2

(
2Bλ

√
I(µt||µ̃t) + ϵt + 2B2 δt

1− δt

)
D2(t) +

C2

2
δt.

When µt satisfies αt-PI (which is implied by αt-LSI), it holds that

αt

∫ θ1 1
n

n∑
j=1

ℓ′′j,thjEµt
[qthj ] + θ2λqt

2

dµt ≤
∫ ∥∥∥∥θ1 δbtδµ (qt) + θ2λ∇qt

∥∥∥∥2 dµt

for any θ1, θ2 > 0, which gives that

d

dt
(D1(t) + λD2(t))

≤− 2αt

∫  1√
1− δt

1

n

n∑
j=1

ℓ′′j,thjEµt [qthj ] +
√
1− δtλqt

2

dµt

+B2

(
2Bλ

√
I(µt||µ̃t) + ϵt + 2B2 δt

1− δt

)
D2(t) +

C2

2
δt

≤− 2αt
1

1− δt
1

n2

n∑
i,j=1

ℓ′′i,tℓ
′′
j,tEµt

[qthi]Eµt
[qthj ]

∫
hihjdµt

− 4λαt
1

n

n∑
j=1

ℓ′′j,tEµt [qthj ]Eµt [qthj ]− (1− δt)2αtλ
2

∫
q2t dµt

+B2

(
2Bλ

√
I(µt||µ̃t) + ϵt + 2B2 δt

1− δt

)
D2(t) +

C2

2
δt

≤− 2(1− δt)λαt(D1(t) + λD2(t))
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+B2

(
2Bλ

√
I(µt||µ̃t) + ϵt + 2B2 δt

1− δt

)
D2(t) +

C2

2
δt.

Using λD2(t) ≤ D1(t) + λD2(t) and Grönwall’s inequality (Mischler, 2019), we arrive at

D1(t) + λD2(t) ≤
∫ t

0

C2

2
δse

At−Asds+ exp(At)(D1(0) + λD2(0)),

where

As =

∫ s

0

−2(1− δs)λαs + C1

(
λ
√
I(µs||µ̃s) + ϵs +

δs
1− δs

)
ds,

for a constant C1 = max{2B3, 1, 2B4}/λ.

C.5 PROOF OF LEMMA 8

Recall that in Lemma 7 we obtained a bound on E[(q(1)t,x(Xt))
2] that contains a factor of N . Now we

refine this result by considering a bound E[q(1)t,x(Xt)ϕ] ≤ E[|q(1)t,x(Xt)|]∥ϕ∥∞.

Define the events I1 := {X0 = x} and Ic1 := {X0 ̸= x}. We let µt|I1
be the conditional

distribution of Xt conditioned by I1 and µt|Ic
1

be that conditioned by Ic1 . For notation simplic-

ity, we write qt = q
(1)
t,x , qt|I1

= q
(1)
t,x|x and qt|Ic

1
(·) =

∑
x′ ̸=x P (X0 = x′|Xt = ·)q(1)t,x|x′(·) =∑

x′ ̸=x

µt|x′ (·)∑
x′′ ̸=x µt|x′′ (·)q

(1)
t,x|x′(·). Accordingly, we write qt|I1

(ϕ) := Eµt|I1
[qt|I1

ϕ] and qt|Ic
1
(ϕ) :=

Eµt|Ic
1
[qt|Ic

1
ϕ] for a test function ϕ.

We control E[|q(1)t,x(Xt)|] by utilizing the following bound:

E[|q(1)t,x(Xt)|] ≤
1

N

√
E[(q(1)t,x|I1

(Xt))2|X0 = x] +
N − 1

N

√
E[(q(1)t,x|Ic

1
(Xt))2|X0 ̸= x]. (26)

We first evaluate E[(q(1)t,x|I1
(Xt))

2|X0 = x]. If we let D2(t) = Eµt
[q2t ], then it holds that, for a

positive sequence δt > 0,

d

dt
Eµt|I1

[q2t|I1
] = −2λEµt|I1

[∥∇qt|I1
∥2]− 2

∫
δbt
δµ

(qt) · ∇qt|I1
dµt|I1

≤ −2λEµt|I1
[∥∇qt|I1

∥2] + 2B2
√
D2(t)

√
Eµt|I1

[∥∇qt|I1
∥2]

≤ −2λ(1− δt)Eµt|I1
[∥∇qt|I1

∥2] +B4D2(t)/(2δt)

≤ −2λαt(1− δt)Eµt|I1
[q2t|I1

] +B4D2(t)/(2δt).

