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Abstract

We study the theory of random bipartite graph whose adjacency matrix is generated
according to a connectivity matrix M. We consider the bipartite graph to be sparse,
i.e., the entries of M are upper bounded by certain sparsity parameter. We show
that the performance of estimating the connectivity matrix M depends on the
sparsity of the graph. We focus on two measurement of performance of estimation:
the error of estimating M and the error of estimating the column space of M. In
the first case, we consider the operator norm and Frobenius norm of the difference
between the estimation and the true connectivity matrix. In the second case, the
performance will be measured by the difference between the estimated projection
matrix and the true projection matrix in operator norm and Frobenius norm. We
will show that the estimators we propose achieve the minimax optimal rate.

1 Introduction

There have been many fruitful results on subspace estimation principal component analysis. Re-
searchers have been considering random matrix with Gaussian and sub-Gaussian noise. In the present
work, we focus on random bipartite graph, which have been a popular model in machine learning
and data mining [26, 11, 19]. A bipartite graph is a graph whose vertices can be divided into two
disjoint sets, U and V , such that every edge connects a vertex in U to one in V . In a random bipartite
graph, an edge connecting node i ∈ U to node j ∈ V exists with probability Mij independently.
Suppose |U| = n1 and |V| = n2, a bipartite graph can be represented by an adjacency matrix A,
whose elements Aij , (i, j) ∈ [n1] × [n2] are independent Bernoulli random variables with latent
parameters Mij . In other words, we can focus on the random adjacency matrix A with entries

Aij ∼ Bernoulli(Mij) for (i, j) ∈ [n1]× [n2] independently. (1)

M with elements Mij is called the connectivity matrix. The goal of this paper is to find the rate
optimal estimation of the latent connectivity matrix M and its singular space, under the assumption
that M follows certain low-rank structure.

Formally speaking, for the task of estimating matrix M, we consider the following parameter space:

Θ1(n1, n2, p, r) = {M ∈ [0, p]n1×n2 : rank(M) ≤ r} for positive integers n1, n2, r. (2)

In other words, Θ1(n1, n2, p, r) consists of all n1 × n2 matrices with entries between 0 and p and
rank at most r. To avoid empty parameter space, we always assume r ≤ min{n1, n2}. The parameter
p controls the sparsity of the bipartite graph.
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Matrix estimation has been studied under different assumptions. In [7], the author assumes the
random matrix has bounded entries. The universal singular value thresholding (USVT) algorithm is
proved to be optimal in the parameter space with bounded nuclear norm. In [15], the authors consider
a more general parameter space with subexponential random matrices with bounded means. However,
their approach is not optimal under our random graph assumption. One-bit matrix completion is
considered in [5, 9], but parameters therein are not necessarily of low rank matrices, so the minimax
error is not comparable with that of the family (2) in the present paper. In network analysis problems,
the density of network is expected to be sparse. The upper bound of connection probability p in our
model (2) plays a key role in error rates of the estimation.

When we consider the singular space estimation problem, an extra assumption about the smallest
non-zero singular value is required. We define the corresponding parameter space as follows:

Θ2(n1, n2, p, r, σ∗) = {M ∈ [0, p]n1×n2 : rank(M) = r, σr(M) ≥ σ∗}, (3)

where σr(M) is the rth largest singular value of M. It is clear that Θ2(n1, n2, p, r, σ∗) ⊂
Θ1(n1, n2, p, r). In other words, in the singular space estimation problem, we consider param-
eters in Θ1(n1, n2, p, r) whose smallest nonzero singular value is bounded below by σ∗.

Singular space estimation in the Gaussian case has been considered in [4]. To show the optimality of
their estimation, they use packing number of Grassmanian manifold provided in [21]. In the random
bipartite graph model that we consider in this paper, the connectivity matrix M in (3) is a merely
proper subset of the Grassmanian manifold because the entries of M are contained in the interval
[0, p]. As a consequence, the previous approach fails to calculate the lower bound of the packing
number of the parameter space Θ2(n1, n2, p, r, σ∗). In the literature of community detection, spectral
methods have been applied in clustering tasks on random graphs [17, 8, 13, 28, 29, 30]. The authors
in the paper [27] consider this problem under information diffusion. However, these works have
not focused on the optimality of singular space estimation. With the help of recent development
in non-asymptotic analysis of random matrices, we propose a stochastic approach to compute the
minimax lower bound of subspace estimation over the parameter space (3).

