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Abstract

Significant advancements have been made in001
the domain of dependency parsing, with re-002
searchers introducing novel architectures to003
enhance parsing performance. However, the004
majority of these architectures have been eval-005
uated predominantly in languages with a fixed006
word order, such as English. Consequently,007
little attention has been devoted to exploring008
the robustness of these architectures in the con-009
text of relatively free word-ordered languages.010
In this work, we examine the robustness of011
graph-based parsing architectures on 4 rela-012
tively free word order languages. We focus013
on investigating essential modifications such as014
data augmentation and the removal of position015
encoding required to adapt these architectures016
accordingly. To this end, we propose a con-017
trastive loss objective to make the model robust018
to word order variations. Furthermore, our pro-019
posed modification demonstrates a substantial020
average gain of 3.48/3.10 points in 4 relatively021
free word order languages, as measured by the022
Unlabelled/Labelled Attachment Score metric023
when compared to the best performing modifi-024
cations.025

1 Introduction026

Substantial progress has been achieved within the027

realm of dependency parsing, wherein researchers028

have introduced novel architectures (Chen and029

Manning, 2014; Kiperwasser and Goldberg, 2016;030

Dozat and Manning, 2017; Kulmizev et al., 2019)031

aimed at augmenting parsing efficacy. Neverthe-032

less, the predominant evaluation of these architec-033

tures has been limited to languages characterized034

by a fixed word order, like English. Consequently,035

inadequate focus has been allocated towards scruti-036

nizing the adaptability of these architectures within037

the domain of languages featuring a comparatively038

flexible word order.039

In the domain of linguistic typology, it is ob-040

served that languages falling within the analyti-041

cal classification, exemplified by English, typically 042

lack inflectional morphemes. This absence entails 043

a lack of explicit marking for objects or subjects, 044

necessitating a rigid adherence to word order. Con- 045

versely, languages categorized as morphologically 046

rich languages (MRLs) diverge from such stric- 047

tures, as they employ complex systems of marking 048

that afford greater flexibility in word arrangement. 049

The configurational information in sentences of 050

a free word order language is of limited use. There- 051

fore, the graph-based parsing architectures could 052

be a natural choice to model flexible word order. 053

In this work, we examine the robustness of graph- 054

based parsing architectures (Ji et al., 2019; Moham- 055

madshahi and Henderson, 2020, 2021) on 4 rela- 056

tively free word order languages. We focus on in- 057

vestigating essential modifications such as data aug- 058

mentation (Şahin and Steedman, 2018) and the re- 059

moval of position encoding required to adapt these 060

architectures accordingly. Existing multi-lingual 061

pretraining opts for default position encoding, how- 062

ever, this decision may not be optimal for low- 063

resource relatively free word order MRLs. Further, 064

building word order agnostic encoder from scratch 065

is not feasible due to data sparsity. Our results sug- 066

gest that if we simply drop position encoding in the 067

encoder then a mismatch in pretraining and task 068

setting leads to suboptimal performance. 069

This work introduces a novel Contrastive Self- 070

Supervised Learning (CSSL) module, as inspired 071

by He et al. (2020), to accommodate variations in 072

word order within the model architecture. In lan- 073

guages characterized by relatively flexible word 074

order, the presence of intricate morphology fa- 075

cilitates the relaxation of constraints pertaining 076

to word order, where permutations of word or- 077

der following weak projectivity retain semantic 078

equivalence. Given the comprehensive morpho- 079

logical marking system inherent in Morphologi- 080

cally Rich Languages, the core semantic essence 081

of the sentence remains unaltered, rendering the 082
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Figure 1: The Contrastive Loss minimizes the distance
between an anchor (blue) and a positive (green), both
of which have a similar meaning, and maximizes the
distance between the anchor and a negative (red) of a
different meaning.

