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Abstract

Significant advancements have been made in
the domain of dependency parsing, with re-
searchers introducing novel architectures to
enhance parsing performance. However, the
majority of these architectures have been eval-
uated predominantly in languages with a fixed
word order, such as English. Consequently,
little attention has been devoted to exploring
the robustness of these architectures in the con-
text of relatively free word-ordered languages.
In this work, we examine the robustness of
graph-based parsing architectures on 4 rela-
tively free word order languages. We focus
on investigating essential modifications such as
data augmentation and the removal of position
encoding required to adapt these architectures
accordingly. To this end, we propose a con-
trastive loss objective to make the model robust
to word order variations. Furthermore, our pro-
posed modification demonstrates a substantial
average gain of 3.48/3.10 points in 4 relatively
free word order languages, as measured by the
Unlabelled/Labelled Attachment Score metric
when compared to the best performing modifi-
cations.

1 Introduction

Substantial progress has been achieved within the
realm of dependency parsing, wherein researchers
have introduced novel architectures (Chen and
Manning, 2014; Kiperwasser and Goldberg, 2016;
Dozat and Manning, 2017; Kulmizev et al., 2019)
aimed at augmenting parsing efficacy. Neverthe-
less, the predominant evaluation of these architec-
tures has been limited to languages characterized
by a fixed word order, like English. Consequently,
inadequate focus has been allocated towards scruti-
nizing the adaptability of these architectures within
the domain of languages featuring a comparatively
flexible word order.

In the domain of linguistic typology, it is ob-
served that languages falling within the analyti-

cal classification, exemplified by English, typically
lack inflectional morphemes. This absence entails
a lack of explicit marking for objects or subjects,
necessitating a rigid adherence to word order. Con-
versely, languages categorized as morphologically
rich languages (MRLs) diverge from such stric-
tures, as they employ complex systems of marking
that afford greater flexibility in word arrangement.

The configurational information in sentences of
a free word order language is of limited use. There-
fore, the graph-based parsing architectures could
be a natural choice to model flexible word order.
In this work, we examine the robustness of graph-
based parsing architectures (Ji et al., 2019; Moham-
madshahi and Henderson, 2020, 2021) on 4 rela-
tively free word order languages. We focus on in-
vestigating essential modifications such as data aug-
mentation (Sahin and Steedman, 2018) and the re-
moval of position encoding required to adapt these
architectures accordingly. Existing multi-lingual
pretraining opts for default position encoding, how-
ever, this decision may not be optimal for low-
resource relatively free word order MRLs. Further,
building word order agnostic encoder from scratch
is not feasible due to data sparsity. Our results sug-
gest that if we simply drop position encoding in the
encoder then a mismatch in pretraining and task
setting leads to suboptimal performance.

This work introduces a novel Contrastive Self-
Supervised Learning (CSSL) module, as inspired
by He et al. (2020), to accommodate variations in
word order within the model architecture. In lan-
guages characterized by relatively flexible word
order, the presence of intricate morphology fa-
cilitates the relaxation of constraints pertaining
to word order, where permutations of word or-
der following weak projectivity retain semantic
equivalence. Given the comprehensive morpho-
logical marking system inherent in Morphologi-
cally Rich Languages, the core semantic essence
of the sentence remains unaltered, rendering the
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Figure 1: The Contrastive Loss minimizes the distance
between an anchor (blue) and a positive (green), both
of which have a similar meaning, and maximizes the
distance between the anchor and a negative (red) of a
different meaning.

permuted counterpart a suitable positive pairing for
contrastive learning. As depicted in Figure 1, the
original sentence serves as an anchor point, while
its permutations represent positive examples, juxta-
posed with randomly generated sentences serving
as negative examples. The self-supervised con-
trastive learning objective aims to minimize the
distance between positive examples and the anchor
point, while simultaneously maximizing the dis-
tance from negative examples. In essence, this
objective fosters the robustness of the encoder to
accommodate word order variations. Moreover,
the modular nature of this approach allows for
seamless integration with any encoder architecture,
without necessitating alterations to pretraining deci-
sions. Our approach, to the best of our knowledge,
is the first to use a contrastive learning technique
for dependency parsing to overcome challenges
caused by a lack of set word order and limited data
resources. The main contributions of our work are
as follows:

* We propose a contrastive learning-based novel
module to make Dependency Parsing robust
for free word order languages.

* Empirical evaluations of our proposed module
affirm the efficacy of for 4 free word-ordered
languages.

* We demonstrate significant improvements
with an average gain of 3.48/3.10 points over
the strong baseline.