Here are some notations we will use in this paper. For real numbers a and b, a ∨ b = max{a, b} and
a ∧ b = min{a, b}. σr(M) is the rth largest singular value of matrix M. ‖M‖op = σ1(M), i.e., the

largest singular value, is the spectral norm of M. ‖M‖F =
(∑n1

i=1

∑n2

j=1 M2
ij

)1/2
is the Frobenius

norm of M. We note that ‖M‖2F =
∑n1∧n2

i=1 σi(M)2. Col(M) is the column space of M. Suppose
a = (a1, a2, . . . , an) ∈ Rn, then diag(a) is an n × n diagonal matrix with entries a1, a2, . . . , an
on the diagonal. For positive integer n, [n] := {1, 2, . . . , n}. For positive sequence an and bn, if
there exists a constant C such that an ≤ Cbn for all n, then we write an = O(bn) or an . bn. If
an = O(bn) and bn = O(an), then we write an = Θ(bn). If an/bn → 0 as n→∞, then we write
an = o(bn) or an � bn. When we discuss asymptotic properties, we consider min{n1, n2} → ∞,
i.e., the size the bipartite graph tends to infinity.

The rest of this paper is organized as follows. In Section 2, we introduce the algorithm for matrix
estimation problem and also provide theoretical analysis for the error rate and minimax lower bound
of this problem. Applying the result of matrix estimation, we propose the algorithm for column
and row space estimation in Section 3. Then we show that the algorithm outputs estimator with
minimax optimal error rate. Numerical experiments on the algorithms appear in Section 4. We
discuss some possible future works in Section 5. The proofs of the theorems can be found in the
supplementary material.

2 Low Rank Matrix Estimation of Random Graph

Given a random bipartite graph, we aim to estimate true connecting probability of the adjacency
matrix assuming that the connectivity matrix has low rank. To be more specific, in this section, we
consider the task of low rank matrix estimation parameters belong to the space

Θ1(n1, n2, p, r) = {M ∈ [0, p]n1×n2 : rank(M) ≤ r}
from (2). Without loss of generality, we assume n1 ≥ n2 in this section. We recall that a random
bipartite graph with adjacency matrix A is observed, and Aij ∼ Bernoulli(Mij) independently for
(i, j) ∈ [n1] × [n2]. We will first proposed the algorithm to estimate M, then we will show the
optimality of this estimator in the minimax sense.
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2.1 Hard Singular Value Thresholding

We first introduce the algorithm to compute the estimator M̂. The hard thresholding procedure is
similar as universal singular value thresholding proposed in [7]. However, our algorithm is specifically
designed for random graph, which leads to tighter error rate. The algorithm first applies degree
truncation on bipartite adjacency matrix A, then compute the best low rank approximation on the
resulting matrix by singular value decomposition (SVD). For n1 × n2 matrix X, and recall that we
assume n1 ≥ n2, the SVD of X is defined by

X =

n2∑
i=1

σiUiV
>
i = UΛV>

where

U = (U1,U2, . . . ,Un2
), Λ = diag(σ1, σ2, . . . , σn2

), and V = (V1,V2, . . . ,Vn2
)

with singular values σ1 ≥ σ2 ≥ · · · ≥ σn2 . Now we are ready to present Algorithm 1 for estimating
M by hard singular value thresholding.

Algorithm 1 Hard Singular Value Thresholding

1: Input: adjacency matrix A, sparsity parameter p, rank r.
2: Output: the estimate of M, M̂.
3: Set r′ = r ∧ bn2pc.
4: If the degree of any row or column of A is greater than 2n1p, replace a subset of 1’s in such

rows and columns by 0 so that the column-degrees and the row degrees of the resulting matrix
are bounded by 2n1p. We call this regularized matrix Are.