permuted counterpart a suitable positive pairing for083

contrastive learning. As depicted in Figure 1, the084

original sentence serves as an anchor point, while085

its permutations represent positive examples, juxta-086

posed with randomly generated sentences serving087

as negative examples. The self-supervised con-088

trastive learning objective aims to minimize the089

distance between positive examples and the anchor090

point, while simultaneously maximizing the dis-091

tance from negative examples. In essence, this092

objective fosters the robustness of the encoder to093

accommodate word order variations. Moreover,094

the modular nature of this approach allows for095

seamless integration with any encoder architecture,096

without necessitating alterations to pretraining deci-097

sions. Our approach, to the best of our knowledge,098

is the first to use a contrastive learning technique099

for dependency parsing to overcome challenges100

caused by a lack of set word order and limited data101

resources. The main contributions of our work are102

as follows:103

• We propose a contrastive learning-based novel104

module to make Dependency Parsing robust105

for free word order languages.106

• Empirical evaluations of our proposed module107

affirm the efficacy of for 4 free word-ordered108

languages.109

• We demonstrate significant improvements110

with an average gain of 3.48/3.10 points over111

the strong baseline.112

2 Proposed Method 113

This section outlines the framework that we have 114

proposed, which incorporates contrastive learning 115

as a novel loss function within the domain of De- 116

pendency Parsing. To summarise, we first utilize 117

contrastive learning to get the contrastive objective, 118

which acts as a measure for evaluating the complex- 119

ity of sentences that are word permutations of each 120

other. Ultimately, the model is trained to utilize 121

both the classification and contrastive objectives. 122

2.1 Graph Transformers 123

Following the work by (Mohammadshahi and Hen- 124

derson, 2020), Graph-to-Graph Transformer archi- 125

tecture was developed by integrating it with an 126

attention-like function for graph connection predic- 127

tion. This autoregressive parsing model predicts 128

one edge (based on preceding edges) at a time, 129

which uses (Devlin et al., 2019) and it’s multilin- 130

gual variant as the encoder. According to (Mo- 131

hammadshahi and Henderson, 2021), a new graph 132

prediction framework leverages G2GTr’s graph-to- 133

graph capabilities to improve the resulting graph 134

iteratively. 135

2.2 Contrastive Learning 136

Contrastive learning seeks to gain meaningful rep- 137

resentations by merging thematically comparable 138

examples while separating semantically dissimi- 139

lar occurrences. In this study, we will investigate 140

sentences written as word order variations of one 141

another, resulting in a higher semantic affinity. As 142

a result, it is essential that the representation of a 143

certain sentence is consistent across both original 144

and permuted samples. In (van den Oord et al., 145

2019; Tian et al., 2020), connections are made of 146

the contrastive loss to maximization of mutual in- 147

formation between different views of the data. 148

More specifically, for a sentence Xi (anchor ex- 149

ample), its representation should be similar to the 150

permuted instance X+
i as permutation does not al- 151

ter the meaning of a sentence belonging to MRL. 152

However, the representation will differ from a ran- 153

dom sentence X−
i (negative example). Therefore, 154

the distance between the appropriate representa- 155

tions of Xi and X+
i is expected to be small. Thus, 156

we can develop a contrastive objective by consid- 157

ering (Xi, X+
i ) a positive pair and N − 1 negative 158

pairs (Xi, X−
i ) : 159
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Lcts = − log
exp (zi · zi+/τ)∑
a∈N exp (zi · za/τ)

