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ABSTRACT

Standard practice in Machine Learning (ML) research uses ablation studies to
evaluate a novel method (Meyes et al., 2019). We find that errors in the ablation
setup can lead to incorrect explanations for which method components contribute
to the performance. Previous work has shown that the majority of experiments
published in top conferences are performed with few experimental trials (less than
50) and manual sampling of hyperparameters Bouthillier & Varoquaux (2020).
Using the insights from our meta-analysis, we demonstrate how current practices
can lead to unreliable conclusions. We simulate an ablation study experiment on
an existing Neural Architecture Search (NAS) benchmark and perform an ablation
study with 120 trials using ResNet50. We quantify the selection bias of Hyper-
parameter Optimization (HPO) strategies to show that only random sampling can
produce reliable results when determining the top and mean performance of a
method under a limited computational budget.

1 INTRODUCTION

Machine Learning (ML) experimental results are sensitive to variations in the training process that
can affect the conclusions of the analysis (D’Amour et al., 2020). Stochasticity in the training pro-
cess can lead to results that are difficult to reproduce (Ahmed & Lofstead, 2022) and statistical
outliers that can be misleading (Picard, 2021). The effect can be further exaggerated by the compu-
tational budget of the experiment (Shwartz-Ziv & Armon, 2021).

Ablation studies are a type of ML experiment where a method is evaluated with different compo-
nents removed to identify the component’s contribution to the performance of the method (Meyes
et al., 2019). In contrast to hyperparameter optimization (HPO), which seeks the hyperparameter
values that lead to the best performance, ablation studies are used to explain a method’s performance
(Lipton & Steinhardt, 2018).

Figure 1: Comparison of two hyperparameter selection strategies, Random and HPO. An HPO
strategy selects points based on previous samples and is biased towards a small fraction of the
search space that shows good performance. HPO can overestimate the mean performance, making
statistical analysis such as ANOVA inapplicable. The bias is exacerbated by the computational
budget, since HPO methods may sample from a small range of attributes.

ML experiments are composed of trials where each trial defines the training process and evaluation
of a single model, and a budget that specifies the number of trials allocated to the experiment. Vari-
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ation between the results of different trials means that a limited number of trials may not accurately
represent the mean performance of an experiment Nagarajan et al. (2018).

Several works (Balaji et al., 2018; Bouthillier et al., 2019; 2021) analyze current experimental prac-
tices in studies published in top conferences. They find that most experiments are run with a small
number of trials (a small budget) and are evaluated with hyperparameters that are sampled manually
(Bouthillier & Varoquaux, 2020) or with HPO. As we show in this work, these practices can lead to
unreliable conclusions if evaluated incorrectly; fig. 1.

We evaluate current experimental practices for ablation studies and compare the effect of compu-
tational budget and hyperparameter selection strategy on the reliability of the analysis. Based on
our observations, we propose specific experimentation strategies for ablation studies under a limited
computational budget. We open-source the code used for our experiments

https://github.com/fostiropoulos/trustml

2 RELATED WORK

Bouthillier & Varoquaux (2020) conduct a survey of publications at top ML conferences (NeurIPS
and ICLR) and report that ∼45.65% of experiments perform manual hyperparameter selection while
only ∼7.44% of experiments perform random search. Additionally, ∼65.37% of publications per-
formed fewer than 50 experimental trials. Bouthillier & Varoquaux (2020) recommend the use of
HPO as an alternative to manual sampling.

Turner et al. (2021); Moosbauer et al. (2021) show that the choice of hyperparameter selection
strategy can have a statistically significant impact on the results where under-explored regions of the
hyperparameter space can lead to unreliable conclusions.

Kurach et al. (2019); Lucic et al. (2017); Eggensperger et al. (2021); Liao et al. (2021) demonstrate
that the computational budget can have a significant impact on the results of the analysis. Similarly,
Picard (2021) find that with a sufficiently large budget, statistical outliers can out-perform state-of-
the-art.