5: Let M̂ be the best rank-r′ approximation of Are composed of the first r′ SVD components with
the largest singular values. (More details of this step will be discussed later in this section. )

Remark 1. Suppose the rank of the connectivity matrix M is as large as the maximal expected row
degree n2p, then it is not sufficient to propose a low rank approximation. In this case, the rate of the
estimation error will be the same as a trivial estimation with M̂ = A. Step 3 in this algorithm plays
role as checking if r is sufficiently small.
Remark 2. We note that the regularization in step 4 is necessary to achieve the optimal error rate.
See experimental and theoretical result in [16]. It is worth noting that the regularization method
presented in the algorithm is not the unique one. Besides replacing the entries by zeroes, we can
multiply the columns and rows by a small constant so that the degree is bounded by 2n1p. Applying
this method, the regularized adjacency matrix loses less information, so the estimation is more
accurate. The threshold of regularization can be replaced by cn1p rather than 2n1p. In most cases,
the best c can be smaller than 2, though the theoretical estimation error rate cannot be improved by
choosing the optimal c. We will discuss the choice of c by simulation in Section 4.

We will describe more details in finding best rank-r′ approximation in step 5. Suppose the regularized
adjacency matrix Are from step 4 has SVD

Are =

n2∑
i=1

σiUiV
>
i ,

with singular values σ1 ≥ σ2 ≥ · · · ≥ σn2
, then we define the estimator M̂ to be the best rank-r′

approximation Are:

M̂ =

r′∑
i=1

σiUiV
>
i .

We note that M̂ does not necessarily belong to the parameter space Θ1(n1, n2, p, r), but there is no
further operation that can improve the error rate in the next theorem.

Now we are ready to present the high probability bounds for estimation of M. The error will be
measured by both operator norm ‖M̂−M‖op and Frobenius norm ‖M̂−M‖F. The upper bounds
of the error rate are shown in the following theorem.
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Theorem 1. Given the adjacency matrix A generated by parameter M from space Θ1(n1, n2, p, r)

and assuming n1 ≥ n2, the estimator M̂ obtained from Algorithm 1 satisfies

sup
M∈Θ1(n1,n2,p,r)

P
(
‖M̂−M‖2op & (n1p) ∧ (n1n2p

2)
)
≤ n−1

1 ; (4)

sup
M∈Θ1(n1,n2,p,r)

P
(
‖M̂−M‖2F & (n1pr) ∧ (n1n2p

2)
)
≤ n−1

1 . (5)

This theorem shows that if we consider the average loss of estimating entries of M,
1

n1n2
‖M̂−M‖2F .

pr

n2
∧ p2

holds with high probability as long as the dimension of the matrix tends to infinity. p2 is a trivial upper
bound since this can be obtained by letting M̂ = 0. As long as r = o(n2p), the low rank structure of
M leads to a better bound in entrywise loss. This coincides with the discussion in Remark 1.

This upper bound has also been studied in [13, 28]. The authors applied their result for community
detection when the number of communities are sufficiently smaller than the average degree of the
graph. However, the term n1n2p

2 is missing in previous works.
Remark 3. Without the Step 4 in Algorithm 1, (4) can still achieve the error rate [(n1p)∨ (log n1)]∧
(n1n2p

2) with high probability. One can check the technical reason from the concentration of random
graph without regularization in [10, 17, 16]. However, this error rate cannot achieve the minimax
lower bound in Theorem 3.

2.2 Soft Singular Value Thresholding

Soft singular value thresholding [3, 15, 6] can also be applied to estimate the connectivity matrix M.
Hard thresholding truncates the smallest n− r′ singular value to 0, where r′ is defined in step 3 of
Algorithm 1. In the soft thresholding approach, Algorithm 2 shrinks all singular values towards zero.