160

where N represents a batch, zi represents the rep-161

resentation vector of the anchor sample, z+i denotes162

the representation vector for the positive sample163

(permuted sample), za represents the representation164

vector for the negative samples (different samples),165

and τ is a temperature parameter that controls the166

concentration of the distribution.167

Therefore, our final loss is:168

L = Lcts + Lce (1)169

3 Experiment170

In this section, we evaluate our framework against171

Mohammadshahi and Henderson (2021, RNGTr).172

We also show that our framework consistently out-173

performs the rotation-based DA technique Şahin174

and Steedman (2018, crop-rotate) on 4 MRLs for175

dependency parsing.176

3.1 Dataset and metric177

We utilize the Sanskrit Treebank Corpus (Kulkarni,178

2013) as our primary benchmark dataset. For our179

experiments, we employ a training set consisting180

of 2800 sentences from the prose domain along-181

side a development set containing 1000 sentences182

from the same domain. We employ test set com-183

prising 300 sentences, drawn from the classical184

Sanskrit work, Śiśupāla-vadha (Ryali, 2016). We185

utilize our model on Universal Dependencies (UD-186

2.13) (de Marneffe et al., 2021) in order to assess187

its performance on each of these 4 low-resource188

languages with extensive morphological structures.189

With the exception of Sanskrit, we examine three190

more low-resource MRLs: Turkish, Telugu, and191

Gothic. These languages belong to various lan-192

guage families, script families, character sets, train-193

ing sets, morphological complexity, and domains.194

We use standard UAS/LAS metrics (McDonald and195

Nivre, 2011) for evaluation.196

Language Selection Criteria: We choose low-197

resource languages from 4 typological families,198

guaranteeing that each language belongs to a199

unique family. We choose languages with explicit200

morphological information, which means they have201

a thorough marking system and inflectional mor-202

phemes, suggesting that they are Morphologically203

rich languages.204

Figure 2: Schematic illustration of the proposed ap-
proach. Starting from an input sentence (bottom), two
embeddings are produced:(1) original and (2) permuted
sentence. Self-contrastive loss is imposed on the em-
beddings (center). A decoder finds the dependency
tree for the input from the embedding. Predicting the
dependency tree is trained via cross entropy objective.
Translation: "I am going to the forest."

Baselines: We utilize Mohammadshahi and Hen- 205

derson (2020, G2GTr), a member of the transition- 206

based dependency parsing family. Furthermore, 207

we explore Ji et al. (2019, GNN) a graph neural 208

network-based model that captures higher-order 209

relations in dependency trees. Finally, we ex- 210

amine Graph-to-Graph Non-Autoregressive Trans- 211

former proposed by Mohammadshahi and Hender- 212

son (2021, RNGTR) which iteratively refines arbi- 213

trary graphs through recursive operations. 214

3.2 Experimental Settings 215

We implement our framework using RNGTr ar- 216

chitecture which uses a pre-trained mBERT Base 217

model from Huggingface which has 110M param- 218

etes. During training, for each training example, 219

we permute the word order of the sentence to make 220

its positive example and all other sentences in the 221

batch are considered as negative examples for con- 222

trastive learning. The classification loss is calcu- 223

lated based only on the original training example’s 224

label. 225

3.3 Results 226

On STBC, our suggested method outperforms 227

all other approaches, as Table 2 illustrates. Our 228

method outperforms the RNGTr model Moham- 229

madshahi and Henderson (2021, RNGTr) by 230

2.24/1.95 points in UAS/LAS scores. Our model 231

outperforms the RNGTr model without position 232
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CE DA CTS
Language UAS LAS UAS LAS UAS LAS
Sanskrit 89.62 87.43 90.38 88.46 91.86 88.89
Turkish 72.86 71.99 74.18 72.96 78.21 74.69
Telugu 90.02 80.34 91.86 81.51 93.79 85.67
Gothic 86.59 81.28 88.61 82.93 89.15 84.19
English 92.08 90.23 93.76 92.16 93.19 90.71

Table 1: Performance comparison on the RNGTr model among standard cross entropy (CE), DA(CE+Data
Augmentation) and CTS(CE+Contrastive) techniques. The best performances are bold-faced.