2 Proposed Method

This section outlines the framework that we have
proposed, which incorporates contrastive learning
as a novel loss function within the domain of De-
pendency Parsing. To summarise, we first utilize
contrastive learning to get the contrastive objective,
which acts as a measure for evaluating the complex-
ity of sentences that are word permutations of each
other. Ultimately, the model is trained to utilize
both the classification and contrastive objectives.

2.1 Graph Transformers

Following the work by (Mohammadshahi and Hen-
derson, 2020), Graph-to-Graph Transformer archi-
tecture was developed by integrating it with an
attention-like function for graph connection predic-
tion. This autoregressive parsing model predicts
one edge (based on preceding edges) at a time,
which uses (Devlin et al., 2019) and it’s multilin-
gual variant as the encoder. According to (Mo-
hammadshahi and Henderson, 2021), a new graph
prediction framework leverages G2GTr’s graph-to-
graph capabilities to improve the resulting graph
iteratively.

2.2 Contrastive Learning

Contrastive learning seeks to gain meaningful rep-
resentations by merging thematically comparable
examples while separating semantically dissimi-
lar occurrences. In this study, we will investigate
sentences written as word order variations of one
another, resulting in a higher semantic affinity. As
a result, it is essential that the representation of a
certain sentence is consistent across both original
and permuted samples. In (van den Oord et al.,
2019; Tian et al., 2020), connections are made of
the contrastive loss to maximization of mutual in-
formation between different views of the data.
More specifically, for a sentence X; (anchor ex-
ample), its representation should be similar to the
permuted instance X f as permutation does not al-
ter the meaning of a sentence belonging to MRL.
However, the representation will differ from a ran-
dom sentence X, (negative example). Therefore,
the distance between the appropriate representa-
tions of X; and X j is expected to be small. Thus,
we can develop a contrastive objective by consid-
ering (X;, X ;r ) a positive pair and N — 1 negative
pairs (X;, X)) :



exp (2i - Zi+/T)
2 aeN XD (%i - Za/T)

Lects = —log

where N represents a batch, z; represents the rep-
resentation vector of the anchor sample, zf denotes
the representation vector for the positive sample
(permuted sample), z,, represents the representation
vector for the negative samples (different samples),
and 7 is a temperature parameter that controls the
concentration of the distribution.
Therefore, our final loss is:

E — ﬁc[s + Ece (1)

3 Experiment

In this section, we evaluate our framework against
Mohammadshahi and Henderson (2021, RNGTr).
We also show that our framework consistently out-
performs the rotation-based DA technique Sahin
and Steedman (2018, crop-rotate) on 4 MRLs for
dependency parsing.

3.1 Dataset and metric

We utilize the Sanskrit Treebank Corpus (Kulkarni,
2013) as our primary benchmark dataset. For our
experiments, we employ a training set consisting
of 2800 sentences from the prose domain along-
side a development set containing 1000 sentences
from the same domain. We employ test set com-
prising 300 sentences, drawn from the classical
Sanskrit work, §is’updla-vadha (Ryali, 2016). We
utilize our model on Universal Dependencies (UD-
2.13) (de Marneffe et al., 2021) in order to assess
its performance on each of these 4 low-resource
languages with extensive morphological structures.
With the exception of Sanskrit, we examine three
more low-resource MRLs: Turkish, Telugu, and
Gothic. These languages belong to various lan-
guage families, script families, character sets, train-
ing sets, morphological complexity, and domains.
We use standard UAS/LAS metrics (McDonald and
Nivre, 2011) for evaluation.

Language Selection Criteria: We choose low-
resource languages from 4 typological families,
guaranteeing that each language belongs to a
unique family. We choose languages with explicit
morphological information, which means they have
a thorough marking system and inflectional mor-
phemes, suggesting that they are Morphologically
rich languages.
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Figure 2: Schematic illustration of the proposed ap-
proach. Starting from an input sentence (bottom), two
embeddings are produced:(1) original and (2) permuted
sentence. Self-contrastive loss is imposed on the em-
beddings (center). A decoder finds the dependency
tree for the input from the embedding. Predicting the
dependency tree is trained via cross entropy objective.
Translation: "I am going to the forest."

Baselines: We utilize Mohammadshahi and Hen-
derson (2020, G2GTr), a member of the transition-
based dependency parsing family. Furthermore,
we explore Ji et al. (2019, GNN) a graph neural
network-based model that captures higher-order
relations in dependency trees. Finally, we ex-
amine Graph-to-Graph Non-Autoregressive Trans-
former proposed by Mohammadshahi and Hender-
son (2021, RNGTR) which iteratively refines arbi-
trary graphs through recursive operations.

3.2 Experimental Settings

We implement our framework using RNGTr ar-
chitecture which uses a pre-trained mBERT Base
model from Huggingface which has 110M param-
etes. During training, for each training example,
we permute the word order of the sentence to make
its positive example and all other sentences in the
batch are considered as negative examples for con-
trastive learning. The classification loss is calcu-
lated based only on the original training example’s
label.