Algorithm 2 Soft Singular Value Thresholding

1: Input: adjacency matrix A, sparsity parameter p, rank r.
2: Output: the estimate of M, M̂.
3: Set r′ = r ∧ bn2pc.
4: Apply regularization (step 4 of Algorithm 1) on A to obtain Are.
5: Let Are = UΛV> be the SVD of Are where Λ = diag(σ1, σ2, . . . , σn2

).
6: Let Λ̂ = diag((σ1 − σr′+1) ∨ 0, (σ2 − σr′+1) ∨ 0, . . . , (σn1∧n2

− σr′+1) ∨ 0).

7: Let M̂ = UΛ̂V>.

Theorem 2. Under the same assumptions in Theorem 1, the estimator M̂ obtained from Algorithm 2
satisfies (4) and (5).

Theorem 1 and Theorem 2 show that both hard and soft singular value thresholding methods provide
consistent estimation of M up to a constant factor. Essentially, the estimator M̂ in each algorithm is
a low rank matrix satisfying ‖M− M̂‖2op . (n1p) ∧ (n1n2p

2) with high probability.

2.3 Minimax Lower Bound

Theorem 1 and Theorem 2 provide a high-probability upper bound for the estimation in M. We now
establish lower bounds for the estimation error measured by operator norm and Frobenius distance.
We will show that the high probability bounds in (4) and (5) are minimax optimal in the next theorem.
Theorem 3. Suppose n1 ≥ n2 and n1 is sufficiently large, then

inf
M̂

sup
M∈Θ1(n1,n2,p,r)

P
(
‖M̂−M‖2op & (n1p) ∧ (n1n2p

2)
)
≥ 1

2
; (6)

inf
M̂

sup
M∈Θ1(n1,n2,p,r)

P
(
‖M̂−M‖2F & (n1pr) ∧ (n1n2p

2)
)
≥ 1

2
. (7)
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Here, the infimum is over all estimators depending on A, p and r. (6) shows that there is no
estimator can achieve a high probability bound better than Θ((n1p) ∧ (n1n2p

2)) when we measure
the estimation error by operator norm. This lower bound can be extended to random tensor [31].
Similarly, (7) shows the minimax optimality in Frobenius norm. We note that the numerical constants
hidden in the notation & is smaller the ones hidden in the notation . in (4) and (5).

These lower bounds are comparable with [15, Theorem 5]. Although in their paper, the authors
consider Gaussian noise rather than Bernoulli random variables, the construction of packing number
in the proofs are similar. Nevertheless, the upper bound and lower bound in their paper does not
match if the entrywise standard deviation and maxi,j |Mij | are not asymptotically equivalent. In the
situation of random graph, we assume that maxi,j |Mij | = p, then p �

√
p(1− p) if the random

graph is sparse, i.e., p� 1. In this case, the minimax lower bound in [15] is suboptimal. Theorem 3
resolves this issue and show that Algorithm 1 and Algorithm 2 return optimal estimator in the random
bipartite graph problem.

2.4 Comparison with Stochastic Block Models and Graphon Models

Popular models on random graphs including stochastic block models (SBM) and graphon models
have been investigated in previous work. There have been wonderful results on these models in
literature. We will discuss the relationship of the previous results with our current work.

In SBM, the probability of the existence of an edge only depends on the membership of its incident
nodes. We consider the SBM on bipartite graph in [29]. Suppose there are K communities in U
and L communities in V , then the connectivity matrix M consists of at most KL many distinct
entries. The rank of M is at most K ∧ L. To simplify the discussion, we assume r = K = L.
SBM can be considered as a low-rank model, but the parameter space of SBM is much smaller than
Θ1(n1, n2, p, r). There are about (n1 + n2)r parameters in the low-rank model, while there are only
r2 parameters in SBM, i.e., one parameter for each block. Given the size of the random bipartite
graph is the same, on average, there are less random Bernoulli observations for estimating each
parameter in the low-rank model. Therefore, the error rate in matrix estimation on SBM [12, 14] is
tighter than low-rank model. Since SBM is a low-rank model, spectral methods have been applied to
SBM. The spectral clustering on SBM typically applies K-means type algorithms on M̂ to obtain
consistent community labels [20, 8, 25, 17, 13, 28].