Thus, Grönwall’s inequality (see also the proof of Theorem 4) yields that

Eµt|I1
[q2t|I1

] ≤
∫ t

τ

B4D2(s)

2δs
exp(At −As)ds+ exp(At)Eµτ|I1

[q2τ |I1
],

whereAs =
∫ s

0
−2(1−δs)λαsds. Here, we recall thatD2(t) ≲ Λ̃µ0

N exp(−αλ(t−T0)(3/4))∥ξ∥2
by Lemma 7. Hence, if we set δt = exp(−αλ(t− T0)(1/8)), then As ≤ −2λα(s− T0)+ + C for
a constant C which can depend on α, λ, T0. This argument and Lemma 6 give

Eµt|I1
[q2t|I1

] ≲ Λ̃µ0
N exp(−αλ(t− T0)(5/8))∥ξ∥2. (27)

Next, we evaluate E[(q(1)t,x|Ic
1
(Xt))

2|X0 ̸= x]. LetD1,c(t) :=
1
n

∑n
j=1 qt|Ic

1
(hj)

2ℓ′′j,t andD2,c(t) :=∫
q2t|Ic

1
dµt|Ic

1
. For D1,c(t) +D2,c(t), we can see that

n∑
j=1

Eµt|Ic
1
[qt|Ic

1
hj ]ℓ

′′
j,t

∫
qt|Ic

1
(bt + λ∇ log(µt|Ic

1
)) · ∇hjdµt|Ic

1
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≤ λ
n∑

j=1

√
D2,c(t)

√∫
q2t|Ic

1
dµt|I1

√∫
∥∇ log(µ̃t)−∇ log(µt|Ic

1
)∥2dµt|Ic

1
ℓ′′j,t∥∇hj∥∞∥hj∥∞

≤ λnB3
√
I(µt|Ic

1
||µ̃t)︸ ︷︷ ︸

=:St

D2,c(t).

We also notice that
n∑

j=1

qt|Ic
1
(hj)

2 d

dt
ℓ′′j,t ≤ B2ϵtD2,c(t).

Hence by the same reasoning as the proof of Theorem 4, we have
d

dt
(D1,c(t) + λD2,c)

=− 2

n2
∥(ℓ′′j,tEµt|Ic

1
[qt|Ic

1
hj ])

n
j=1∥2Qt

− 2λ

∫
δbt
δµ

(qt) · ∇qt|Ic
1
dµt|Ic

1
+B2(2BλSt + ϵt)D2,c(t)

− 2λ2Eµt|Ic
1
[∥∇qt|Ic

1
∥2]− 2λ

∫
δbt
δµ

(qt) · ∇qt|Ic
1
dµt|Ic

1

=− 2
N − 1

N

∫ ∥∥∥∥δbtδµ (qt|Ic
1
) + λ∇qt|Ic

1

∥∥∥∥2 dµt|Ic
t
+B2(2λSt + ϵt)D2,c(t)

− 2
1

N

∫ ∥∥∥∥δbtδµ (qt|Ic
1
)

∥∥∥∥2 dµt|I1
− 4

λ

N

∫
δbt
δµ

(qt|I1
)∇qt|Ic

1
dµt|Ic

1
− 2

λ2

N

∫
∥∇qt|Ic

1
∥2dµt|Ic

1

≤− 2
N − 1

N

∫ ∥∥∥∥δbtδµ (qt|Ic
1
) + λ∇qt|Ic

1

∥∥∥∥2 dµt|Ic
t
+B2(2λSt + ϵt)D2,c(t)

+ 4λB

(
1

N
Eµt|I1

[
|qt|I1

hj |
])√∫

∥∇qt|Ic
1
∥2dµt|Ic

1

≤− 2
N − 1

N

∫ ∥∥∥∥δbtδµ (qt|Ic
1
) + λ∇qt|Ic

1

∥∥∥∥2 dµt|Ic
t
+B2(2λSt + ϵt)D2,c(t)

+ 4λB2

√
1

N2
Eµt|I1

[q2t|I1
]

√∫
∥∇qt|Ic

1
∥2dµt|Ic

1

≤− 2
N − 1

N

∫ ∥∥∥∥δbtδµ (qt|Ic
1
) + λ∇qt

∥∥∥∥2 dµt|Ic
t
+B2(2λSt + ϵt)D2,c(t)

+ 2λB2O
(√

Λ̃µ0
exp(−λα(t− T0)(5/16))∥ξ∥

)√∫
∥∇qt|Ic

1
∥2dµt|Ic

1
,

where we used Eq. (27) in the last inequality. Then, by noticing that the same argument as Corollary
6 holds for the conditional distribution µt|Ic