Model UAS LAS
G2GTr (Transition-based) 85.75 82.21
GNN (Graph-based) 88.01 82.8
RNGTr (Graph-based) 89.62 87.43
RNGTr (NoPos) 80.78 78.37
RNGTr (DA) 90.38 88.46
Prop. System 91.86 89.38

Table 2: Performance comparison among different
methodologies on Sanskrit STBC dataset. The best
performances are bold-faced.

embeddings by 11.08/11.01 UAS/LAS scores.233

Moreover, our method outshined even the RNGTr234

model augmented with rotation-based data augmen-235

tation techniques pioneered by Şahin and Steed-236

man (2018, crop-rotate). Though the margin was237

narrower, our method still managed to secure a238

substantial 1.48-point improvement in UAS and a239

0.96-point boost in LAS, reaffirming its superiority240

in dependency parsing for low-resource MRLs.241

4 Analysis242

Three other morphologically rich languages be-243

sides Sanskrit are compared using our suggested244

method in Table 1. It is noteworthy that San-245

skrit, Telugu, Turkish, and Gothic belong to Indo-246

Aryan, Dravidian, Turku, and Germanic language247

families. On average, our approach achieves248

3.48/3.10 higher UAS/LAS scores than the usual249

cross-entropy based technique. Our system out-250

performs the rotation-based DA technique with an251

average increase of 1.99/1.89 in UAS/LAS scores.252

It is also evident that English, not being a mor-253

phologically rich language, lacks a comprehensive254

marking system. Because sentence permutation in255

English does not always imply a positive meaning,256

our framework is unable to work. By 0.57/1.95257

UAS/LAS scores, the DA approach performs better258

than our framework. Due to some degree of data259

augmentation, it is also evident that our methodol- 260

ogy outperforms the industry baseline by 1.11/0.48 261

in the corresponding metrics. 262

5 Conclusion and Future Work 263

In conclusion, our study delved into the robustness 264

of graph-based parsing architectures across four 265

languages characterized by relatively free word or- 266

der. While significant strides have been made in 267

dependency parsing for languages with fixed word 268

order like English, our research illuminates a crit- 269

ical gap in evaluating these architectures across 270

more diverse linguistic structures. By focusing on 271

essential modifications such as data augmentation 272

and the removal of position encoding, we aimed 273

to adapt these architectures to accommodate var- 274

ied word order patterns effectively. Our findings 275

demonstrate the efficacy of the proposed modifica- 276

tions, particularly the incorporation of a contrastive 277

loss objective, in enhancing parsing performance 278

across the languages under scrutiny. 279

Future work could consider extending this method 280

for dependency parsing in poetry data, where more 281

intricate word orderliness is found. Future research 282

in this domain could further refine and generalize 283

these modifications to encompass a broader spec- 284

trum of languages, ultimately advancing the field 285

of dependency parsing in linguistically diverse con- 286

texts. 287

Limitations We could not evaluate on complete 288

UD due to limited available compute resources 289

(single GPU); hence, we selected 5 representative 290

languages for our experiments. 291

Ethics Statement We do not foresee any eth- 292

ical concerns with the work presented in this 293

manuscript. 294
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Dejiao Zhang, Shang-Wen Li, Wei Xiao, Henghui Zhu,405
Ramesh Nallapati, Andrew O. Arnold, and Bing Xi-406
ang. 2022. Pairwise supervised contrastive learning407
of sentence representations.408

A Appendix409

B Related Work410

Contrastive learning has been the pinnacle of re-411

cent successes in sentence representation learn-412

ing. In order to optimize the appropriately de-413

signed contrastive loss functions, (Gao et al., 2021;414

Zhang et al., 2022) uses the entailment sentences415

in NLI as positive pairs, significantly improving416

upon the prior state-of-the-art results. To this end,417

a number of methods have been put forth recently418

in which the augmentations are obtained through419

back-translation (Fang et al., 2020), dropout (Yan420

et al., 2021; Gao et al., 2021), surrounding con-421

text sampling (Logeswaran and Lee, 2018; Giorgi422

et al., 2021), or perturbations carried out at dif-423

ferent semantic-level (Wu et al., 2020; Yan et al.,424

2021).425
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