The parameter space of graphon models is characterized by smoothness conditions on a continuous
function. The details can be found in [12, 14]. In these papers, the authors use the connectivity
matrix in SBM to estimate the function in the graphon model. The number of the blocks in SBM
depends on the smoothness assumption of the graphon. It is worth noting that estimating graphon by
a connectivity matrix in SBM is not computationally feasible. In another paper [23], spectral methods
are applied to graphon estimation, but they fail to achieve the optimal rate.

3 Singular Space Estimation

In this section, we will study the estimation of column and row spaces of parameter M. This task is
closely related to the estimation of M which has been studied in the previous section. Compared with
the parameter space Θ1(n1, n2, p, r), it additionally requires σr(M) to be bounded away from zero,
where σr(M) is the rth largest singular value of M. This is a necessary condition to distinguish the
subspace associated with top singular values from its normal space. We recall the parameter space
from (3):

Θ2(n1, n2, p, r, σ∗) = {M ∈ [0, p]n1×n2 : rank(M) = r, σr(M) ≥ σ∗}.

For M ∈ Θ2(n1, n2, p, r, σ∗), M>M ∈ [0, n2p
2]n1×n1 . Therefore,

n1n2p
2 ≥ tr(M>M) =

n1∧n2∑
i=1

σ2
i (M) ≥ σ2

∗r. (8)

Hence, σ∗ ≤
√

n1n2

r p is a necessary condition for the parameter space Θ2(n1, n2, p, r, σ∗) being
nonempty. Recall that we assume the observed bipartite adjacency matrix follows the distribution

Aij ∼ Bernoulli(Mij) for (i, j) ∈ [n1]× [n2] independently.
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We aim to recover the top-r left and right singular vectors. Due to the symmetry of the column and
row space, we will focus on left singular vectors in the following discussion. Let

M =

r∑
i=1

σi(M)UiV
>
i

be the singular value decomposition of M. Our goal is to recover the subspace spanned by
{U1, . . . ,Ur}. Let U = (U1, . . . ,Ur). Since the columns of U are singular vectors of M, U has
orthogonal columns. Suppose the estimator Û also has orthogonal columns, then the projection
matrices onto columns spaces of U and Û are UU> and ÛÛ> respectively. The loss in operator
norm and Frobenius norm are defined by

Lop(Û,U) = ‖ÛÛ> −UU>‖2op and LF(Û,U) = ‖ÛÛ> −UU>‖2F. (9)

We can similarly define the loss of row space estimator by Lop(V̂,V) and LF(V̂,V).
Remark 4. Due to the identifiability issue, we cannot directly compare the true basis of the column
space of M with the estimator Û. In this paper, we use the difference between the projection matrices
corresponding to different subspaces to measure the estimation error. There are other norms using in
literature, for instance, the sin Θ distance

‖ sin Θ(Û,U)‖ = ‖U>Û⊥‖

where Û⊥ has orthonormal columns which spans the normal space of Col(Û). Another possible
measurement of distance between U and Û is

inf
O∈Or

‖U− ÛO‖.

Here, the norm ‖ · ‖ can be either the operator norm or the Frobenius norm, and Or represents the
set of r× r orthogonal matrix. It is shown in [4] that these two norms are equivalent to the metric on
the difference between projection matrices defined in (9).

3.1 Singular Subspace Estimation and Upper Bound

We consider the rank truncation algorithm. In Algorithm 3, we first obtain the estimator M̂ from
Algorithm 1 or Algorithm 2, then we collect the top singular vectors of M̂. The subspace spanned
by these singular vectors is the estimation of the column space of M. Similarly ,the algorithm can
output the row space of M.

Algorithm 3 Singular space estimation

1: Input: adjacency matrix A, sparsity parameter p, rank r.
2: Output: the estimate of the column space and row space of M.
3: Let M̂ be the output of Algorithm 1 or Algorithm 2.
4: Let Û = (u1, . . . ,ur) where ui’s are the left singular vectors of M̂ corresponding to top-r

singular values.
5: Let V̂ = (v1, . . . ,vr) where vi’s are the right singular vectors of M̂ corresponding to top-r

singular values.
6: Output Û and V̂.