Similar to previous work, we find that current experimental practices can be responsible for errors
in the analysis. Our results suggest that the interaction effects between computational budget and
hyperparameter selection strategy can further exacerbate the unreliability of the results. In contrast
to previous work, we find that evaluations using the mean performance and random sampling are
reliable estimates of a method’s performance even with a small budget.

3 EXPERIMENT

3.1 NUMBER OF TRIALS

We perform an experiment on the NATS-Bench benchmark (Dong et al., 2021) dataset that in-
cludes 7,776 neural network architectures composed of an exhaustive search over 6 topological
components, where each component can be one of 5 different layers. The benchmark evaluated
the performance of network architectures on the CIFAR-10 dataset (Krizhevsky, 2009) with mul-
tiple random repetitions. We define two model variants in the NATS-Bench for models with skip
connections (ResNet) (He et al., 2015) and networks without (Inception) (Szegedy et al., 2014);
M = [‘Res’, ‘Inc’]. The exhaustive search of configurations and multiple repetitions of each trial
provide a good approximation of the empirical mean performance of each model variant, which can
be used as the ground-truth for our experiments.

We evaluate how the sampling bias can lead to incorrect analysis as the number of trials increases for
different HPO strategies. We use surrogate modeling of the accuracy score using a Gaussian-Process
(GP) (Paleyes et al., 2019) with different acquisition functions such as sampling from regions with
the highest expected performance, ‘greedy’ (‘GPG’), highest expected variance (‘GPV’), and both
high expected performance and high variance, (‘GPUCB’) Srinivas et al. (2009). We evaluate Tree-
structured Parzen Estimator (‘TPE’) Bergstra & Bengio (2012) where the trials are sampled based on
the Expected Improvement. Lastly, we use Latin Hypercube (‘Quasi’-random) and pseudo-random
(‘Random’) sampling.
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We simulate experiments of varying budgets for each HPO strategy for 10 repetitions and with
different random seeds. We quantify the relative error as the difference between the estimated
mean performance of a method and the empirical mean performance of the method from the
dataset: ∆AM = AM − A′

M . We define the best performance error ∆AM similarly.

Figure 2: Sampling bias in different selection
strategies on the NATS-Bench dataset. Random
provides the least biased estimate and is clos-
est to the optimal while remaining sample effi-
cient. The majority of strategies lead to sampling
sub-optimal architectures (negative relative error)
from regions with unstable training dynamics and
poor performance. TPE leads to sampling more
often from optimal regions of model performance
(positive relative error).

We calculate the bias of the sampling method
as ∆PM = P (M)− P ′(M) where P (M) =

NM
N−NM

is the empirical sampling probability of
M in the NATS-Bench dataset and P ′ is the
sampling method estimate.

The empirical performance of ResNet architec-
tures is ARes = 90.20 ± 4.33% and Incep-
tion architectures is AInc = 81.50 ± 20.07%.
The dataset is biased towards ResNet variants
by P (Res) = 1.48. Table 1 shows the rela-
tive error as the average for all methods M =
[‘Res’, ‘Inc’].

Our results from fig. 2 indicate that the relative
bias and variance decrease as we increase the
computational budget for Random. In contrast,
the relative difference increases for the ‘TPE’
and GP methods. TPE samples architectures
from only the optimal regions leading to above-
optimal mean performance, while GP methods
sample from regions of high variance that can
lead to sampling from regions of sub-optimal
mean performance.

When evaluating with the best-performing trial
in table 1, our results show an equivalent top
performance between all sampling methods.
Additionally, the incremental benefit of addi-

tional trials beyond 64 begins to decline. Our results suggest that with a moderate budget of 64
trials, an unbiased estimate of model performance can be obtained with Random when evaluating
the mean performance of a method. The relative error when evaluating the best trial was similar for
TPE and Random at 1.21 and 1.15. Our results suggest that a Random sampling strategy might be a
more reliable option under more general conditions to ablation experiments.