3.3 Results

On STBC, our suggested method outperforms
all other approaches, as Table 2 illustrates. Our
method outperforms the RNGTr model Moham-
madshahi and Henderson (2021, RNGTr) by
2.24/1.95 points in UAS/LAS scores. Our model
outperforms the RNGTr model without position



CE DA CTS
Language UAS LAS UAS LAS UAS LAS
Sanskrit 89.62 87.43 90.38 88.46 | 91.86  88.89
Turkish 72.86 71.99 74.18 7296 | 7821  74.69
Telugu 90.02 80.34 91.86 81.51 93.79  85.67
Gothic 86.59 81.28 88.61 8293 | 89.15 84.19
English 92.08 90.23 93.76 92.16 | 93.19  90.71

Table 1: Performance comparison on the RNGTr model among standard cross entropy (CE), DA(CE+Data
Augmentation) and CTS(CE+Contrastive) techniques. The best performances are bold-faced.

Model | UAS LAS
G2GTr (Transition-based) | 85.75 82.21
GNN (Graph-based) 88.01 82.8
RNGTT (Graph-based) 89.62 8743
RNGTr (NoPos) 80.78 78.37
RNGTr (DA) 90.38 88.46
Prop. System 91.86 89.38

Table 2: Performance comparison among different
methodologies on Sanskrit STBC dataset. The best
performances are bold-faced.

embeddings by 11.08/11.01 UAS/LAS scores.
Moreover, our method outshined even the RNGTr
model augmented with rotation-based data augmen-
tation techniques pioneered by Sahin and Steed-
man (2018, crop-rotate). Though the margin was
narrower, our method still managed to secure a
substantial 1.48-point improvement in UAS and a
0.96-point boost in LAS, reaffirming its superiority
in dependency parsing for low-resource MRLs.

4 Analysis

Three other morphologically rich languages be-
sides Sanskrit are compared using our suggested
method in Table 1. It is noteworthy that San-
skrit, Telugu, Turkish, and Gothic belong to Indo-
Aryan, Dravidian, Turku, and Germanic language
families. On average, our approach achieves
3.48/3.10 higher UAS/LAS scores than the usual
cross-entropy based technique. Our system out-
performs the rotation-based DA technique with an
average increase of 1.99/1.89 in UAS/LAS scores.
It is also evident that English, not being a mor-
phologically rich language, lacks a comprehensive
marking system. Because sentence permutation in
English does not always imply a positive meaning,
our framework is unable to work. By 0.57/1.95
UAS/LAS scores, the DA approach performs better
than our framework. Due to some degree of data

augmentation, it is also evident that our methodol-
ogy outperforms the industry baseline by 1.11/0.48
in the corresponding metrics.

5 Conclusion and Future Work

In conclusion, our study delved into the robustness
of graph-based parsing architectures across four
languages characterized by relatively free word or-
der. While significant strides have been made in
dependency parsing for languages with fixed word
order like English, our research illuminates a crit-
ical gap in evaluating these architectures across
more diverse linguistic structures. By focusing on
essential modifications such as data augmentation
and the removal of position encoding, we aimed
to adapt these architectures to accommodate var-
ied word order patterns effectively. Our findings
demonstrate the efficacy of the proposed modifica-
tions, particularly the incorporation of a contrastive
loss objective, in enhancing parsing performance
across the languages under scrutiny.

Future work could consider extending this method
for dependency parsing in poetry data, where more
intricate word orderliness is found. Future research
in this domain could further refine and generalize
these modifications to encompass a broader spec-
trum of languages, ultimately advancing the field
of dependency parsing in linguistically diverse con-
texts.

Limitations We could not evaluate on complete
UD due to limited available compute resources
(single GPU); hence, we selected 5 representative
languages for our experiments.

Ethics Statement We do not foresee any eth-
ical concerns with the work presented in this
manuscript.
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A Appendix
B Related Work

Contrastive learning has been the pinnacle of re-
cent successes in sentence representation learn-
ing. In order to optimize the appropriately de-
signed contrastive loss functions, (Gao et al., 2021;
Zhang et al., 2022) uses the entailment sentences
in NLI as positive pairs, significantly improving
upon the prior state-of-the-art results. To this end,
a number of methods have been put forth recently
in which the augmentations are obtained through
back-translation (Fang et al., 2020), dropout (Yan
et al., 2021; Gao et al., 2021), surrounding con-
text sampling (Logeswaran and Lee, 2018; Giorgi
et al., 2021), or perturbations carried out at dif-
ferent semantic-level (Wu et al., 2020; Yan et al.,
2021).
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