We combine the upper bound in Theorem 1 with Davis-Kahan theorem, then obtain the upper bound
of loss in subspace estimation given by Algorithm 3.
Theorem 4. Given the adjacency matrix A generated by connectivity matrix M from parameter
space Θ2(n1, n2, p, r, σ∗), the outputs of Û and V̂ from Algorithm 3 satisfy

sup
M∈Θ2(n1,n2,p,r,σ∗)

P
(

max(Lop(Û,U), Lop(V̂,V)) &
(n1 + n2)p

σ2
∗

∧ 1
)
≤ (n1 ∨ n2)−1; (10)

sup
M∈Θ2(n1,n2,p,r,σ∗)

P
(

max(LF(Û,U), LF(V̂,V)) &
(n1 + n2)pr

σ2
∗

∧ r
)
≤ (n1 ∨ n2)−1. (11)

6



The upper bound shows that if we obtain better a estimation M̂ or if the spectral gap σ∗ is larger, then
we can get more accurate estimation in singular space of M. Since the operator norm of a projection
matrix is 1, the estimation error in operator norm cannot exceed 2. Therefore, 2 is a trivial upper
bound (10). Similarly, 2r is a trivial upper bound in (11).

3.2 Minimax Lower Bound

In this section, we introduce the lower bound for the estimation in Theorem 4. Let us denote the
projection matrix of the left singular space of M by

PM = UU>.

where the columns of U are top-r singular vector of M. In the next theorem, we will show that under
regularity conditions on the parameter space, the estimation error rate of PM in the previous theorem
is minimax optimal.
Theorem 5. Let 1 ≤ r < n2 ≤ n1. Suppose that for some positive constant C0, and assume

(a) n1n2(4p/10)2 ≤ rσ2
∗ ≤ n1n2(6p/10)2 when r = 1;

(b) r ≤ n1/C0, rσ2
∗ ≤ n1n2p

2/C0 when r > 1.

Then, for sufficiently large C0 there exist a prior π∗ such that
Pπ∗

{
M ∈ [0.3p, 0.7p]n1×n2 , σr(M) ≥ σ∗, rank(M) = r

}
= 1 (12)

and the risk of the Bayes estimator P̂∗ = Eπ∗
[
PM

∣∣A] under Pπ∗ is bounded from below by

Eπ∗
[
‖P̂∗ −PM‖2op

]
≥ 1

50

(
n1p

σ2
∗
∧ 1

)
(13)

and

Eπ∗
[
‖P̂∗ −PM‖2F

]
≥ r

50

(
n1p

σ2
∗
∧ 1

)
. (14)

Remark 5. The assumptions on the parameters are mild and necessary (up to the choice of constants).
r/n1 has to be sufficiently small so that the parameter M is low-rank. In (8), we have shown that
n1n2p

2/(rσ2
∗) is sufficiently large so that the parameter space is nonempty. It requires the parameter

space to be large enough to construct the prior π∗. We need slightly different regularity conditions
for r = 1 and r > 1 because of the different construction of π∗ in each case.

Theorem 5 presents the lower bound of the Bayes error rate. By the fact that a minimax estimator
should be a Bayes estimator with respect to the least favorable prior of the parameter space, it is
straightforward to obtain

inf
P̂

sup
M∈Θ2(n1,n2,p,r,σ∗)

E
[
‖P̂−PM‖2op

]
≥ 1

50

(
n1p

σ2
∗
∧ 1

)
and

inf
P̂

sup
M∈Θ2(n1,n2,p,r,σ∗)

E
[
‖P̂−PM‖2F

]
≥ r

50

(
n1p

σ2
∗
∧ 1

)
.

from (13) and (14). We have been focus on the lower bound of the left subspace estimation in the
discussion so far. The result of Theorem 5 can be extended to the right subspace estimation. We skip
the presentation of this similar result.