Table 1: Increasing the computational budget (’Trials’) reduces the relative mean error ∆A and
Resnet bias ∆PRes for Random (‘Rand.’). The opposite is true for HPO methods (‘TPE’ and GPUCB).
The relative error of the top-performing trial (∆A) falls as the budget increases for all methods. As
such, we conclude that Random is the only choice that can produce reliable, unbiased results.

Trials Rand. TPE GPUCB Rand. TPE GPUCB Rand. TPE GPUCB

< 16 2.08 2.00 4.49 3.64 4.10 5.78 -31.54 -1.19 -25.70
< 64 1.33 2.82 20.91 1.21 1.15 3.88 -2.45 46.71 -31.36
128 0.56 3.58 26.61 0.78 0.76 4.29 0.68 263.01 -26.82
Avg. 1.32 2.81 17.34 1.88 1.99 4.65 -11.10 102.84 -27.96

∆A ↓ ∆A ↓ ∆PRes ↓

3.2 SELECTION BIAS

We perform two ablation experiments and further compare Random and TPE strategies. We evaluate
the sensitivity of the learning rate [1.0e−4, 1.0e−1] and the batch-size [32, 1024] to the performance
(batch-size generalization gap (Hoffer et al., 2018)). A total of 60 trials for each strategy are run
using a ResNet50 (He et al., 2015) network to classify images in a modified version of the CIFAR-10
(Krizhevsky, 2009) dataset with only images of cats and dogs as a binary classification problem.
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Figure 3: Comparison of the Random and TPE hyperparameter selection strategies. Random evenly
samples from all learning rates, including the ones that result in poor performance. TPE is biased
towards a small fraction of the search space and skews sensitivity analysis towards sub-regions of
the hyperparameter space.

Figure 3 shows TPE sampling from a small region of hyperparameters, where on average 68% of
sampled hyperparameters are below the mean configuration value. Additionally, when computing
Pearson’s correlation ρ between the two strategies, TPE suggests a large negative correlation be-
tween the hyperparameters and the accuracy that is about x1.5 higher than the empirical estimate.
For an equivalent budget, both methods reach similar best-trial performances, where the best-trial
performance was 0.80 for TPE and 0.79 for Random. The relative error of the best trial compared to
the empirical value (∆A) was -0.00225 for TPE and -0.00710 for Random with a budget of 16 trials.
Our results suggest that the benefits of TPE for evaluations that use the best performance might be
small, and results can be unreliable when evaluating and exploring a model’s performance, as TPE
is biased towards sub-regions of the hyperparameter space.

4 DISCUSSION

A reliable estimate of the performance of a method requires multiple experimental trials. In this
work, we find that even under a limited budget, a Random sampling strategy used to sample hyper-
parameters may be the most reliable. Additionally, we observe that using an HPO strategy to select
hyperparameters may lead to errors in comparisons that use the mean performance with statistical
tests like ANOVA.

Our experiments highlight the need for new community standards specific to model evaluation. HPO
exploits a limited range of hyperparameters to find the best performance and can be an unreliable
estimate of the model’s performance under general conditions. Poor experimental practices can lead
to mistrust towards scientific achievements as the results are often contradictory. For ML research,
evaluating the generalization ability of a model remains an open problem.

5 CONCLUSION

Through a meta-analysis, we identify incorrect experimental practices for evaluating the perfor-
mance of a method. We simulate ablation experiments on a NAS benchmark dataset and use the
empirical performance of the dataset as a ground-truth to quantify the reliability of the sampling
strategy. Additionally, we perform an ablation study on the sensitivity between learning rate and
batch size. Our results demonstrate that the reliability of the study declines sharply for different
hyperparameter selection strategies other than Random. Finally, we find that even when used as
intended, HPO provides little benefit when finding the best configuration compared to random sam-
pling.
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Klein, Noor H. Awad, Marius Lindauer, and Frank Hutter. Hpobench: A collection of re-
producible multi-fidelity benchmark problems for HPO. CoRR, abs/2109.06716, 2021. URL
https://arxiv.org/abs/2109.06716.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the general-
ization gap in large batch training of neural networks, 2018.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.
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