1
since Eq. (17) holds uniformly for any x ∈ {X̂i

s}Ni=1,
we may apply the same reasoning as the proof of Theorem 4 to obtain that, for sufficiently small
τ > 0, the following holds

D1,c(t) + λD2,c(t)

≲ Λ̃µ0
exp[−αλ(t− T0)/2 + C(1 +W2(µ0|Ic

1
, µ∗))](∥ξ∥2 +D1,c(τ) +D2,c(τ))

≲ exp(O(W2(µ0, µ
∗) +W2(µ0|Ic

1
, µ∗))) exp(−αλ(t− T0)/2)∥ξ∥2, (28)

where we used Lemma 6 in the last inequality.

Finally, by combining the inequalities (27) and (28) to Eq. (26), we obtain the assertion.

C.6 COMBINING ALL BOUNDS TOGETHER

Recall that

E[U(0, µN
t )− U(t, µN

0 )] =
1

N

d∑
i=1

∫ t

0

E
[∫ (

∂(x1)i∂(x2)i

δ2U
δµ2

(t− s, µN
s )(x, x)

)
µN
s (dx)

]
ds.
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Hence, by applying Lemma 7 and 9 with µ0 = µN
s , ξ = ξ[1] = ξ[2] = ei, we obtain∫ (

∂(x1)i∂(x2)i

δ2U
δµ2

(t− s, µN
s )(x, x)

)
µN
s (dx)

=

∫
δ2Φ

δµ2
(m(t− s, µN

s ))(d(1)(t− s;µN
s , ξ, x), d

(1)(t− s;µN
s , ξ, x))

+
δΦ

δµ
(m(t− s, µN

s ))(d(2)(t− s;µN
s , ξ, ξ, x, x))µ

N
s (dx)

= O(ΛµN
s
exp(−λα(t− s− T0)/2)),

where ΛµN
s
= 1

N

∑N
i=1 exp(O(W2(µ

N
s , µ

∗)+W2(µ
N
s\X̂i

s

, µ∗))). Now we only need to evaluate the

term E[ΛµN
s
].

Suppose C is a constant such that ΛµN
s
≤ 1

N

∑N
i=1 exp(C(W2(µ

N
s , µ

∗) +W2(µ
N
s\X̂i

s

, µ∗))). Then,

we can verify ΛµN
s
≤ exp

(
3C
√
EµN

s
[∥X∥2] + Eµ∗ [∥X∥2]

)
. Since µ∗(x) ≲ exp(−λcr∥x∥2+δ),

Eµ∗ [∥X∥2] = O(1) and thus we need to evaluate E
[
exp

(
C
√
EµN

s
[∥X∥2]]

)]
. This can be upper

bounded by E
[
exp

(
9C2

2 + 1
2EµN

s
[∥X∥2]

)]
= E

[
exp

(
9C2

2 + 1
2N

∑N
i=1 ∥X̂i

s∥2
)]

. Let Qs :=

1
N

∑N
i=1 ∥X̂i

s∥2. By Ito’s formula, we have

d

dt
E

[
exp

(
1

2N

N∑
i=1

∥X̂i
t∥2
)]

= E

[
exp (Qt/2)

(
− 1

N

N∑
i=1

b(X̂i
t , µ

N
t )⊤X̂i

t +
λ

2N

N∑
i=1

(d+ ∥X̂i
t∥2)

)]

≤ E

[
exp (Qt/2)

1

N

n∑
i=1

(
B2∥X̂i

t∥ − (2 + δ)λcr∥X̂i
t∥2+δ +

λ

2
(d+ ∥X̂i

t∥2)
)]

.

Then, by Young’s inequality, there exists a constant C ′ depending on B, λ, δ, cr, d such that

B2∥X̂i
t∥ − (2 + δ)λcr∥X̂i

t∥2+δ +
λ

2
(d+ ∥X̂i

t∥2) ≤ C ′ − (2 + δ)λcr
2

∥X̂i
t∥2+δ.

Moreover, by Jensen’s inequality, the term related to ∥X̂i
t∥2+δ can be further bounded by

− 1

N

n∑
i=1

∥X̂i
t∥2+δ ≤ −

(
1

N

n∑
i=1

∥X̂i
t∥2
)(2+δ)/2

= −Q(2+δ)/2
t .