Proof Sketch of Theorem 5 We only discuss the case r > 1 here. The case r = 1 has a different
but simpler proof. As in the proofs of many other minimax lower bounds, we firstly construct a finite
subset of the parameter space. Let H ∈ [−

√
3,
√

3]n1×(r−1) such that (H,1n1
)>(H,1n1

)/n1 =
Ir. Let Xi, i = 1, . . . , N , be distinct matrices in {−1, 1}n1×(r−1), with N = 2n1(r−1), Wi =√

1− µ2H + µXi with 0 < µ < 1, and

Mi =
p

2
1n1×n2

+
p

10
(Wi,−Wi, . . . ,Wi,−Wi,O), (15)

where (Wi,−Wi) is repeated k times. This alternating structure can help to provide sufficiently
large spectral gap. The parameters µ and k can control the distinguishability between distinct Mi

and Mj . We require Xi
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(a) has almost orthogonal columns;
(b) has columns almost orthogonal to the columns of (H,1n1),
(c) is sufficiently different from Xj for j 6= i.

There are sufficient amount of such Xi when n1 is large. We assign a uniform prior on the remaining
Mi. The minimax error is bounded below by the Bayesian error. In addition, the lower bound of
‖P̂M −PMi

‖F can be controlled by ‖X̂−Xi‖F. Therefore, the problem can be reduced to find the
lower bound on Bayes error for estimating Xi. The Bayes error is lower bounded by the Hellinger
distance between the probability space with parameter Mi and Mj . Measuring the Hellinger distance
between Bernoulli random variables becomes a standard problem.

4 Numerical Experiments

In previous sections, we have shown that the algorithms returns rate optimal estimation in different
tasks. The choice of hyperparameter does not affect the error rate in the theorems, but it can change
the performance of the algorithms in practice. In this section, each experiment will repeat 100 times.
In each iteration, the randomization procedure follows these steps:

1. Randomly generate matrices M1 ∈ Rn1×(r−1) M2 ∈ R(r−1)×n2 so that each entries
follows normal distribution independently.

2. M3 = M1M2 is an n1 × n2 matrix with rank r − 1.
3. Scale M3 so that all entries belongs to the interval [0, p]. We note that this step increases

the rank of the matrix by 1. The resulting rank-rmatrix is the connectivity matrix M in the
current iteration.

4. Generate the adjacency matrix of the random bipartite graph with connectivity matrix M.

4.1 Simulation on Matrix Estimation

Algorithm 1 and Algorithm 2 have the same theoretical error rate. However, their performances
in simulation are significant different. The experimental results of both algorithms will appear in
this section for comparison. We consider the following parameters in Θ1(n1, n2, r, p). n1 = n2 =
1000, r = 3, p = 0.01, 0.03, 0.05. In the following experiments, we vary the regularization constant
c from 0.2 to 1, where the default constant equals to 2 in Algorithm 1. When we apply regularization
on the adjacency matrix, we scale the columns and the rows so that the maximal degree is at most
cn1p, as described in Remark 2.

From the simulation results in Figure 1, we can conclude following observations:

1. Compared with soft singular value thresholding in Algorithm 2, the performance of hard
singular value thresholding in Algorithm 1 more heavily relies on the choice of regularization
parameter. If we are able to choose a good regularization parameter, Algorithm 1 outperforms
Algorithm 2 when the error is measured by operator norm. On the other hand, if we consider
the Frobenius loss, Algorithm 2 performs relatively better. Suppose we are unable to choose
a good regularization constant, Algorithm 2 performs better in most cases.

2. Since the density parameter p = 0.01, 0.03 and 0.05 on different columns from left to right,
we compare the plots in the first row and observe that regularization has smaller effect as the
density of the random bipartite graph increases. This phenomenon indeed coincides with the
theoretical background described in Remark 3. Even if we do not apply regularization on the
adjacency matrix, the loss rate can be bounded above by (n1p) ∨ (log n1). As p increases,
log n1 can take on the role of the upper bound.