In summary, we arrive at

d

dt
E [exp (Qt/2)] ≤ E[exp(Qt/2)(C

′ − ϵQ(2+δ)/2
t )]

with another constant ϵ = (2+δ)λcr
2 . Here, by noticing that

C ′ − ϵQ(2+δ)/2
t ≤ 2C ′1[Qt ≤ (2C ′/ϵ)2/(2+δ)]− C ′,

it holds that
d

dt
E [exp (Qt/2)] ≤ E[exp(Qt/2)(2C

′1[Qt ≤ (2C ′/ϵ)2/(2+δ)]− C ′)]

≤ E
{
2C ′ exp[ 12 (2C

′/ϵ)2/(2+δ)]− C ′ exp(Qt/2)
}
.

This means that

E[exp(Qt/2)] ≤ max{2 exp[12 (2C
′/ϵ)2/(2+δ)], E[exp(Q0/2)]} = O(1).
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One side remark is that we can further show an exponential decay of the term related to
E[exp(Q0/2)], but the above is sufficient for our purpose.

Finally, we arrive at

E[U(0, µN
t )− U(t, µN

0 )] =
1

N
O
(
E[ΛµN

s
]

∫ t

0

exp(−λα(t− s− T0)/2)ds
)

≤ 1

N
O
(
exp(λαT0/2)

1

λα
(1 + E[ΛµN

0
])

)
.

By selecting the initial distribution so that E[ΛµN
0
] = O(1), the right hand side is O(1). This is

satisfied if the support of µ0 is bounded, e.g., µN
0 = 1

N

∑N
i=1 δ0.

D AUXILIARY LEMMAS

Lemma 10. Suppose that Ψ : P → R has smooth first-variation such that ∥∇ δΨ
δµ ∥∞ ≤ C. Then,

for any ν0, ν1 ∈ P2, it holds that

|Ψ(ν1)−Ψ(ν2)| ≤ CW2(ν0, ν1).

Proof. By the Benamou–Brenier formula, for any ν1, ν0 ∈ P2, it holds that

W 2
2 (ν1, ν0) = inf

{∫ 1

0

∫
∥vt∥2dνtdt | ∂tνt +∇ · (νtvt) = 0 (t ∈ [0, 1])

}
,

where the infimum is taken over all curves νt : [0, 1] → P2 continuous with respect to the weak
topology (Ambrosio et al., 2005, Chapter 8). Then, for any vt satisfying ∂tνt +∇ · (νtvt) = 0 (t ∈
[0, 1]), we note that dΦ(νt)

dt =
∫
v⊤t ∇ δΨ

δµ (νt)dνt, and thus

|Ψ(ν1)−Ψ(ν0)|

=

∣∣∣∣∫ 1

0

∫
v⊤t ∇

δΨ

δµ
(νt)dνtdt

∣∣∣∣
≤
∣∣∣∣∫ 1

0

∫
∥vt∥

∥∥∥∥∇δΨδµ (νt)

∥∥∥∥ dνtdt∣∣∣∣
≤ C

√∫ 1

0

∫
∥vt∥2dνtdt.

By taking infimum with respect to vt, we obtain the inequality.

fXt
in the informal theorem stated in Section 1 formally corresponds to fµN

t
in the main text. Then,

we have the following corollary as a direct consequence of Theorem 2.

Corollary 7. Under the same setting as Theorem 2, we have

E[(fµt
(z)− fµN

t
(z))2] = O(1/N),

where µt = m(t, µN
0 ), and the expectation is taken over the dynamics of µN

t with a fixed initial
condition µN

0 .

Proof. By conditioning the initial distribution µN
0 , the evolution of µt is deterministic. Hence, for

fixed z ∈ Rd′
, it holds that

E[(fµN
t
(z)− fµt(z))

2]

= E[(fµN
t
(z)− fµt

(z))2]

+ 2EX [fµN
t
(z)− fµt(z)](fµt(z)− f∗(z))− 2E[fµN

t
(z)− fµt(z)](fµt(z)− f∗(z))
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+ (fµt
(z)− f∗(z))2 − (fµt

(z)− f∗(z))2

= E[(fµN
t
(z)− f∗(z))2]− (fµt

(z)− f∗(z))2

− 2(E[fµN
t
(z)]− fµt

(z))(fµt
(z)− f∗(z)).

Therefore, by considering Φ(µ) = fµ(z) and Φ(µ) = (fµ(z)− f∗(z))2, Theorem 2 indicates that

E[(fµN
t
(z)− f∗(z))2]− (fµt

(z)− f∗(z))2 = O(1/N), E[fµN
t
(z)]− fµt

(z) = O(1/N),

which yields the assertion.
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