3. Regularization has little affect on soft singular value thresholding (Algorithm 2). When
p = 0.01, regularization constant = 0.8 works slightly better than 0.7 and 0.9. For p = 0.03
and 0.05, the performances are almost identical when the regularization constant is greater
than 0.6. The performance of Algorithm 2 in this experiment is slightly different from our
expectation, but it does not violate any theorems in the previous sections. It could be an
interesting future work to explain why regularization does not substantially improve the soft
singular value thresholding method.
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Figure 1: Numerical experiments of Algorithm 1 and Algorithm 2. The probability matrix M’s are generated
from the parameter space Θ1(n1, n2, r, p) with n1 = n2 = 1000, r = 3. p = 0.01, 0.03, 0.05 on different
columns (from left to right). The horizontal axis represents the choice of regularization parameter.

4.2 Simulation on Subspace Estimation

The simulation results of Algorithm 3 are presented in Figure 2. The parameters in this experiment is
the same as those used in Section 4.1. Due to the simulation procedure, it is difficult to control the
smallest nonzero singular value of the connectivity matrix M. Therefore, we plot the loss measured
by σ2

∗Lop(Û,U) and σ2
∗LF(Û,U). We observe that the regularization constant does not have a

significant effect on the performance, but we can still conclude that the algorithm performs slightly
better if we set the constant to be around 0.5 when we measure the loss in Frobenius norm.

5 Discussion

In this section, we will discuss some possible future works. We have proposed and analyzed the
estimators given the parameters such as p and r. In Section 3, we study the loss in estimating the
column and row spaces simultaneously. We are wondering if we can extend these algorithms and
error rates in more general settings.
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Figure 2: Numerical experiments of Algorithm 3. The probability matrix M’s are generated from the parameter
space Θ2(n1, n2, r, p, σ) with n1 = n2 = 2000, r = 3. p = 0.01, 0.03, 0.05 on different columns (from left
to right). The horizontal axis represents the choice of regularization parameter.

5.1 Bipartite Graphs with Unbalanced Parts

Suppose the bipartite graphs has unbalanced parts, i.e., n1 � n2 for the dimension of the adjacency
matrix, then the upper bound in Theorem 4 may not be optimal for Lop(U, Û). Intuitively, suppose
there are more columns than rows in the adjacency matrix, then we are able to collect more information
about the column space of the connectivity matrix M. It is not clear how the assumption n1 � n2

affects the error rate of Lop(U, Û) in our theorem. On the other hand, increasing number of rows also
changes the spectral gap σ∗. Some recent works [18, 2] have focused on unbalanced random matrix,
but the authors have not shown their results are optimal in the random bipartite graph setting. The
generalized theorem in [4] enable us to find a tight bound for random matrix with Gaussian entries,
but the application on sparse random graphs is not straightforward. It is still an open problem to find
the minimax error rate of Lop(U, Û) and LF(U, Û).

5.2 Unspecified Parameters

To establish the minimax lower bound, we specify the sparsity parameter p and the rank r. However,
these parameters are unknown in general in practice. A possible approach is to tune these parameters
by cross validation. We randomly partition the bipartite graph into a training subgraph and a validation
subgraph, then we apply the algorithms in the present paper with various parameters and compute
the likelihood on the validation subgraph. We can generalize this procedure to cross validation
and find the parameters so that the average likelihood on validation subgraphs are maximized. The
implementation of cross validation should be straightforward, while the risk of estimation without
specified parameters can be an interesting future work.

6 Conclusion

In this paper, we study bipartite graphs with underlying low rank structures. We have introduced the
algorithms for finding the connectivity matrix and its column and row space, using the techniques
of regularization, hard and soft singular value thresholding. We provide theoretical analysis in
Theorem 1, Theorem 2 and Theorem 4 for the algorithms we proposed. In addition, minimax lower
bounds in Theorem 3 and Theorem 5 show that the algorithms return rate optimal estimators for
corresponding tasks. In addition, simulation studies in Section 4 investigate the effect of regularization
parameters in the algorithms. Finally, we discuss some possible future works in Section 5.
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